中文版 | English
题名

基于B2O3-ZnO-La2O3体系LTCC 材料的成分设计和性能研究

其他题名
COMPOSITIONAL DESIGN AND PERFORMANCE STUDY OF LTCC MATERIALS BASED ON B2O3-ZNO-LA2O3 SYSTEM
姓名
姓名拼音
XUE Wenzhuo
学号
12132482
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
于洪宇
导师单位
深港微电子学院
论文答辩日期
2023-05-16
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  低温共烧陶瓷(LTCC)技术是实现电子元器件高度集成化与模组化的重要封装技术之一。主流的 LTCC 技术是以高组分玻璃粉和陶瓷粉作为烧结反应物,低熔点的玻璃会先溶解从而降低了材料整体的烧结温度。这种高组分玻璃配比(40~80 vol%)的烧结方法有效降低了工艺难度与制造成本,但也使得烧结后的样品存在一系列问题,包括 LTCC 基板成品的介电常数偏高,品质因数较低等问题,增加了电路模组的传输延迟和传输损耗。
此外,伴随着 5G 高频段的应用,高频信号传输带来的发热问题也极为重要。 因此,在 5G 高速发展的时代背景下,探索合适低配比的玻璃陶瓷复合材料以提高 LTCC 成品的性能、品质以及散热特性成为一个重要的课题。 本文聚焦于低比例玻璃含量(<50 vol%B2O3-ZnO-La2O3 玻璃的系列化研究,LTCC 的致密度研究,以及 LTCC 的微观结构与性能的关联特性研究。实验以纳米 Al2O3 作为陶瓷原料,与 B2O3-ZnO-La2O3 玻璃共烧。通过XRD 图谱寻找结晶反应中可能的中间相。对比 SEM 图谱探索制备过程中
烧结温度和压强对样品表面致密度的影响。进行 CTE 测试,测试各个成分点在 100~200 ℃间的热膨胀系数。对比热收缩曲线和 DSC 曲线,分析玻璃软化和发生结晶反应时中间产物的成分变化。测试多个成分点样品在高频(14~16 GHz)情况下的介电常数与介电损耗,寻找能实现最佳介电性能的B2O3-La2O3 的成分比例。本次研究通过对助烧玻璃体系的成分设计与性能探索,结合 LTCC 烧结工艺的优化,实现改善玻璃/陶瓷复合材料的介电性能和热学性能的目的,拓展 LTCC 体系宽度,让 LTCC 技术的更加契合 5G 时代的发展。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 王若达. 先进封装推动半导体产业新发展[J]. 中国集成电路, 2022, 31(04): 26-42.
[2] 周晓阳. 先进封装技术综述[J]. 集成电路应用, 2018, 35(06): 1-7.
[3] SASMAL N, GARAI M, KARMAKAR B, et al. Preparation and characterization ofnovel foamed porous glass-ceramics. Materials Characterization, 103 (2015)90-100.
[4] VARTANYAN M A, LUKIN E S, POPOVA N A, et al. Low firing temperatureceramic for microcircuit substrates. Glass and Ceramics, 56 (2008) 1-2.
[5] 严 强 , 刘 健 中 , 郝 新 祥 , 等 . Advanced hermetic electronic packaging based onlightweight silicon/aluminum composite produced by powder metallurgytechnique[J]. Rare Metals, 2020,39(11): 1307-1313.
[6] LUO F, LIANG L, HUITINK D, et al. Advanced Power Module Packaging andIntegration Structures for High Frequency Power Conversion:From Silicon toGaN[J]. 电力电子技术, 2018, 52(08):9-18.
[7] 范琳, 袁桐, 杨士勇, 等. 微电子封装材料的技术现状与发展趋势[C].第六届全国覆铜板技术·市场研讨会报告集, 2005: 28-33.
[8] Linde and Shanghai University to Develop Advanced Flexible Display PackagingSolutions[J]. China Chemical Reporter, 2010, 21(06): 5.
[9] SZWAGIE D, SYNKIE B, KULA J, et al. LTCC and bulk Zn4B6O13-Zn2SiO4composites for submillimeter wave applications. Materials, 14 (2021): 1014.
[10] 李晓萌, 张艳, 郭静, 等. Nonstoichiometric microwave dielectric ceramics [(Na0.5- xBi0.5+x/3)0.5Ca0.5]MoO4 with low sintering temperatures. Journal of the EuropeanCeramic Society, 41 (2021): 7029-7034.
[11] KUMARI P, TRIPATHI P, ARKASH O, et al. Low temperature sintering andcharacterization of MgO-B2O3-SiO2 glass-ceramics for LTCC substrate applications. Transactions of the Indian Ceramic Society, 75 (2016): 229-233.
[12] SEBASTIAN M T, WANG H, JANTUNAN H, et al. Low temperature co-firedceramics with ultra-low sintering temperature: A review, Curr. Current Opinion inSolid State and Materials Science, 20 (2016): 151-170.
[13] 李建辉, 丁小聪. LTCC 封装技术研究现状与发展趋势[J]. 电子与封装, 2022, 22(03): 44-57.
[14] GARAI M, SASMAL N, MOLLA A R, et al. Structural effects of Zn+2/Mg+2 ratioson crystallization characteristics and microstructure of fluorophlogopite mica- containing glass-ceramics. Solid State Sciences, 44 (2015): 10-21.
[15] 杨斌, 王荣, 张晗, 等. LTCC 材料及其器件——产业发展与思考[J]. 电子元件与材料, 2021, 40(03): 205-210.
[16] 丁永旺. LTCC 的性能研究[D]. 西安电子科技大学, 2013.
[17] GARAI M, RAO C H, KARMAKAR B, et al. Nanocrystalline microstructure in Sm3+ and Gd3+ doped K2O-MgO-Al2O3-SiO2-F glass-ceramic sealant. Materials Advances, 3 (2020): 1463.
[18] CHEN C L, WEI W C J, ROOSEN A, et al. Wetting, densification and phasetransformation of La2O3/A2O3/B2O3-based glasseceramics. Journal of the EuropeanCeramic Society, 26 (2006): 59-65.
[19] TAKADA T, WANG S F, YOSHIKAWA S, et al. Effects of glass additions on(Zn,Sn)TiO4 for microwave applications. Jourmal American Ceraic Society, 77(1994): 2485-2488.
[20] 张怀武, 李颉, 苏桦, 等. 低温共烧陶瓷技术用铁素体材料的开发与应用[J]. 中国物理学[B], 2013, 22(11): 16-36.
[21] JEONG P H, JIN K G, YOUNG C J, et al. Low Temperature co-fired Ceramics WithLow Dielectric Loss For Millimeter-Wave Applicaon[P]. Current Opinion in SolidState and Materials Science, 2012 (06).
[22] HWANG G M, LEE D H. Low temperature co-fired ceramics assembling system andmethod thereof[P]. Current Opinion in Solid State and Materials Science, 2011 03.
[23] MAKAROVIC K, BENCAN A, HROVAT M, et al. The effect of phase compositionon the mechanical properties of LTCC material[J]. Applied Ceramic Technol, 201310(3): 449–457.
[24] 卢中舟, 张树人, 周晓华, 等.K2O-B2O3-SiO2/Al2O3 LTCC 复合基板材料性能研究[J].电子元件与材料, 2010. 29(6): 41-43.
[25] 陈兴宇. 硼硅铅玻璃/氧化铝的烧结特性研究[D]. 国防科学技术大学, 2008.
[26] SASMAL N, GARAI M, MOLLA A R, et al. Effects of lanthanum oxide on theproperties of barium-free alkaline-earth borosilicate sealant glass. Journal of Non- Crystalline Solids, 387 (2014): 62-70.
[27] GARAI M, KARMAKAR B. Zr+4-controlled nucleation and microstructure in Si-Mg- Al-K-B-F glass-ceramic sealant (solid oxide fuel cell). Materialstoday Energy, 18(2020) 100535.
[28] 侯旎璐, 汪洋, 刘清超, 等. LTCC 技术简介及其发展现状[J]. 电子产品可靠性与环境试验, 2017, 35(01): 50-55.
[29] FANG L, SU C X, ZHOU H F, et al. Novel low-firing microwave dielectric ceramicLiCa3MgV3O12 with low dielectric loss. Jourmal American Ceraic Society, 96(2013): 688-690.
[30] EBRAHIMI F, NEMATI A, BANIJAMALI S, et al. Fabrication and microwavedielectric characterization of cordierite/BZBS (Bi2O3-ZnO-B2O3-SiO2) glasscomposites for LTCC applications. Journal of Alloys and Compounds, 882 (2021):160722.
[31] 张 晓 辉 , 郑 欣 . 低 温 共 烧 陶 瓷 材 料 的 研 究 进 展 [J]. 微 纳 电 子 技 术 , 2019, 56(10): 797-805.
[32] HYUN-OK S, SUNG-HUN C. Low temperature co-fired ceramics substrate andmanufacturing method thereof and semiconductor package[P]. Current Opinion inSolid State and Materials Science, 2009 05.
[33] HAIJUN M, FENGLIN W, XUELIAN Z, et al. Design of a BaO-Al2O3-SiO2-B2O3glass-ceramic for microwave LTCC substrate material based on glass-ceramic +ceramic composite. Journal of Materials Science: Materials in Electronics, 33(2022): 24834–24844 .
[34] 吕学鹏. Li2ZnTi3O8 微波介质陶瓷的制备及介电机理研究[D]. 南京航空航天大学, 2015.
[35] MATHIASBALES H, HIMPEL A, WEISE G, et al. Process for the manufacture ofe.g. glow plug or low temperature co-fired ceramics as a spark-plasma sinteredcomposite component[P]. DE102006018690,2007-10-18.
[36] ZHOU H F, LIU X B, CHEN X L, et al. ZnLi2/3Ti4/3O4: a new low loss spinelmicrowave dielectric ceramic. Journal of the European Ceramic Society, 32 (2012):261-265.
[37] GARAI M, SINGH C K, ROUT S K, et al. Crystallization and microstructure in K2Osubstituted SiO2-MgO-Al2O3-Li2O-AlPO4 glass-ceramics. Solid StateCommunications,350 (2022): 114758.
[38] SANGOK Y, SHIN K, YUNHWAN K, et al. Glass free MgO ceramic compounds forlow temperature co-fired ceramics and MgO ceramics[P]. KR101668685, 2016 10.
[39] WANG S, Li L X, WANG X B, et al. Low-temperature firing and microwavedielectric properties of MgNb2-xVx/2O6-1.25x ceramics. Ceramics International, 48(2022): 199-204.
[40] SEBASTIAN M T, UBIC R, JANTUNEN H, et al. Low-loss dielectric ceramicmaterials and their Properties. International Materials Reviews, 60 (2015): 392-412.
[41] JIN D H, LIU B, SONG K X, et al. Boosting densification and microwave dielectricproperties in cold sintered BaF2 ceramics for 5.8 GHz WLAN applications. Journalof Alloys and Compounds, 886 (2021): 161141.
[42] Fei W P, QING Z H, MING L G, et al. Optimization and performance study ofcasting process of CaO-Al2O3-B2O3-SiO2 glass/Al2O3 series low-temperature co-firedceramics[J],Journal of Nanjing University of Technology, 44(2022): 633-639.
[43] 周毅. 稀土添加铌酸盐玻璃陶瓷复合介电材料的研究[D]. 北京有色金属研究总院, 2013.

所在学位评定分委会
材料与化工
国内图书分类号
TQ174.75
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544699
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
薛文卓. 基于B2O3-ZnO-La2O3体系LTCC 材料的成分设计和性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132482-薛文卓-南方科技大学-(4848KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[薛文卓]的文章
百度学术
百度学术中相似的文章
[薛文卓]的文章
必应学术
必应学术中相似的文章
[薛文卓]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。