[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancerstatistics 2018: GLOBOCAN estimates of incidence and mortalityworldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6): 394-424.
[2] VAN DEN BEUKEN-VAN EVERDINGEN M H,HOCHSTENBACH L M, JOOSTEN E A, et al. Update on Prevalence ofPain in Patients With Cancer: Systematic Review and Meta-Analysis[J]. JPain Symptom Manage, 2016, 51(6): 1070-1090.e1079.
[3] SABINO M A, MANTYH P W. Pathophysiology of bone cancerpain[J]. J Support Oncol, 2005, 3(1): 15-24.
[4] HAMOOD R, HAMOOD H, MERHASIN I, et al. Chronic painand other symptoms among breast cancer survivors: prevalence,predictors, and effects on quality of life[J]. Breast Cancer Res Treat,2018, 167(1): 157-169.
[5] TANG N K, CRANE C. Suicidality in chronic pain: a review ofthe prevalence, risk factors and psychological links[J]. Psychol Med,2006, 36(5): 575-586.
[6] TREEDE R D, RIEF W, BARKE A, et al. Chronic pain as asymptom or a disease: the IASP Classification of Chronic Pain for theInternational Classification of Diseases (ICD-11)[J]. Pain, 2019, 160(1):19-27.
[7] BOLAND E G, AHMEDZAI S H. Persistent pain in cancersurvivors[J]. Curr Opin Support Palliat Care, 2017, 11(3): 181-190.
[8] PORTENOY R K. Treatment of cancer pain[J]. Lancet, 2011,377(9784): 2236-2247.
[9] DAVILA D, ANTONIOU A, CHAUDHRY M A. Evaluation ofosseous metastasis in bone scintigraphy[J]. Semin Nucl Med, 2015, 45(1):3-15.
[10] LI B T, WONG M H, PAVLAKIS N. Treatment and Preventionof Bone Metastases from Breast Cancer: A Comprehensive Review ofEvidence for Clinical Practice[J]. J Clin Med, 2014, 3(1): 1-24.
[11] CLEELAND C S, BODY J J, STOPECK A, et al. Pain outcomesin patients with advanced breast cancer and bone metastases: resultsfrom a randomized, double-blind study of denosumab and zoledronicacid[J]. Cancer, 2013, 119(4): 832-838.
[12] MERCADANTE S. Malignant bone pain: pathophysiology andtreatment[J]. Pain, 1997, 69(1-2): 1-18.
[13] YONEDA T, HIASA M, NAGATA Y, et al. Acidicmicroenvironment and bone pain in cancer-colonized bone[J]. BonekeyRep, 2015, 4: 690.
[14] FIGURA N, SMITH J, YU H M. Mechanisms of, and Adjuvantsfor, Bone Pain[J]. Hematol Oncol Clin North Am, 2018, 32(3): 447-458.
[15] MANTYH P. Bone cancer pain: causes, consequences, andtherapeutic opportunities[J]. Pain, 2013, 154 Suppl 1: S54-s62.
[16] HONORE P, ROGERS S D, SCHWEI M J, et al. Murine modelsof inflammatory, neuropathic and cancer pain each generates a unique setof neurochemical changes in the spinal cord and sensory neurons[J].
[17] MERCADANTE S, ARCURI E. Breakthrough pain in cancerpatients: pathophysiology and treatment[J]. Cancer Treat Rev, 1998,24(6): 425-432.
[18] MERCADANTE S, VILLARI P, FERRERA P, et al.Optimization of opioid therapy for preventing incident pain associatedwith bone metastases[J]. J Pain Symptom Manage, 2004, 28(5): 505-510.
[19] PORTENOY R K, PAYNE D, JACOBSEN P. Breakthrough pain:characteristics and impact in patients with cancer pain[J]. Pain, 1999,81(1-2): 129-134.
[20] DELANEY A, FLEETWOOD-WALKER S M, COLVIN L A, etal. Translational medicine: cancer pain mechanisms and management[J].Br J Anaesth, 2008, 101(1): 87-94.
[21] PROMMER E, FICEK B. Fentanyl transmucosal tablets: currentstatus in the management of cancer-related breakthrough pain[J]. PatientPrefer Adherence, 2012, 6: 465-475.
[22] MIDDLEMISS T, LAIRD B J, FALLON M T. Mechanisms ofcancer-induced bone pain[J]. Clin Oncol (R Coll Radiol), 2011, 23(6):387-392.
[23] FALK S, DICKENSON A H. Pain and nociception: mechanismsof cancer-induced bone pain[J]. J Clin Oncol, 2014, 32(16): 1647-1654.
[24] MANTYH W G, JIMENEZ-ANDRADE J M, STAKE J I, et al.Blockade of nerve sprouting and neuroma formation markedly attenuatesthe development of late stage cancer pain[J]. Neuroscience, 2010, 171(2):588-598.
[25] PAICE J A. Cancer pain management and the opioid crisis inAmerica: How to preserve hard-earned gains in improving the quality ofcancer pain management[J]. Cancer, 2018, 124(12): 2491-2497.
[26] PAN D. The hippo signaling pathway in development andcancer[J]. Dev Cell, 2010, 19(4): 491-505.
[27] SOURBIER C, LIAO P J, RICKETTS C J, et al. Targeting lossof the Hippo signaling pathway in NF2-deficient papillary kidneycancers[J]. Oncotarget, 2018, 9(12): 10723-10733.
[28] WANG X, SUN D, TAI J, et al. TFAP2C promotes stemness andchemotherapeutic resistance in colorectal cancer via inactivating hipposignaling pathway[J]. J Exp Clin Cancer Res, 2018, 37(1): 27.
[29] XU M, XIAO J, CHEN M, et al. miR‑149‑5p promoteschemotherapeutic resistance in ovarian cancer via the inactivation of theHippo signaling pathway[J]. Int J Oncol, 2018, 52(3): 815-827.
[30] LIU J, LI J, LI P, et al. Loss of DLG5 promotes breast cancermalignancy by inhibiting the Hippo signaling pathway[J]. Sci Rep, 2017,7: 42125.
[31] DENG J, LEI W, XIANG X, et al. Cullin 4A (CUL4A), a directtarget of miR-9 and miR-137, promotes gastric cancer proliferation andinvasion by regulating the Hippo signaling pathway[J]. Oncotarget, 2016,7(9): 10037-10050.
[32] PRASKOVA M, KHOKLATCHEV A, ORTIZ-VEGA S, et al.Regulation of the MST1 kinase by autophosphorylation, by the growthinhibitory proteins, RASSF1 and NORE1, and by Ras[J]. Biochem J,2004, 381(Pt 2): 453-462.
[33] BAE S J, NI L, OSINSKI A, et al. SAV1 promotes Hippo kinaseactivation through antagonizing the PP2A phosphatase STRIPAK[J].Elife, 2017, 6
[34] CHAN E H, NOUSIAINEN M, CHALAMALASETTY R B, et al.The Ste20-like kinase Mst2 activates the human large tumor suppressorkinase Lats1[J]. Oncogene, 2005, 24(12): 2076-2086.
[35] FURTH N, AYLON Y. The LATS1 and LATS2 tumorsuppressors: beyond the Hippo pathway[J]. Cell Death Differ, 2017,24(9): 1488-1501.
[36] LIU C Y, ZHA Z Y, ZHOU X, et al. The hippo tumor pathwaypromotes TAZ degradation by phosphorylating a phosphodegron andrecruiting the SCF{beta}-TrCP E3 ligase[J]. J Biol Chem, 2010, 285(48):37159-37169.
[37] ZHAO B, LI L, TUMANENG K, et al. A coordinatedphosphorylation by Lats and CK1 regulates YAP stability throughSCF(beta-TRCP)[J]. Genes Dev, 2010, 24(1): 72-85.
[38] LEE Y A, NOON L A, AKAT K M, et al. Autophagy is agatekeeper of hepatic differentiation and carcinogenesis by controllingthe degradation of Yap[J]. Nat Commun, 2018, 9(1): 4962.
[39] MENG Z, MOROISHI T, GUAN K L. Mechanisms of Hippopathway regulation[J]. Genes Dev, 2016, 30(1): 1-17.
[40] VASSILEV A, KANEKO K J, SHU H, et al. TEAD/TEFtranscription factors utilize the activation domain of YAP65, a Src/Yesassociatedprotein localized in the cytoplasm[J]. Genes Dev, 2001,15(10): 1229-1241.
[41] GUO T, LU Y, LI P, et al. A novel partner of Scallopedregulates Hippo signaling via antagonizing Scalloped-Yorkie activity[J].Cell Res, 2013, 23(10): 1201-1214.
[42] KOONTZ L M, LIU-CHITTENDEN Y, YIN F, et al. The Hippoeffector Yorkie controls normal tissue growth by antagonizing scallopedmediateddefault repression[J]. Dev Cell, 2013, 25(4): 388-401.
[43] FELTRI M L, WEAVER M R, BELIN S, et al. The Hippopathway: Horizons for innovative treatments of peripheral nervediseases[J]. J Peripher Nerv Syst, 2021, 26(1): 4-16.
[44] LI N, LIM G, CHEN L, et al. Spinal expression of Hipposignaling components YAP and TAZ following peripheral nerve injury inrats[J]. Brain Res, 2013, 1535: 137-147.
[45] XU N, WU M Z, DENG X T, et al. Inhibition of YAP/TAZActivity in Spinal Cord Suppresses Neuropathic Pain[J]. J Neurosci,2016, 36(39): 10128-10140.
[46] XIE C, SHEN X, XU X, et al. Astrocytic YAP Promotes theFormation of Glia Scars and Neural Regeneration after Spinal CordInjury[J]. J Neurosci, 2020, 40(13): 2644-2662.
[47] HU X, HUANG J, LI Y, et al. TAZ Induces Migration ofMicroglia and Promotes Neurological Recovery After Spinal CordInjury[J]. Front Pharmacol, 2022, 13: 938416.
[48] LI L, ZHOU J, LI Q, et al. The inhibition of Hippo/Yapsignaling pathway is required for magnesium isoglycyrrhizinate toameliorate hepatic stellate cell inflammation and activation[J]. BiomedPharmacother, 2018, 106: 83-91.
[49] HAGENBEEK T J, WEBSTER J D, KLJAVIN N M, et al. TheHippo pathway effector TAZ induces TEAD-dependent liverinflammation and tumors[J]. Sci Signal, 2018, 11(547)
[50] SONG K, KWON H, HAN C, et al. Yes-Associated Protein inKupffer Cells Enhances the Production of Proinflammatory Cytokinesand Promotes the Development of Nonalcoholic Steatohepatitis[J].Hepatology, 2020, 72(1): 72-87.
[51] CHAPLAN S R, BACH F W, POGREL J W, et al. Quantitativeassessment of tactile allodynia in the rat paw[J]. J Neurosci Methods,1994, 53(1): 55-63.
[52] WANG Y, YAN Q, ZHAO Y, et al. Focal adhesion proteinsPinch1 and Pinch2 regulate bone homeostasis in mice[J]. JCI Insight,2019, 4(22)
[53] BRIGATTE P, SAMPAIO S C, GUTIERREZ V P, et al. Walker256 tumor-bearing rats as a model to study cancer pain[J]. J Pain, 2007,8(5): 412-421.
[54] ZHAO B, YE X, YU J, et al. TEAD mediates YAP-dependentgene induction and growth control[J]. Genes Dev, 2008, 22(14): 1962-1971.
[55] LIU-CHITTENDEN Y, HUANG B, SHIM J S, et al. Genetic andpharmacological disruption of the TEAD-YAP complex suppresses theoncogenic activity of YAP[J]. Genes Dev, 2012, 26(12): 1300-1305.
[56] GEIS C, GRAULICH M, WISSMANN A, et al. Evoked painbehavior and spinal glia activation is dependent on tumor necrosis factorreceptor 1 and 2 in a mouse model of bone cancer pain[J]. Neuroscience,2010, 169(1): 463-474.
[57] LU C, LIU Y, SUN B, et al. Intrathecal Injection of JWH-015Attenuates Bone Cancer Pain Via Time-Dependent Modification of ProinflammatoryCytokines Expression and Astrocytes Activity in SpinalCord[J]. Inflammation, 2015, 38(5): 1880-1890.
[58] AZEVEDO F A, CARVALHO L R, GRINBERG L T, et al. Equalnumbers of neuronal and nonneuronal cells make the human brain anisometrically scaled-up primate brain[J]. J Comp Neurol, 2009, 513(5):532-541.
[59] AN K, XU Y, YANG H, et al. Subarachnoid transplantation ofimmortalized galanin-overexpressing astrocytes attenuates chronicneuropathic pain[J]. Eur J Pain, 2010, 14(6): 595-601.
[60] XU Y, TIAN X B, AN K, et al. Lumbar transplantation ofimmortalized enkephalin-expressing astrocytes attenuates chronicneuropathic pain[J]. Eur J Pain, 2008, 12(4): 525-533.
[61] PIRTTIMAKI T M, PARRI H R. Astrocyte plasticity:implications for synaptic and neuronal activity[J]. Neuroscientist, 2013,19(6): 604-615.
[62] CHEN Z, TRAPP B D. Microglia and neuroprotection[J]. JNeurochem, 2016, 136 Suppl 1: 10-17.
[63] ZHANG R X, LIU B, WANG L, et al. Spinal glial activation ina new rat model of bone cancer pain produced by prostate cancer cellinoculation of the tibia[J]. Pain, 2005, 118(1-2): 125-136.
[64] KE C, LI C, HUANG X, et al. Protocadherin20 promotesexcitatory synaptogenesis in dorsal horn and contributes to bone cancerpain[J]. Neuropharmacology, 2013, 75: 181-190.
[65] SONG Z P, XIONG B R, GUAN X H, et al. Minocyclineattenuates bone cancer pain in rats by inhibiting NF-κB in spinalastrocytes[J]. Acta Pharmacol Sin, 2016, 37(6): 753-762.
[66] MAO-YING Q L, WANG X W, YANG C J, et al. Robust spinalneuroinflammation mediates mechanical allodynia in Walker 256 inducedbone cancer rats[J]. Mol Brain, 2012, 5: 16.
[67] MOULIN. C T A D E. Pathophysiology of neuropathic pain:inflammatory mediators[M]. England: Cambridge University Press, 2013.
[68] WANG K, GU Y, LIAO Y, et al. PD-1 blockade inhibitsosteoclast formation and murine bone cancer pain[J]. J Clin Invest, 2020,130(7): 3603-3620.
[69] SERINAGAOGLU Y, PARé J, GIOVANNINI M, et al. Nf2-Yapsignaling controls the expansion of DRG progenitors and glia duringDRG development[J]. Dev Biol, 2015, 398(1): 97-109.
[70] KOSER D E, THOMPSON A J, FOSTER S K, et al.Mechanosensing is critical for axon growth in the developing brain[J].Nat Neurosci, 2016, 19(12): 1592-1598.
[71] GROVE M, KIM H, SANTERRE M, et al. YAP/TAZ initiate andmaintain Schwann cell myelination[J]. Elife, 2017, 6
[72] DENG Y, WU L M N, BAI S, et al. A reciprocal regulatory loopbetween TAZ/YAP and G-protein Gαs regulates Schwann cellproliferation and myelination[J]. Nat Commun, 2017, 8: 15161.
[73] POITELON Y, LOPEZ-ANIDO C, CATIGNAS K, et al. YAP andTAZ control peripheral myelination and the expression of lamininreceptors in Schwann cells[J]. Nat Neurosci, 2016, 19(7): 879-887.
[74] CHEN Z, LI S, MO J, et al. Schwannoma development ismediated by Hippo pathway dysregulation and modified by RAS/MAPKsignaling[J]. JCI Insight, 2020, 5(20)
[75] ARTHUR-FARRAJ P J, LATOUCHE M, WILTON D K, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cellessential for regeneration[J]. Neuron, 2012, 75(4): 633-647.
[76] MINDOS T, DUN X P, NORTH K, et al. Merlin controls therepair capacity of Schwann cells after injury by regulating Hippo/YAPactivity[J]. J Cell Biol, 2017, 216(2): 495-510.
[77] MORICE S, DANIEAU G, RéDINI F, et al. Hippo/YAPSignaling Pathway: A Promising Therapeutic Target in Bone PaediatricCancers?[J]. Cancers (Basel), 2020, 12(3)
[78] HARVEY K F, ZHANG X, THOMAS D M. The Hippo pathwayand human cancer[J]. Nat Rev Cancer, 2013, 13(4): 246-257.
[79] FU M, HU Y, LAN T, et al. The Hippo signalling pathway andits implications in human health and diseases[J]. Signal Transduct TargetTher, 2022, 7(1): 376.
[80] JOHNSON R, HALDER G. The two faces of Hippo: targetingthe Hippo pathway for regenerative medicine and cancer treatment[J].Nat Rev Drug Discov, 2014, 13(1): 63-79.
[81] POBBATI A V, HONG W. A combat with the YAP/TAZ-TEADoncoproteins for cancer therapy[J]. Theranostics, 2020, 10(8): 3622-3635.
[82] KAISER P K. Verteporfin therapy in combination withtriamcinolone: published studies investigating a potential synergisticeffect[J]. Curr Med Res Opin, 2005, 21(5): 705-713.
[83] KEAM S J, SCOTT L J, CURRAN M P. Spotlight on verteporfinin subfoveal choroidal neovascularisation[J]. Drugs Aging, 2004, 21(3):203-209.
[84] AUGUSTIN A J, SCHOLL S, KIRCHHOF J. Treatment ofneovascular age-related macular degeneration: Current therapies[J]. ClinOphthalmol, 2009, 3: 175-182.
[85] BRESSLER N M. Photodynamic therapy of subfoveal choroidalneovascularization in age-related macular degeneration with verteporfin:two-year results of 2 randomized clinical trials-tap report 2[J]. ArchOphthalmol, 2001, 119(2): 198-207.
[86] SHAH S R, KIM J, SCHIAPPARELLI P, et al. Verteporfin-Loaded Polymeric Microparticles for Intratumoral Treatment of BrainCancer[J]. Mol Pharm, 2019, 16(4): 1433-1443.
[87] HANADA Y, PEREIRA S P, POGUE B, et al. EUS-guidedverteporfin photodynamic therapy for pancreatic cancer[J]. GastrointestEndosc, 2021, 94(1): 179-186.
[88] WEI C, LI X. Verteporfin inhibits cell proliferation and inducesapoptosis in different subtypes of breast cancer cell lines without lightactivation[J]. BMC Cancer, 2020, 20(1): 1042.
[89] YIN L, CHEN G. Verteporfin Promotes the Apoptosis andInhibits the Proliferation, Migration, and Invasion of Cervical CancerCells by Downregulating SULT2B1 Expression[J]. Med Sci Monit, 2020,26: e926780.
[90] BASU D, LETTAN R, DAMODARAN K, et al. Identification,mechanism of action, and antitumor activity of a small moleculeinhibitor of hippo, TGF-β, and Wnt signaling pathways[J]. Mol CancerTher, 2014, 13(6): 1457-1467.
[91] BARCLAY J, PATEL S, DORN G, et al. Functionaldownregulation of P2X3 receptor subunit in rat sensory neurons revealsa significant role in chronic neuropathic and inflammatory pain[J]. JNeurosci, 2002, 22(18): 8139-8147.
[92] NUNEZ-BADINEZ P, SEPULVEDA H, DIAZ E, et al. Variabletranscriptional responsiveness of the P2X3 receptor gene during CFAinducedinflammatory hyperalgesia[J]. J Cell Biochem, 2018, 119(5):3922-3935.
[93] CHEN C C, AKOPIAN A N, SIVILOTTI L, et al. A P2Xpurinoceptor expressed by a subset of sensory neurons[J]. Nature, 1995,377(6548): 428-431.
[94] KRAJEWSKI J L. P2X3-Containing Receptors as Targets forthe Treatment of Chronic Pain[J]. Neurotherapeutics, 2020, 17(3): 826-838.
[95] DONG C R, ZHANG W J, LUO H L. Association between P2X3receptors and neuropathic pain: As a potential therapeutic target fortherapy[J]. Biomed Pharmacother, 2022, 150: 113029.
[96] MARUCCI G, DAL BEN D, BUCCIONI M, et al. Update onnovel purinergic P2X3 and P2X2/3 receptor antagonists and theirpotential therapeutic applications[J]. Expert Opin Ther Pat, 2019, 29(12):943-963.
[97] XIANG X, WANG S, SHAO F, et al. ElectroacupunctureStimulation Alleviates CFA-Induced Inflammatory Pain Via SuppressingP2X3 Expression[J]. Int J Mol Sci, 2019, 20(13)
[98] DAVENPORT A J, NEAGOE I, BRäUER N, et al. Eliapixant isa selective P2X3 receptor antagonist for the treatmentof disorders associated with hypersensitive nerve fibers[J]. Sci Rep,2021, 11(1): 19877.
[99] JARVIS M F, BURGARD E C, MCGARAUGHTY S, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3and P2X2/3 receptors, reduces chronic inflammatory and neuropathicpain in the rat[J]. Proc Natl Acad Sci U S A, 2002, 99(26): 17179-17184.
修改评论