[1]苏纪兰.南海环流动力机制研究综述[J].海洋学报(中文版),2005(06):3-10.
[2]Shu, Y., Wang, Q., & Zu, T., Progress on shelf and slope circulation in the northern South China Sea. Science China Earth Sciences[J]. 2018, 61(5): 560–571.
[3]Zu T, Gan J. Numerical Study of Tide and Tidal Currents in the South China Sea[C]//Prpceedings-2006 West Pacific Geophysical Meeting. 2006.
[4]Gan J, Li L, Wang D, et al. Interaction of a river plume with coastal upwelling in the northeastern South China Sea[J]. Continental Shelf Research, 2009, 29(4): 728-740.
[5]Gan J, Cheung A, Guo X, et al. Intensified upwelling over a widened shelf in the northeastern South China Sea[J]. Journal of Geophysical Research: Oceans, 2009, 114(C9).
[6]Gan J, Wang J, Liang L, et al. A modeling study of the formation, maintenance, and relaxation of upwelling circulation on the Northeastern South China Sea shelf[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 41-52.
[7] Su J. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24(16): 1745-1760.
[8]Hu J, Kawamura H, Hong H, et al. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion[J]. Journal of Oceanography, 2000, 56: 607-624.
[9]Deng Y, Liu Z, Zu T, et al. Climatic controls on the interannual variability of shelf circulation in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2022, 127(7): e2022JC018419.
[10]Zu T, Gan J. A numerical study of coupled estuary–shelf circulation around the Pearl River Estuary during summer: Responses to variable winds, tides and river discharge[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 53-64.
[11]乔福傲. 深圳湾海岸带空间发展及其综合评价研究[D]. 辽宁:大连理工大学城市规划学科硕士学位论文,2021.
[12]何梦羽. 广东省海洋环境治理问题研究[D]. 广东:广东海洋大学行政管理学科硕士学位论文,2019.
[13]Pickard G L, McLeod D C. Seasonal variation of temperature and salinity of surface waters of the British Columbia coast[J]. Journal of the Fisheries Board of Canada, 1953, 10(3): 125-145.
[14]Bailey W B, MacGregor D G, Hachey H B. Annual variations of temperature and salinity in the Bay of Fundy[J]. Journal of the Fisheries Board of Canada, 1954, 11(1): 32-47.
[15]Trites R W. Temperature and salinity in the Quoddy Region of the Bay of Fundy[J]. Journal of the Fisheries Board of Canada, 1962, 19(5): 975-978.
[16]Murty V S N, Sarma Y V B, Rao D P, et al. Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon[J]. Journal of Marine Research, 1992, 50(2): 207-228.
[17]Shetye S R, Gouveia A D, Shankar D, et al. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon[J]. Journal of Geophysical Research: Oceans, 1996, 101(C6): 14011-14025.
[18]Kumar B, Sil S, Pandey P C, et al. Seasonal and monthly variation of vertical structure of temperature, salinity and heat flux of the Bay of Bengal[J]. Marine Geodesy, 2010, 33(1): 76-99.
[19]Yoon S, Kasai A. Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 225-235.
[20]Castagno P, de Ruggiero P, Pierini S, et al. Hydrographic and dynamical characterisation of the Bagnoli-Coroglio Bay (Gulf of Naples, Tyrrhenian Sea)[J]. Chemistry and Ecology, 2020, 36(6): 598-618.
[21]Muhling B A, Gaitán C F, Stock C A, et al. Potential salinity and temperature futures for the Chesapeake Bay using a statistical downscaling spatial disaggregation framework[J]. Estuaries and coasts, 2018, 41: 349-372.
[22]Tian R. Factors controlling saltwater intrusion across multi-time scales in estuaries, Chester River, Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 2019, 223: 61-73.
[23]Hinson K E, Friedrichs M A M, St‐Laurent P, et al. Extent and causes of Chesapeake Bay warming[J]. JAWRA Journal of the American Water Resources Association, 2022, 58(6): 805-825.
[24]Yin K, Xu J, Harrison P J. A comparison of eutrophication processes in three Chinese subtropical semi-enclosed embayments with different buffering capacities[J]. Coastal Lagoons: Critical Habitats of Environmental Change (eds Kennish MJ, Paerl HW), 2010: 368-394.
[25]Yin K. Monsoonal influence on seasonal variations in nutrients and phytoplankton biomass in coastal waters of Hong Kong in the vicinity of the Pearl River estuary[J]. Marine Ecology Progress Series, 2002, 245: 111-122.
[26]Yin K, Qian P Y, Chen J C, et al. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation[J]. Marine Ecology Progress Series, 2000, 194: 295-305.
[27]张静,孙省利,陈春亮,张际标.深圳湾潮流动力特征研究[J].广东海洋大学学报,2010,30(03):77-81.
[28]张静. 深圳湾水环境综合评价及环境容量研究[D]. 辽宁:大连海事大学环境科学学科博士学位论文,2010.
[29]郑阳. 人工岛方案对深圳湾水环境影响的数值模拟[D]. 北京:清华大学环境工程学科硕士学位论文,2017.
[30]黄向青,张顺枝,梁开.深圳大鹏湾海流分布特征[J].南海地质研究,2004(00):82-91.
[31]黄小平,黄良民.大鹏湾水动力特征及其生态环境效应[J].热带海洋学报,2003(05):47-54.
[32]Liu Z, Gan J, Wu X. Coupled summer circulation and dynamics between a bay and the adjacent shelf around Hong Kong: Observational and modeling studies[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6463-6480.
[33]Gan J, Li L, Wang D, et al. Interaction of a river plume with coastal upwelling in the northeastern South China Sea[J]. Continental Shelf Research, 2009, 29(4): 728-740.
[34]孙振宇,陈照章,杨龙奇,朱佳.大亚湾及周边海区潮流和余流的季节变化特征[J].厦门大学学报(自然科学版),2020,59(02):278-286.
[35]郑哲昊,庄伟,孙振宇,陈照章,朱佳,梁浩亮.大亚湾及其邻近海域冬季温度、盐度的分布及日变化特征[J].应用海洋学学报,2020,39(01):71-79.
[36]梁斌,李飞,鲍晨光,于春艳,张微微.《2021年中国海洋生态环境状况公报》解读[J].环境保护,2022,50(11):56-58.
[37]Cracknell A P. Advanced very high resolution radiometer AVHRR[M]. Crc Press, 1997.
[38]Llewellyn-Jones D, Remedios J. The Advanced Along Track Scanning Radiometer (AATSR) and its predecessors ATSR-1 and ATSR-2: An introduction to the special issue[J]. Remote Sensing of Environment, 2012, 116: 1-3.
[39]Brindley H, Knippertz P, Ryder C, et al. A critical evaluation of the ability of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared red‐green‐blue rendering to identify dust events: Theoretical analysis[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D7).
[40]Kawanishi T, Sezai T, Ito Y, et al. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 184-194.
[41]Gentemann C L, Wentz F J, Mears C A, et al. In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 2004, 109(C4).
[42]Justice C O, Vermote E, Townshend J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research[J]. IEEE transactions on geoscience and remote sensing, 1998, 36(4): 1228-1249.
[43]Menzel W P, Purdom J F W. Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites[J]. Bulletin of the American Meteorological Society, 1994, 75(5): 757-782.
[44]Kawamura H, Qin H, Sakaida F, et al. Hourly sea surface temperature retrieval using the Japanese geostationary satellite, Multi-functional Transport Satellite (MTSAT)[J]. Journal of oceanography, 2010, 66: 61-70.
[45]SHCHEPETKIN A F, MCWILLIAMS J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model [J]. Ocean Modelling, 2005, 9(4): 347-404.
[46]郭树波. 基于ROMS的海洋流场与温度场的数值模拟仿真研究[D]. 辽宁:东北大学控制工程学科硕士学位论文,2016.
[47]Song Y. and D. B. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys., 115(1), 228-244.
[48]MELLOR G L, YAMADA T. Development of a Turbulence Closure-Model for Geophysical Fluid Problems [J]. Reviews of Geophysics, 1982, 20(4): 851-75.
[49]Liu Z, Gan J. A modeling study of estuarine–shelf circulation using a composite tidal and subtidal open boundary condition[J]. Ocean Modelling, 2020, 147: 101563.
[50]Liu Z, Gan J. Open boundary conditions for tidally and subtidally forced circulation in a limited‐area coastal model using the Regional Ocean Modeling System (ROMS)[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6184-6203.
[51]Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic technology, 2002, 19(2): 183-204.
修改评论