中文版 | English
题名

双噻吩酰亚胺基n型高分子半导体的设计合成及其应用

其他题名
DESIGN, SYNTHESIS, AND APPLICATIONS OF BITHIOPHENE IMIDE-BASED N-TYPE POLYMER SEMICONDUCTORS
姓名
姓名拼音
MA Suxiang
学号
11930792
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
郭旭岗
导师单位
材料科学与工程系
论文答辩日期
2023-05-17
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

有机高分子半导体材料因其质轻、可溶液加工、柔性以及可拉伸性等独特的优势从而在有机场效应晶体管(OFETs)和有机太阳能电池中受到广泛应用。有机高分子半导体可进一步分为p型高分子和n型高分子。由于有机材料更容易被氧化成有机正离子,而不容易被还原成有机阴离子,因此大部分的有机高分子半导体为p型,而高性能的n型高分子半导体无论在种类和数量上都远远落后,这在很大程度上限制了有机电子领域的整体发展和商业化应用。因此,如何设计合成高性能的n型高分子半导体是有机电子领域的关键科学问题。而n型高分子半导体的构筑取决于强缺电子单元的设计与合成。

  酰亚胺基团具有强吸电子特性以及可提供增溶的烷基侧链等优势,使得酰亚胺功能化成为构筑强缺电子单元的最有效方法之一。其中苝二酰亚胺和萘二酰亚胺是构筑n型高分子半导体最经典的构建单元。然而其大的位阻效应导致高分子骨架扭曲,限制了载流子传输,使得它们在器件性能上很难进一步提高。双噻吩酰亚胺(BTI)单元具有小的位阻和平面骨架,在有机电子器件中展现出优异的器件性能。但是噻吩环的引入使得高分子最低未占据分子轨道(LUMO)能级偏高,易表现出p型性能。因此,本论文在BTI单元基础之上,一方面通过引入拉电子基团(氯原子和吡嗪)构建更强的缺电子单元(ClBTI、ClBTI2和TPDI);另一方面开发出了强受体单元锡化的策略(锡化双硒吩酰亚胺单体)。基于此,合成出系列给体-受体和受体-受体型高分子,从而有效地调控相应高分子的物理化学性质以及器件性能,并系统地研究了结构与性能之间的关系。

  本论文从受体单元结构出发,将高电负性氯原子引入到BTI单元中得到ClBTI以及并环策略进一步得到更缺电的ClBTI2单元。通过合理的引入,有效地避免了由于大范德华半径的氯原子所带来的位阻效应。理论计算发现,Cl···S之间存在非共价相互作用,从而促进了分子骨架的平面性。相应的并环ClBTI2基高分子表现出低位的LUMO能级并在OFETs中实现了高达0.48 cm2 V−1 s−1的电子迁移率。

  然而基于并环的BTI2单元具有较高地最高占据分子轨道(HOMO)能级,易展现出双极型传输。因此本文将中心并噻吩核用更加缺电的吡嗪环替代,从而实现LUMO/HOMO能级的大幅降低,相应的TPDI基高分子在OFETs中取得了0.44 cm2 V−1 s−1的电子迁移率。

  除了引入缺电子基团到受体单元策略之外,本文还开发出了强受体单元锡化的策略,成功地合成出高纯度的锡化双硒吩酰亚胺单体,使得其可以与不同的强缺电子单体共聚,得到系列受体-受体型高分子,包括均聚物PBSeI和共聚物P(BTI-BSeI)、P(BTI2-BSeI)、P(CNI-BSeI)和P(CNI2-BSeI)。通过增强共聚受体单元的缺电子性,可以实现LUMO能级的降低,其中P(CNI-BSeI)低至−3.86 eV。这些受体-受体型高分子在晶体管中表现出优异的电子迁移率,最高达到1.50 cm2 V−1 s−1。

  锡化单体的合成为构筑的n型高分子实现了合适的能级以及出色的电子迁移率,表明通过该锡化单体所开发的高分子也具有应用于全聚合物太阳能电池(all-PSCs)的潜力。因此,通过与单体Y5-2Br共聚得到的受体-受体型高分子Y5-BSeI具有窄的带隙(1.35 eV)、宽的吸收光谱以及高的电子迁移率,从而基于Y5-BSeI的all-PSCs实现了17.0%的能量转换效率,这也是二元all-PSCs的最高效率之一。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977, (16): 578-580.
[2] HEEGER A J, SARICIFTCI N S, NAMDAS E B. Semiconducting and metallic polymers [M]. 2010.
[3] GUO X, FACCHETTI A, MARKS T J. Imide- and amide-functionalized polymer semiconductors[J]. Chemical Reviews, 2014, 114(18): 8943-9021.
[4] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913-915.
[5] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488): 354-357.
[6] TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2): 183-185.
[7] LI G, SHROTRIYA V, HUANG J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Materials, 2005, 4(11): 864-868.
[8] TSUMURA A, KOEZUKA H, ANDO T. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film[J]. Applied Physics Letters, 1986, 49(18): 1210-1212.
[9] ZAUMSEIL J, SIRRINGHAUS H. Electron and ambipolar transport in organic field-effect transistors[J]. Chemical Reviews, 2007, 107(4): 1296-1323.
[10] DIMITRAKOPOULOS C D, MALENFANT P R. Organic thin film transistors for large area electronics[J]. Advanced Materials, 2002, 14(2): 99-117.
[11] MINEMAWARI H, YAMADA T, MATSUI H, et al. Inkjet printing of single-crystal films[J]. Nature, 2011, 475(7356): 364-367.
[12] LIU J, ZHANG H, DONG H, et al. High mobility emissive organic semiconductor[J]. Nature communications, 2015, 6(1): 10032.
[13] JURCHESCU O D, POPINCIUC M, VAN WEES B J, et al. Interface-controlled, high-mobility organic transistors[J]. Advanced Materials, 2007, 19(5): 688-692.
[14] KIM M, RYU S U, PARK S A, et al. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: A progress report[J]. Advanced Functional Materials, 2019, 30(20): 1904545.
[15] ZHU P, FAN B, YING L, et al. Recent progress in all-polymer solar cells based on wide-bandgap p-type polymers[J]. Chemistry-An Asian Journal, 2019, 14(18): 3109-3118.
[16] YAO C J, ZHANG H L, ZHANG Q. Recent progress in thermoelectric materials based on conjugated polymers[J]. 2019, 11(1): 107.
[17] LI J T, LEI T. Recent progress on addressing the key challenges in organic thermoelectrics[J]. Chemistry-An Asian Journal, 2021, 16(12): 1508-1518.
[18] OSAKA I, MCCULLOUGH R D. Advances in molecular design and synthesis of regioregular polythiophenes[J]. Accounts of Chemical Research, 2008, 41(9): 1202-1214.
[19] CHANG J F, SUN B Q, BREIBY D W, et al. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents[J]. Chemistry of Materials, 2004, 16(23): 4772-4776.
[20] MCCULLOUGH R D, LOWE R D. Enhanced electrical-conductivity in regioselectively synthesized poly(3-alkylthiophenes)[J]. Journal of the Chemical Society, Chemical Communications, 1992, (1): 70-72.
[21] SIRRINGHAUS H, BROWN P J, FRIEND R H, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers[J]. Nature, 1999, 401(6754): 685-688.
[22] MCCULLOCH I, HEENEY M, BAILEY C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility[J]. Nature Materials, 2006, 5(4): 328-333.
[23] FEI Z P, PATTANASATTAYAVONG P, HAN Y, et al. Influence of side-chain regiochemistry on the transistor performance of high-mobility, all-donor polymers[J]. Journal of the American Chemical Society, 2014, 136(43): 15154-15157.
[24] JANG S Y, KIM I B, KIM J, et al. New donor-donor type copolymers with rigid and coplanar structures for high-mobility organic field-effect transistors[J]. Chemistry of Materials, 2014, 26(24): 6907-6910.
[25] BACK J Y, YU H, SONG I, et al. Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering[J]. Chemistry of Materials, 2015, 27(5): 1732-1739.
[26] ZHANG A, XIAO C, WU Y, et al. Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors[J]. Macromolecules, 2016, 49(17): 6431-6438.
[27] WANG J, CUI Y, XU Y, et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness[J]. Advanced Materials, 2022, 34(35): 2205009.
[28] ZHANG M, TSAO H N, PISULA W, et al. Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer[J]. Journal of the American Chemical Society, 2007, 129(12): 3472-3473.
[29] TSAO H N, CHO D M, PARK I, et al. Ultrahigh mobility in polymer field-effect transistors by design[J]. Journal of the American Chemical Society, 2011, 133(8): 2605-2612.
[30] WANG S H, KAPPL M, LIEBEWIRTH I, et al. Organic field-effect transistors based on highly ordered single polymer fibers[J]. Advanced Materials, 2012, 24(3): 417-420.
[31] ZHANG W M, SMITH J, WATKINS S E, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors[J]. Journal of the American Chemical Society, 2010, 132(33): 11437-11439.
[32] CHEN H, WADSWORTH A, MA C, et al. The effect of ring expansion in thienobenzo[b]indacenodithiophene polymers for organic field-effect transistors[J]. Journal of the American Chemical Society, 2019, 141(47): 18806-18813.
[33] LI Y, SINGH S P, SONAR P. A high mobility p-type DPP-thieno
[3,2-b]thiophene copolymer for organic thin-film transistors[J]. Advanced Materials, 2010, 22(43): 4862-4866.
[34] LI J, ZHAO Y, TAN H S, et al. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors[J]. Scientific Reports, 2012, 2: 754.
[35] LI Y N, SONAR P, SINGH S P, et al. Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors[J]. Journal of the American Chemical Society, 2011, 133(7): 2198-2204.
[36] CHEN H, GUO Y, YU G, et al. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors[J]. Advanced Materials, 2012, 24(34): 4618-4622.
[37] LEI T, CAO Y, FAN Y L, et al. High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers[J]. Journal of the American Chemical Society, 2011, 133(16): 6099-6101.
[38] LEI T, DOU J H, PEI J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors[J]. Advanced Materials, 2012, 24(48): 6457-6461.
[39] MEI J G, KIM D H, AYZNER A L, et al. Siloxane-terminated solubilizing side chains: Bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors[J]. Journal of the American Chemical Society, 2011, 133(50): 20130-20133.
[40] KIM G, KANG S J, DUTTA G K, et al. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2 V−1 s−1 that substantially exceeds benchmark values for amorphous silicon semiconductors[J]. Journal of the American Chemical Society, 2014, 136(26): 9477-9483.
[41] FAN J, YUEN J D, WANG M F, et al. High-performance ambipolar transistors and inverters from an ultralow bandgap polymer[J]. Advanced Materials, 2012, 24(16): 2186-2190.
[42] YUEN J D, FAN J, SEIFTER J, et al. High performance weak donor-acceptor polymers in thin film transistors: Effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability[J]. Journal of the American Chemical Society, 2011, 133(51): 20799-20807.
[43] XIAO C Y, ZHAO G Y, ZHANG A D, et al. High performance polymer nanowire field-effect transistors with distinct molecular orientations[J]. Advanced Materials, 2015, 27(34): 4963-4968.
[44] ZHU C G, ZHAO Z Y, CHEN H J, et al. Regioregular bis-pyridal 2,1,3 thiadiazole-based semiconducting polymer for high-performance ambipolar transistors[J]. Journal of the American Chemical Society, 2017, 139(49): 17735-17738.
[45] ZHENG Y Q, LEI T, DOU J H, et al. Strong electron-deficient polymers lead to high electron mobility in air and their morphology-dependent transport behaviors[J]. Advanced Materials, 2016, 28(33): 7213-7219.
[46] ZHAN X W, TAN Z A, DOMERCQ B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells[J]. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.
[47] GUO X G, WATSON M D. Conjugated polymers from naphthalene bisimide[J]. Organic Letters, 2008, 10(23): 5333-5336.
[48] YAN H, CHEN Z H, ZHENG Y, et al. A high-mobility electron-transporting polymer for printed transistors[J]. Nature, 2009, 457(7230): 679-686.
[49] CHEN H, GUO Y, MAO Z, et al. Naphthalenediimide-based copolymers incorporating vinyl-linkages for high-performance ambipolar field-effect transistors and complementary-like inverters under air[J]. Chemistry of Materials, 2013, 25(18): 3589-3596.
[50] KIM R, AMEGADZE P S K, KANG I, et al. High-mobility air-stable naphthalene diimide-based copolymer containing extended π-conjugation for n-channel organic field effect transistors[J]. Advanced Functional Materials, 2013, 23(46): 5719-5727.
[51] CHEN Z, ZHANG W, HUANG J, et al. Fluorinated dithienylethene-naphthalenediimide copolymers for high-mobility n-channel field-effect transistors[J]. Macromolecules, 2017, 50(16): 6098-6107.
[52] KANG B, KIM R, LEE S B, et al. Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains[J]. Journal of the American Chemical Society, 2016, 138(11): 3679-3686.
[53] WANG S, SUN H, ERDMANN T, et al. A chemically doped naphthalenediimide-bithiazole polymer for n-type organic thermoelectrics[J]. Advanced Materials, 2018, 30(31): 1801898.
[54] FUKUTOMI Y, NAKANO M, HU J Y, et al. Naphthodithiophenediimide (NDTI): Synthesis, structure, and applications[J]. Journal of the American Chemical Society, 2013, 135(31): 11445-11448.
[55] WANG Y, HASEGAWA T, MATSUMOTO H, et al. Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding[J]. Journal of the American Chemical Society, 2019, 141(8): 3566-3575.
[56] LETIZIA J A, SALATA M R, TRIBOUT C M, et al. N-channel polymers by design: Optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors[J]. Journal of the American Chemical Society, 2008, 130(30): 9679-9694.
[57] GUO X G, ORTIZ R P, ZHENG Y, et al. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: Synthesis, structure-property correlations, charge carrier polarity, and device stability[J]. Journal of the American Chemical Society, 2011, 133(5): 1405-1418.
[58] FENG K, GUO H, SUN H L, et al. N-type organic and polymeric semiconductors based on bithiophene imide derivatives[J]. Accounts of Chemical Research, 2021, 54(20): 3804-3817.
[59] WANG Y F, YAN Z L, GUO H, et al. Effects of bithiophene imide fusion on the device performance of organic thin-film transistors and all-polymer solar cells[J]. Angewandte Chemie International Edition, 2017, 56(48): 15304-15308.
[60] SUN H L, TANG Y M, GUO H, et al. Fluorine substituted bithiophene imide-based n-type polymer semiconductor for high-performance organic thin-film transistors and all-polymer solar cells[J]. Solar RRL, 2019, 3(2): 1800265.
[61] SHI Y Q, GUO H, QIN M C, et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure-property correlations, charge carrier polarity, and thin-film transistor performance[J]. Chemistry of Materials, 2018, 30(21): 7988-8001.
[62] XIN H S, GE C W, JIAO X C, et al. Incorporation of 2,6-connected azulene units into the backbone of conjugated polymers: Towards high-performance organic optoelectronic materials[J]. Angewandte Chemie International Edition, 2018, 57(5): 1322-1326.
[63] FU B Y, WANG C Y, ROSE B D, et al. Molecular engineering of nonhalogenated solution-processable bithiazole-based electron-transport polymeric semiconductors[J]. Chemistry of Materials, 2015, 27(8): 2928-2937.
[64] BUCKLEY C, THOMAS S, MCBRIDE M, et al. Synergistic use of bithiazole and pyridinyl substitution for effective electron transport polymer materials[J]. Chemistry of Materials, 2019, 31(11): 3957-3966.
[65] YUAN Z B, FU B Y, THOMAS S, et al. Unipolar electron transport polymers: A thiazole based all-electron acceptor approach[J]. Chemistry of Materials, 2016, 28(17): 6045-6049.
[66] YAN X W, XIONG M, LI J T, et al. Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics[J]. Journal of the American Chemical Society, 2019, 141(51): 20215-20221.
[67] GAO Y, DENG Y F, TIAN H K, et al. Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo[J]. Advanced Materials, 2017, 29(13): 1606217.
[68] WEI C Y, TANG Z H, ZHANG W F, et al. Molecular engineering of (e)-1,2-bis(3-cyanothiophene-2-yl)ethene-based polymeric semiconductors for unipolar n-channel field-effect transistors[J]. Polymer Chemistry, 2020, 11(46): 7340-7348.
[69] LEI T, DOU J H, CAO X Y, et al. Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2 V−1 s−1 under ambient conditions[J]. Journal of the American Chemical Society, 2013, 135(33): 12168-12171.
[70] LEI T, XIA X, WANG J Y, et al. "Conformation locked" strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: Synthesis, properties, and effects of fluorine substitution position[J]. Journal of the American Chemical Society, 2014, 136(5): 2135-2141.
[71] DAI Y Z, AI N, LU Y, et al. Embedding electron-deficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors[J]. Chemical Science, 2016, 7(9): 5753-5757.
[72] LONG X J, GAO Y, TIAN H K, et al. Electron-transporting polymers based on a double B←N bridged bipyridine (BNBP) unit[J]. Chemical Communications, 2017, 53(10): 1649-1652.
[73] CASEY A, HAN Y, FEI Z P, et al. Cyano substituted benzothiadiazole: A novel acceptor inducing n-type behaviour in conjugated polymers[J]. Journal of Materials Chemistry C, 2015, 3(2): 265-275.
[74] SHI S B, WANG H, UDDIN M A, et al. Head-to-head linked dialkylbifuran-based polymer semiconductors for high-performance organic thin-film transistors with tunable charge carrier polarity[J]. Chemistry of Materials, 2019, 31(5): 1808-1817.
[75] FENG K, HUANG J C, ZHANG X H, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV[J]. Advanced Materials, 2020, 32(30): 2001476.
[76] IGUCHI K, MIKIE T, SAITO M, et al. N-type semiconducting polymers based on dicyano naphthobisthiadiazole: High electron mobility with unfavorable backbone twist[J]. Chemistry of Materials, 2021, 33(6): 2218-2228.
[77] DURBAN M M, KAZARINOFF P D, LUSCOMBE C K. Synthesis and characterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications[J]. Macromolecules, 2010, 43(15): 6348-6352.
[78] TAKEDA Y, ANDREW T L, LOBEZ J M, et al. An air-stable low-bandgap n-type organic polymer semiconductor exhibiting selective solubility in perfluorinated solvents[J]. Angewandte Chemie International Edition, 2012, 51(36): 9042-9046.
[79] WANG Y F, GUO H, HARBUZARU A, et al. (Semi)ladder-type bithiophene imide-based all-acceptor semiconductors: Synthesis, structure-property correlations, and unipolar n-type transistor performance[J]. Journal of the American Chemical Society, 2018, 140(19): 6095-6108.
[80] SHI Y Q, GUO H, QIN M C, et al. Thiazole imide-based all-acceptor homopolymer: Achieving high-performance unipolar electron transport in organic thin-film transistors[J]. Advanced Materials, 2018, 30(10): 1705745.
[81] FENG K, GUO H, WANG J W, et al. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: Synthesis, structure-property correlations, and thermoelectric performance[J]. Journal of the American Chemical Society, 2021, 143(3): 1539-1552.
[82] LEE J K, GWINNER M C, BERGER R, et al. High-performance electron-transporting polymers derived from a heteroaryl bis(trifluoroborate)[J]. Journal of the American Chemical Society, 2011, 133(26): 9949-9951.
[83] KIM G, HAN A R, LEE H R, et al. Acceptor-acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors[J]. Chemical Communications, 2014, 50(17): 2180-2183.
[84] YUE W, NIKOLKA M, XIAO M F, et al. Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications[J]. Journal of Materials Chemistry C, 2016, 4(41): 9704-9710.
[85] WANG Y, HASEGAWA T, MATSUMOTO H, et al. High-performance n-channel organic transistors using high-molecular-weight electron-deficient copolymers and amine-tailed self-assembled monolayers[J]. Advanced Materials, 2018, 30(13): 1707164.
[86] WANG Y, HASEGAWA T, MATSUMOTO H, et al. Significant difference in semiconducting properties of isomeric all-acceptor polymers synthesized via direct arylation polycondensation[J]. Angewandte Chemie International Edition, 2019, 58(34): 11893-11902.
[87] SHI Y Q, GUO H, HUANG J C, et al. Distannylated bithiophene imide: Enabling high-performance n-type polymer semiconductors with an acceptor-acceptor backbone[J]. Angewandte Chemie International Edition, 2020, 59(34): 14449-14457.
[88] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[89] BOSE B K. Global warming: Energy, environmental pollution, and the impact of power electronics[J]. IEEE Industrial Electronics Magazine, 2010, 4(1): 6-17.
[90] CREUTZIG F, AGOSTON P, GOLDSCHMIDT J C, et al. The underestimated potential of solar energy to mitigate climate change[J]. Nature Energy, 2017, 2(9): 17140.
[91] LI Y, HUANG X, SHERIFF H K M, et al. Semitransparent organic photovoltaics for building-integrated photovoltaic applications[J]. Nature Reviews Materials, 2023, 8(3): 186-201.
[92] BI P, ZHANG S, WANG J, et al. Progress in organic solar cells: Materials, physics and device engineering[J]. Chinese Journal of Chemistry, 2021, 39(9): 2607-2625.
[93] LEE C, LEE S, KIM G U, et al. Recent advances, design guidelines, and prospects of all-polymer solar cells[J]. Chemical Reviews, 2019, 119(13): 8028-8086.
[94] HE K, KUMAR P, YUAN Y, et al. Wide bandgap polymer donors for high efficiency non-fullerene acceptor based organic solar cells[J]. Materials Advances, 2021, 2(1): 115-145.
[95] LI Y, ZHANG Y, WU B, et al. High-efficiency P3HT-based all-polymer solar cells with a thermodynamically miscible polymer acceptor[J]. Solar RRL, 2022, 6(7): 2200073.
[96] XIAN K, LIU Y, LIU J, et al. Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells[J]. Journal of Materials Chemistry A, 2022, 10(7): 3418-3429.
[97] XU X, ZHANG G, YU L, et al. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology[J]. Advanced Materials, 2019, 31(52): 1906045.
[98] FU H, WANG Z, SUN Y. Polymer donors for high-performance non-fullerene organic solar cells[J]. Angewandte Chemie International Edition, 2019, 58(14): 4442-4453.
[99] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells- enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.
[100] ZHAO J B, LI Y K, YANG G F, et al. Efficient organic solar cells processed from hydrocarbon solvents[J]. Nature Energy, 2016, 1(2): 1-7.
[101] YANG M, WEI W, ZHOU X, et al. Non-fused ring acceptors for organic solar cells[J]. Energy Materials, 2021, 1(1): 100008.
[102] ZHAO F W, ZHANG H T, ZHANG R, et al. Emerging approaches in enhancing the efficiency and stability in non-fullerene organic solar cells[J]. Advanced Energy Materials, 2020, 10(47): 2002746.
[103] LIN Y Z, WANG J Y, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[104] YUAN J, ZHANG Y Q, ZHOU L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3(4): 1140-1151.
[105] YU G, HEEGER A J. Charge separation and photovoltaic conversion in polymer composites with internal donor-acceptor heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515.
[106] MA S X, ZHANG H, FENG K, et al. Polymer acceptors for high-performance all-polymer solar cells[J]. Chemistry-A European Journal, 2022, 28(29): 202200222.
[107] LIU X, ZHANG C, DUAN C, et al. Morphology optimization via side chain engineering enables all-polymer solar cells with excellent fill factor and stability[J]. Journal of the American Chemical Society, 2018, 140(28): 8934-8943.
[108] KIM T, KIM J H, KANG T E, et al. Flexible, highly efficient all-polymer solar cells[J]. Nature Communications, 2015, 6(1): 8547.
[109] LIAO S H, JHUO H J, CHENG Y S, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance[J]. Advanced Materials, 2013, 25(34): 4766-4771.
[110] CUI C, WONG W-Y, LI Y. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution[J]. Energy & Environmental Science, 2014, 7(7): 2276-2284.
[111] PAN L, LIU T, WANG J, et al. Efficient organic ternary solar cells employing narrow band gap diketopyrrolopyrrole polymers and nonfullerene acceptors[J]. Chemistry of Materials, 2020, 32(17): 7309-7317.
[112] ZHAO W, QIAN D, ZHANG S, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Advanced Materials, 2016, 28(23): 4734-4739.
[113] ZHANG M, GUO X, MA W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance[J]. Advanced Materials, 2015, 27(31): 4655-4660.
[114] ZHANG S, QIN Y, ZHU J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor[J]. Advanced Materials, 2018, 30(20): 1800868.
[115] LIU Q, JIANG Y, JIN K, et al. 18% efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4): 272-275.
[116] SUN C, PAN F, BIN H, et al. A low cost and high performance polymer donor material for polymer solar cells[J]. Nature Communications, 2018, 9(1): 743.
[117] MIN J, ZHANG Z-G, ZHANG S, et al. Conjugated side-chain-isolated D-A copolymers based on benzo
[1,2-b:4,5-b’]dithiophene-alt-dithienylbenzotriazole: Synthesis and photovoltaic properties[J]. Chemistry of Materials, 2012, 24(16): 3247-3254.
[118] PRICE S C, STUART A C, YANG L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. Journal of the American Chemical Society, 2011, 133(12): 4625-4631.
[119] GUO Y K, LI Y K, AWARTANI O, et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor[J]. Advanced Materials, 2017, 29(26): 1700309.
[120] MOORE J R, ALBERT-SEIFRIED S, RAO A, et al. Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor: Device physics, photophysics and morphology[J]. Advanced Energy Materials, 2011, 1(2): 230-240.
[121] ZHU L, ZHONG W K, QIU C Q, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication[J]. Advanced Materials, 2019, 31(41): 1902899.
[122] SUN H L, GUO X G, FACCHETTI A. High-performance n-type polymer semiconductors: Applications, recent development, and challenges[J]. Chemistry, 2020, 6(6): 1310-1326.
[123] WU B Q, YIN B Y, DUAN C H, et al. All-polymer solar cells[J]. Journal of Semiconductors, 2021, 42(8): 080301.
[124] WANG Y F, YAN Z L, UDDIN M A, et al. Triimide-functionalized n-type polymer semiconductors enabling all-polymer solar cells with power conversion efficiencies approaching 9%[J]. Solar RRL, 2019, 3(7): 1900107.
[125] SUN H L, TANG Y M, KOH C W, et al. High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene[J]. Advanced Materials, 2019, 31(15): 1807220.
[126] DOU C D, LONG X J, DING Z C, et al. An electron-deficient building block based on the B←N unit: An electron acceptor for all-polymer solar cells[J]. Angewandte Chemie International Edition, 2016, 55(4): 1436-1440.
[127] ZHAO R Y, WANG N, YU Y J, et al. Organoboron polymer for 10% efficiency all-polymer solar cells[J]. Chemistry of Materials, 2020, 32(3): 1308-1314.
[128] SHI S B, CHEN P, CHEN Y, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells[J]. Advanced Materials, 2019, 31(46): 1905161.
[129] ZHANG Z G, YANG Y K, YAO J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507.
[130] KATARIA M, CHAU H D, KWON N Y, et al. Y-series-based polymer acceptors for high-performance all-polymer solar cells in binary and non-binary systems[J]. ACS Energy Letters, 2022, 7(11): 3835-3854.
[131] JIA T, ZHANG J B, ZHONG W K, et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor[J]. Nano Energy, 2020, 72: 104718.
[132] SUN H L, YU H, SHI Y Q, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells[J]. Advanced Materials, 2020, 32(43): 2004183.
[133] LUO Z H, LIU T, MA R J, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%[J]. Advanced Materials, 2020, 32(48): 2005942.
[134] SUN H L, LIU B, MA Y L, et al. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells[J]. Advanced Materials, 2021, 33(37): 2102635.
[135] YU H, WANG Y, KIM H, et al. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency[J]. Advanced Materials, 2022, 34(27): 2200361.
[136] MULLER-BUSCHBAUM P. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques[J]. Advanced Materials, 2014, 26(46): 7692-7709.
[137] XIAO Y, LU X. Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques[J]. Materials Today Nano, 2019, 5: 100030.
[138] CHEN J, YANG J, GUO Y, et al. Acceptor modulation strategies for improving the electron transport in high-performance organic field-effect transistors[J]. Advanced Materials, 2022, 34(22): 2104325.
[139] KLAUK H. Organic thin-film transistors[J]. Chemical Society Reviews, 2010, 39(7): 2643-2666.
[140] SUN H, WANG L, WANG Y, et al. Imide-functionalized polymer semiconductors[J]. Chemsitry A European Journal, 2019, 25(1): 87-105.
[141] PRON A, LECLERC M. Imide/amide based π-conjugated polymers for organic electronics[J]. Progress in Polymer Science, 2013, 38(12): 1815-1831.
[142] GUO X, WATSON M D. Pyromellitic diimide-based donor-acceptor poly(phenylene ethynylene)s[J]. Macromolecules, 2011, 44(17): 6711-6716.
[143] LIU S, KAN Z, THOMAS S, et al. Thieno
[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene polymer acceptors for efficient all-polymer bulk heterojunction solar cells[J]. Angewandte Chemie International Edition, 2016, 55(42): 12996-13000.
[144] WANG Y, GUO H, LING S, et al. Ladder-type heteroarenes: Up to 15 rings with five imide groups[J]. Angewandte Chemie International Edition, 2017, 56(33): 9924-9929.
[145] RYU G S, CHEN Z, USTA H, et al. Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water[J]. MRS Communications, 2016, 6(1): 47-60.
[146] LEI T, DOU J H, MA Z J, et al. Chlorination as a useful method to modulate conjugated polymers: Balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers[J]. Chemical Science, 2013, 4(6): 2447-2452.
[147] QU J, CHEN H, ZHOU J, et al. Chlorine atom-induced molecular interlocked network in a non-fullerene acceptor[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39992-40000.
[148] YANG J, ZHAO Z, WANG S, et al. Insight into high-performance conjugated polymers for organic field-effect transistors[J]. Chemistry 2018, 4(12): 2748-2785.
[149] SUI Y, SHI Y, DENG Y, et al. Direct arylation polycondensation of chlorinated thiophene derivatives to high-mobility conjugated polymers[J]. Macromolecules, 2020, 53(22): 10147-10154.
[150] LU Y, YU Z-D, ZHANG R-Z, et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics[J]. Angewandte Chemie International Edition, 2019, 58(33): 11390-11394.
[151] YANG J, LIU B, LEE J-W, et al. Revisiting the bithiophene imide-based polymer donors: Molecular aggregation and orientation control enabling new polymer donors for high-performance all-polymer solar cells[J]. Chinese Journal of Chemistry, 2022, 40(24): 2900-2908.
[152] LI H, YANG H, ZHANG L, et al. Optimizing the crystallization behavior and film morphology of donor-acceptor conjugated semiconducting polymers by side-chain-solvent interaction in nonpolar solvents[J]. Macromolecules, 2021, 54(22): 10557-10573.
[153] MA S, WANG J, FENG K, et al. N-type polymer semiconductors based on dithienylpyrazinediimide[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1639-1651.
[154] MA S, ZHANG G, WANG F, et al. Tuning the energy levels of aza-heterocycle-based polymers for long-term n-channel bottom-gate/top-contact polymer transistors[J]. Macromolecules, 2018, 51(15): 5704-5712.
[155] SAITO M, OSAKA I, SUDA Y, et al. Dithienylthienothiophenebisimide, a versatile electron-deficient unit for semiconducting polymers[J]. Advanced Materials, 2016, 28(32): 6921-6925.
[156] CHEN J, ZHANG X, WANG G, et al. Dithienylbenzodiimide: A new electron-deficient unit for n-type polymer semiconductors[J]. Journal of Materials Chemistry C, 2017, 5(37): 9559-9569.
[157] FENG K, ZHANG X, WU Z, et al. Fluorine-substituted dithienylbenzodiimide-based n-type polymer semiconductors for organic thin-film transistors[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35924-35934.
[158] HUANG J, YU G. Structural engineering in polymer semiconductors with aromatic n-heterocycles[J]. Chemistry of Materials, 2021, 33(5): 1513-1539.
[159] LIU X, HE B, ANDERSON C L, et al. Para-azaquinodimethane: A compact quinodimethane variant as an ambient stable building block for high-performance low band gap polymers[J]. Journal of the American Chemical Society, 2017, 139(24): 8355-8363.
[160] LIU X, HE B, GARZóN-RUIZ A, et al. Unraveling the main chain and side chain effects on thin film morphology and charge transport in quinoidal conjugated polymers[J]. Advanced Functional Materials, 2018, 28(31): 1801874.
[161] IE Y, SASADA S, KARAKAWA M, et al. Pyradinodithiazole: An electron-accepting monomer unit for hole-transporting and electron-transporting conjugated copolymers[J]. Organic Letters, 2015, 17(18): 4580-4583.
[162] HONG W, SUN B, GUO C, et al. Dipyrrolo
[2,3-b:2’,3’-e]pyrazine-2,6(1h,5h)-dione based conjugated polymers for ambipolar organic thin-film transistors[J]. Chemical Communications, 2013, 49(5): 484-486.
[163] LI H, KIM F S, REN G, et al. High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics[J]. Journal of the American Chemical Society, 2013, 135(40): 14920-14923.
[164] ZHANG C Y, TOUR J M. Synthesis of highly functionalized pyrazines by ortho-lithiation reactions. Pyrazine ladder polymers[J]. Journal of the American Chemical Society, 1999, 121(38): 8783-8790.
[165] FAN B, LIN F, WU X, et al. Selenium-containing organic photovoltaic materials[J]. Accounts of Chemical Research, 2021, 54(20): 3906-3916.
[166] LIN F, JIANG K, KAMINSKY W, et al. A non-fullerene acceptor with enhanced intermolecular π-core interaction for high-performance organic solar cells[J]. Journal of the American Chemical Society, 2020, 142(36): 15246-15251.
[167] GARGI D, KLINE R J, DELONGCHAMP D M, et al. Charge transport in highly face-on poly(3-hexylthiophene) films[J]. The Journal of Physical Chemistry C, 2013, 117(34): 17421-17428.
[168] POLANDER L E, ROMANOV A S, BARLOW S, et al. Stannyl derivatives of naphthalene diimides and their use in oligomer synthesis[J]. Organic Letters, 2012, 14(3): 918-921.
[169] HWANG D K, DASARI R R, FENOLL M, et al. Stable solution-processed molecular n-channel organic field-effect transistors[J]. Advanced Materials, 2012, 24(32): 4445-4450.
[170] CUI X, XIAO C, ZHANG L, et al. Polycyclic aromatic hydrocarbons with orthogonal tetraimides as n-type semiconductors[J]. Chemical Communications, 2016, 52(90): 13209-13212.
[171] ZHANG X, XIAO C, ZHANG A, et al. Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells[J]. Polymer Chemistry, 2015, 6(26): 4775-4783.
[172] WANG Y, HASEGAWA T, MATSUMOTO H, et al. D-A1-D-A2 backbone strategy for benzobisthiadiazole based n-channel organic transistors: Clarifying the selenium-substitution effect on the molecular packing and charge transport properties in electron-deficient polymers[J]. Advanced Functional Materials, 2017, 27(33): 1701486.
[173] FEI Z, HAN Y, MARTIN J, et al. Conjugated copolymers of vinylene flanked naphthalene diimide[J]. Macromolecules, 2016, 49(17): 6384-6393.
[174] DONG C, DENG S, MENG B, et al. A distannylated monomer of a strong electron-accepting organoboron building block: Enabling acceptor-acceptor-type conjugated polymers for n-type thermoelectric applications[J]. Angewandte Chemie International Edition, 2021, 60(29): 16184-16190.
[175] SHI S, TANG L, GUO H, et al. Bichalcogenophene imide-based homopolymers: Chalcogen-atom effects on the optoelectronic property and device performance in organic thin-film transistors[J]. Macromolecules, 2019, 52(19): 7301-7312.
[176] LI Y, LIU Z, LI H, et al. Fluorine-induced highly reproducible resistive switching performance: Facile morphology control through the transition between J- and H-aggregation[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9926-9934.
[177] KIM S O, AN T K, CHEN J, et al. H-aggregation strategy in the design of molecular semiconductors for highly reliable organic thin film transistors[J]. Advanced Functional Materials, 2011, 21(9): 1616-1623.
[178] SARKAR T, SCHNEIDER S A, ANKONINA G, et al. Tuning intra and intermolecular interactions for balanced hole and electron transport in semiconducting polymers[J]. Chemistry of Materials, 2020, 32(17): 7338-7346.
[179] GENENE Z, MAMMO W, WANG E, et al. Recent advances in n-type polymers for all-polymer solar cells[J]. Advanced Materials, 2019, 31(22): 1807275.
[180] LIU T, YANG T, MA R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend[J]. Joule, 2021, 5(4): 914-930.
[181] YANG X, SUN R, WANG Y, et al. Ternary all-polymer solar cells with efficiency up to 18.14% employing a two-step sequential deposition[J]. Advanced Materials, 2023, 35(7): 2209350.
[182] ZHOU D, LIAO C, PENG S, et al. Binary blend all-polymer solar cells with a record efficiency of 17.41% enabled by programmed fluorination both on donor and acceptor blocks[J]. Advanced Science, 2022, 9(23): 2202022.
[183] LI B, ZHANG X, WU Z, et al. Over 16% efficiency all-polymer solar cells by sequential deposition[J]. Science China Chemistry, 2022, 65(6): 1157-1163.
[184] LI Q, JIA T, WANG L-M, et al. Superior layer-by-layer deposition realizing p-i-n all-polymer solar cells with efficiency over 16% and fill factor over 77%[J]. Journal of Materials Chemistry A, 2022, 10(20): 10880-10891.
[185] WU Q, WANG W, WU Y, et al. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy[J]. Advanced Functional Materials, 2021, 31(15).
[186] SUN R, WANG T, FAN Q, et al. 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor[J]. Joule, 2023, 7(1): 221-237.
[187] SUN R, WANG T, YANG X, et al. High-speed sequential deposition of photoactive layers for organic solar cell manufacturing[J]. Nature Energy, 2022, 7(11): 1087-1099.
[188] XU Y, YUAN J, LIANG S, et al. Simultaneously improved efficiency and stability in all-polymer solar cells by a p-i-n architecture[J]. ACS Energy Letters, 2019, 4(9): 2277-2286.
[189] NI Z, WANG H, DONG H, et al. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems[J]. Nature Chemistry, 2019, 11(3): 271-277.

所在学位评定分委会
物理学
国内图书分类号
O649.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544715
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
马苏翔. 双噻吩酰亚胺基n型高分子半导体的设计合成及其应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930792-马苏翔-材料科学与工程(18244KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[马苏翔]的文章
百度学术
百度学术中相似的文章
[马苏翔]的文章
必应学术
必应学术中相似的文章
[马苏翔]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。