[1] FERREIRA A M, MARQUES J C, SEIXAS S. Integrating marine ecosystem conservation and ecosystems services economic valuation: Implications for coastal zones governance[J]. Ecological Indicators, 2017, 77: 114-122.
[2] GOODWIN P M A J, ZEDLER J B. Tidal Wetland Restoration: An Introduction[J]. Journal of Coastal Research, 2001: 1-6.
[3] O'CONNOR A E, KRASK J L, CANUEL E A, et al. Seasonality of major redox constituents in a shallow subterranean estuary[J]. Geochimica Et Cosmochimica Acta, 2018, 224: 344-361.
[4] PERILLO G M E, WOLANSKI E, CAHOON D R, et al. Coastal Wetlands[M]. Elsevier. 2019: 359-381.
[5] LIU Y, NOT C, JIAO J, et al. Tidal induced dynamics and geochemical reactions of trace metals (Fe, Mn, and Sr) in the salinity transition zone of an intertidal aquifer[J]. Science of the Total Environment, 2019, 664: 1133-1149.
[6] 夏玉强, 李海龙. 影响潮间带湿地的环境水文因素—以海南东寨港红树林湿地为例[J]. 长江科学院院报, 2010, 10: 35-38+49.
[7] Global Mangrove Alliance. The State of The World’s Mangroves 2022[R]. Geneva: GMA, 2018.
[8] ANDERSON D, GREGORICH E. Effect of soil erosion on soil quality and productivity. Soil erosion and degradation[C]. Proceedings of the Annual Western Provincial Conference on Rationalization of Water and Soil Research and Management, 2nd, 1984: 105-113.
[9] GREGORICH E G, CARTER M R, ANGERS D A, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science, 1994, 74(4): 367-385.
[10] NISSENBAUM A, SWAINE D J. Organic-metal interactions in recent sediments: the role of humic substances[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 809-816.
[11] LACERDA L D, MARTINELLI L A, REZENDE C A, et al. The fate of heavy metals in suspended matter in a mangrove creek during a tidal cycle[J]. Science of the Total Environment, 1988, 75(2-3): 249-259.
[12] TAM N F Y, WONG Y S. Spatial variation of heavy metal in surface sediments of Hong Kong mangrove swamps[J]. Environmental Pollution, 2000, 110(2): 195-205.
[13] 龚玲兰, 奚小双. 河流重金属的分布与迁移转化研究进展[J]. 广东微量元素科学, 2006(11): 1-6.
[14] BASTAKOTI U, ROBERTSON J, BOURGEOIS C, et al. Temporal variations of trace metals and a metalloid in temperate estuarine mangrove sediments[J]. Environmental Monitoring and Assessment, 2019, 191(12): 1-18.
[15] ALONGI D M. Carbon Cycling and Storage in Mangrove Forests. In: Carlson, C.A., Giovannoni, S.J. (Eds.), Annual Review of Marine Science, Vol 6. Annual Review of Marine Science, 2014, pp. 195-219.
[16] MARCHAND C, LALLIER-VERGE`S E, BALTZER F. The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana[J]. Estuarine Coastal and Shelf Science, 2003, 56(1): 119-130.
[17] BATTIN T J, LUYSSAERT S, KAPLAN L A, et al. The boundless carbon cycle[J]. Nature Geoscience, 2009, 2(9): 598-600.
[18] FORSTNER U, MULLLER G. Concentration of heavy metals and polycyclic aromatic hydrocarbons in river sediments: Geochemical background, man’s influence and environmental impact[J]. Geojournal, 1981, 5: 417-432.
[19] SINGH A K, HASNAIN S I, BANERJEE D K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River - a tributary of the lower Ganga, India[J]. Environmental Geology, 1999, 39(1): 90-98.
[20] 许世远, 陶静, 陈振楼, 等. 上海潮滩沉积物重金属的动力学累积特征[J]. 海洋与湖沼, 1997, 28(5): 509-514.
[21] LU Y, YUAN J, LU X, et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability[J]. Environmental Pollution, 2018, 239: 670-680.
[22] DARBY S E, HACKNEY C R, LEYLAND J, et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity[J]. Nature, 2016, 539 (7628): 276.
[23] HAN W Q, MEEHL G A, RAJAGOPALAN B, et al. Patterns of Indian Ocean sea-level change in a warming climate[J]. Nature Geoscience, 2010, 3(8): 546-550.
[24] SCAVIA D, FIELD J C, BOESCH D F, et al. Climate change impacts on US coastal and marine ecosystems[J]. Estuarines, 2002, 25(2): 149-164.
[25] SMITH T J, ANDERSON G H, BALENTINE K, et al. Cumulative impacts of hurricanes on florida mangrove ecosystems: sediment deposition, storm surges and vegetation[J]. Wetlands, 2009, 29(1): 24-34.
[26] SMOAK J M, BREITHAUPT J L, SMITH T J, et al. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park[J]. Catena, 2013, 104: 58-66.
[27] JONSSON S, ANDERSSON A, NILSSON M B, et al. Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota[J]. Science Advances, 2017, 3(1).
[28] KNUTSON T R, MCBRIDE J L, CHAN J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3(3): 157-163.
[29] NEGANDHI K, EDWARDS G, KELLEWAY J J, et al. Blue carbon potential of coastal wetland restoration varies with inundation and rainfall[J]. Scientific Report, 2019, 9(1): 4368.
[30] HOWARTH R W, FRUCI J R, SHERMAN D. Inputs of sediment and carbon to an estuarine ecosystem - influence of land-use[J]. Ecological Applications, 1991, 1(1): 27-39.
[31] China Meteorological Administration. 2012. Definition and classification of rainstorm[S]. Beijing: China Meteorological News Press.
[32] National Science and Technology Commission. 1998. Progress of natural disaster regionalization in China. Beijing: Maritime Press.
[33] 冯妙玲, 苏少青, 吴家龙. 关于红树林保护修复的若干思考—以广东省为例[J]. 农业与技术, 2021, 41(5): 49-51.
[34] 史丽, 张柳红, 伍红雨. 1994—2018年广东主要气象灾害特征分析[J]. 广东气象, 2021, 43(2): 54-57.
[35] 伍红雨, 邹燕, 刘尉. 广东区域性暴雨过程的定量化评估及气候特征[J]. 应用气象学报, 2019, 30(2): 33-244.
[36] WANG Y J, ZHAI J Q, GAO G, et al. Risk assessment of rainstorm disasters in the Guangdong-Hong Kong-Macao greater Bay area of China during 1990-2018[J]. Geomatics Natural Hazards & Risk, 2022, 13(1), 267-288.
[37] 杨丽, 蔡立哲, 童玉贵等. 深圳湾福田潮滩重金属含量及对大型底栖动物的影响[J]. 台湾海峡, 2005, 02: 157-164.
[38] 徐华林, 昝启杰, 王勇军. 深圳福田红树林潮滩奇异稚齿虫的富有机质效应[J]. 深圳特区科技, 2005(00): 202-206.
[39] 徐华林, 金亮, 蔡立哲等. 深圳湾福田红树林潮滩奇异稚齿虫的富有机质效应[J]. 生态科学, 2006(05): 437-439+444.
[40] 丁苏丽, 张祁炅, 董俊等. 深港红树林沉积物微生物群落多样性及其与重金属的关系[J]. 生态学杂志, 2018, 37(10): 3018-3030.
[41] LI R L, CHAI M W, LI R Y, et al. Influence of introduced Sonneratia apetala on nutrients and heavy metals in intertidal sediments, South China[J]. Environmental Science and Pollution Research, 2017, 24(3): 2914-2927.
[42] ZUO P, WANG Y P, MIN F Y, et al. Distribution characteristics of heavy metals in surface sediments and core sediments of the Shenzhen Bay in Guangdong Province, China[J]. Acta Oceanologica Sinica, 2009, 28(6): 53-60.
[43] LI R L, XU H L, CHAI M W, et al. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world's most rapid urbanized city[J]. Environmental Monitoring and Assessment, 2016, 188(2).
[44] ZHANG Q Y, REN F T, XIONG X Y, et al. Spatial distribution and contamination assessment of heavy metal pollution of sediments in coastal reclamation areas: a case study in Shenzhen Bay, China[J]. Environmental Sciences Europe, 2021, 33(1).
[45] MOUNIER S, BRAUCHER R, BENAIM J Y. Differentiation of organic matter’s properties of the rio negro basin by cross-flow ultra-filtration and uv-spectrofluorescence[J]. Water Research, 1999, 33(10): 2363-2373.
[46] LIU Y, YE Q, HUANG W L, et al. Spectroscopic and molecular-level characteristics of dissolved organic matter in the Pearl River Estuary, South China[J]. Science of Total Environment, 2020, 710: 136307.
[47] CHAPELLE F H, LOVLEY D R. Rates of microbial-metabolism in deep coastal-plain aquifers[J]. Applied and Environmental Microbiology, 1990, 56(6): 1865-1874.
[48] BECK M, DELLWIG O, LIEBEZEIT G, et al. Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments [J]. Estuarine, Coastal and Shelf Science, 2008, 79(2): 307-316.
[49] 宋逸群, 王传远, 靳文静, 等.渤海辽东湾海域表层沉积物有机质特征、来源及环境评价分析[J]. 生态科学, 2022, 41(2): 84-90.
[50] 范春辉, 常敏, 张颖超. 泾渭河交汇区域平水期水体和表层沉积物溶解性有机质的光谱性质[J]. 光谱学与光谱分析, 2016, 36(9): 2863-2869.
[51] SARKER S, MASUD-UL-ALAM M, HOSSAIN M S, et al. A review of bioturbation and sediment organic geochemistry in mangroves[J]. Geological Journal, 2021, 56(5): 2439-2450.
[52] CLARK M W, MCCONCHIE D, LEWIS D W, et al. Redox stratification and heavy metal partitioning in Avicennia-dominate mangrove sediments: a geochemical model[J]. Chemical Geology, 1998, 149(3-4): 147-171.
[53] KRYGER L, LEE K. Effects of mangrove soil ageing on the accumulation of hydrogen sulphide in roots of Avicennia spp[J]. Biogeochemistry, 1996, 35, 367-375.
[54] BALTZER, F. La transition eau douce-eau sale´e dans les mangroves. Conse´quences se´dimentologiques et ge´ochimiques. Bulletin de la Socie´te´ Ge´ologique de France, 1982, 144: 27-42.
[55] BERTNESS, M. D. Fiddler crab regulation of Spartina alterniflora production on a New England Salt Marsh[J]. Ecology, 1985, 66(3): 1042-1055.
[56] WOOLLER M, SMALLWOOD B, JACOBSON M, et al. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: implications for trophic level studies[J]. Hydrobiologia, 2003, 499: 13-23.
[57] MARCHAND C, DISNAR J R, LALLIER-VERGES E, et al. Early diagenesis of carbohydrates and lignin in mangrove sediments subject to variable redox conditions (French Guiana) [J]. Geochim. Cosmochim. Acta, 2005, 69: 131-142.
[58] ERNST G, FELTEN D, VOHLAND M, et al. Impact of ecologically different earthworm species on soil water characteristics[J]. European Journal of Soil Biology, 2009, 45(3): 207-213.
[59] XIAO K, WILSON A M, LI H, et al. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: a modeling study[J]. Advances in Water Resources, 2019, 132: 103408.
[60] ALONGI D M. Coastal Ecosystem Processes. CRC Press, 1998, p. 419.
[61] ALONGI D M, CLOUGH B F, ROBERTSON A I. Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina[J]. Aquatic Botany,2005, 82(2): 121-131.
[62] LI C M, WANG H C, LIAO X L, et al. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades[J]. Journal of Hazardous Materials, 2022, 424.
[63] HOU D, O’CONNOR D, IGALAVITHANA A D, et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability[J]. Nature Reviews Earth & Environment, 2020, 1: 366-381.
[64] PAN K, WANG W. Trace metal contamination in estuarine and coastal environments in China[J]. Science of Total Environment, 2012, 421-422: 3-16.
[65] LIU M, ZHANG Q, MAAVARA T, et al. Rivers as the largest source of mercury to coastal oceans worldwide[J]. Nature Geoscience, 2021: 1-6.
[66] SAINZ A, GRANDE J A, DE LA TORRE M L. Characterisation of heavy metal discharge into the Ria of Huelva[J]. Environ. Int., 2004, 30: 557-566.
[67] BAI J, XIAO R, ZHANG K, et al. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China[J]. Journal of Hydrology, 2012, 450: 244-253.
[68] WANG C, HE S, ZOU Y, et al. Quantitative evaluation of in-situ bioremediation of compound pollution of oil and heavy metal in sediments from the Bohai Sea, China[J]. Marine Pollution Bulletin., 2020, 150, 110787.
[69] ZHANG S, GUO H, ZHANG S, et al. Are oil spills an important source of heavy metal contamination in the Bohai Sea, China? [J]. Environmental Science and Pollution Research, 2020, 27: 3449-3461.
[70] 张丽聪, 肖凯, 张鹏, 等. 淤泥质潮滩重金属和溶解性有机质的潮汐变化特征及其环境影响评价[J]. 生态环境学报, 2022, 31(11): 2169-2179.
[71] HE Q, SILLIMAN B R. Climate change, human impacts, and coastal ecosystems in the anthropocene[J]. Current Biology, 2019, 29(19): 1021–1035.
[72] BOYD R S. Heavy metal pollutants and chemical ecology: exploring new frontiers[J]. Journal of Chemical Ecology, 2010, 36: 46-58.
[73] TAM N F Y, WONG Y S. Spatial and temporal variations of heavy metal contamination in sediments of a mangrove swamp in Hong Kong[J]. Marine Pollution Bulletin, 1995, 31(4-12): 254-261.
[74] MARCHAND C, LALLIER-VERGES E, BALTZER F, et al. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana[J]. Marine Chemistry, 2006, 98: 1-17.
[75] CHATTERJEE M, MASSOLO S, SARKAR S K, et al. An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines[J]. Environmental Monitoring and Assessment, 2009, 150: 307-322.
[76] ZHOU Y W, ZHAO B, PENG Y S, et al. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments[J]. Marine Pollution Bulletin, 2010, 60: 1319-1324.
[77] DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293-297.
[78] XIAO K, PAN F, SANTOS I R, et al. Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils[J]. Geoderma, 2022, 424: 115990.
[79] PAN F, XIAO K, GUO Z R, et al. Effects of fiddler crab bioturbation on the geochemical migration and bioavailability of heavy metals in coastal wetlands[J]. Journal of Hazardous Materials, 2022, 437: 129380.
[80] KUMAR A, RAMANATHAN A L, PRASAD M B K, et al. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014[J]. Environmental Science and Pollution Research, 2016, 23(9): 8985-8999.
[81] GARCIA E M, CRUZ-MOTTA J J, FARINA O, et al. Anthropogenic influences on heavy metals across marine habitats in the western coast of Venezuela[J]. Continental Shelf Research, 2008, 28 (20): 2757-2766.
[82] MISHRA S K, SANSALONE J J, GLENN D W, et al. PCN based metal partitioning in urban snowmelt, rainfall/runoff, and river flow systems[J]. Journal of the American Water Resources Association, 2004, 40(5): 1315-1337.
[83] BASTAKOTI U, ROBERTSON J, ALFARO A C. Spatial variation of heavy metals in sediments within a temperate mangrove ecosystem in northern New Zealand[J]. Marine Pollution Bulletin, 2018, 135: 790-800.
[84] EGGLETON J, THOMAS K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environment International, 2004 ,30(7): 973-980.
[85] PREGO R, CAETANO M, OSPINA-ALVAREZ N, et al. Basin-scale contributions of Cr, Ni and Co from Ortegal Complex to the surrounding coastal environment (SW Europe) [J]. Science of the Total Environment, 2014, 468, 495-504.
[86] VINH T V, ALLENBACH M, LINH K T V.et al. Changes in Leaf Litter Quality During Its Decomposition in a Tropical Planted Mangrove Forest (Can Gio, Vietnam) [J]. Frontiers in Environmental Science, 2020, 8: 10.
[87] PONTING J, KELLY T J, VERHOEF A, et al. The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil - A review[J]. Science of the Total Environment, 2021, 754.
[88] DE-WOLF H, RASHID R. Heavy metal accumulation in Littoraria scabra along polluted and pristine mangrove areas of Tanzania[J]. Environmental Pollution, 2008, 152(3): 636-643.
[89] TANG Q, BAO Y H, HE X B, et al. Heavy metal enrichment in the riparian sediments and soils of the Three Gorges Reservoir, China, International Symposium on Sediment Dynamics: From the Summit to the Sea[J]. IAHS Publication, New Orleans, 2014, 244-250.
[90] WINDOM H, GARDNER W, STEPHENS J, et al. The role of methylmercury production in the transfer of mercury in a salt marsh ecosystem[J]. Estuarine and Coastal Marine Science, 1976, 4(5):579–583.
[91] HAKANSON L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 1980, 14: 975-1001.
[92] SUN X, LI B S, LIU X L, et al. Spatial variations and potential risks of heavy metals in seawater, sediments, and living organisms in Jiuzhen Bay, China[J]. Journal of Chemistry, 2020, 7971294.
[93] MULLER G. Index of geoaccumulation in sediments of the rhine river. GeoJournal, 1969, 2: 108-118.
[94] HUANG B, GUO Z, XIAO X, et al. Changes in chemical fractions and ecological risk prediction of heavy metals in estuarine sediments of chunfeng lake estuary, China[J]. Marine Pollution Bulletin, 2019, 138: 575-583.
[95] HE W M, HE Q L, ZHOU J. Soil weathering-water environment-ecological risks in Hanjiang River Basin, China[J]. Quaternary International, 2015, 380: 297-304.
[96] HUANG Y, FU C, LI Z, et al. Effect of dissolved organic matters on adsorption and desorption behavior of heavy metals in a water-level-fluctuation zone of the Three Gorges Reservoir, China[J]. Ecotoxicology and Environmental Safety, 2019, 185.
[97] WANG Y, ZHANG X, ZHANG X, et al. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil[J]. Chemosphere, 2017, 180: 531-539.
[98] LIU X P, BI Q F, QIU L L, et al., Increased risk of phosphorus and metal leaching from paddy soils after excessive manure application: insights from a mesocosm study[J]. Science of Total Environment, 2019, 666: 778-785.
[99] YUAN D, ZHOU Q, AN Y, et al. Impacts of soil improvement on the pollutant-removal performance and DOM characteristics using a simulation experiment[J]. Ecological Indicators, 2019, 105: 581-590.
[100] HERNANDEZ-SORIANO M C, JIMENEZ-LOPEZ J C. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals[J]. Science of the Total Environment, 2012, 423: 55-61.
[101] ZHU W H, HUANG T L, CHAI B B, et al. Influence of the environmental conditions on the fractionation of heavy metals in the Fenhe reservoir sediment[J]. Geochemical Journal, 2010, 44(5): 399-410.
[102] LU J, YUAN F. The assessment of heavy metal distribution in the sediment of eastern Chongming tidal flat, China, 3rd International Conference on Environmental and Economic Impact on Sustainable Development (EID) [J]. WIT Transactions on Ecology and the Environment, Valencia, SPAIN, 2016, pp. 203: 91-100.
[103] KAISER K, GUGGENBERGER G. Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil [J]. Geoderma, 2005, 127(3-4): 177-187.
[104] MA X L, DENG F Y, LIU Y Study on Spatial Distribution and Seasonal Variations of Trace Metal Contamination in Sediments from the Three Adjacent Areas of the Yellow River Using HR-ICP-MS[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2705-2711.
[105] BORRIS M, OSTERLUND H, MARSALEK J, et al. Contribution of coarse particles from road surfaces to dissolved and particle-bound heavy metal loads in runoff: A laboratory leaching study with synthetic stormwater[J]. Science of the Total Environment, 2016, 573: 212-221.
[106] LI L Y, HALL K, YUAN Y, et al. Mobility and Bioavailability of Trace Metals in the Water-Sediment System of the Highly Urbanized Brunette Watershed[J]. Water Air and Soil Pollution, 2009, 197(1-4): 249-266.
[107] WEI L, DING Q, GUO H M, et al. Forms and mobility of heavy metals/metalloids in sewage-irrigated soils in the North China Plain[J]. Journal of Soils and Sediments, 2021, 21(1): 215-234.
[108] WEI L Z, LIU Y, ROUTH J, et al. Release of Heavy Metals and Metalloids from Two Contaminated Soils to Surface Runoff in Southern China: A Simulated-Rainfall Experiment[J]. Water, 2019, 11(7), 1-16.
[109] 张远辉, 杜俊民. 南海表层沉积物中主要污染物的环境背景值[J]. 海洋学报, 2005, 27(4): 161-166.
[110] 唐天均. 深圳湾水环境污染现状及防治对策研究. 环境科学与管理, 2016, 41(2): 43-45.
[111] LI W, KUANG L, LIU Y, et al. Current Status and Prospect of Water Environment Management in Shenzhen Bay[J]. China Water and Wastewater, 2016, 32(18): 29-31.
[112] FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6): 2452-2462.
[113] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[114] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969.
[115] CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21): 8142-8149.
[116] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746.
[117] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience, 2009, 2(1): 37-41.
[118] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial [J]. Limnology and Oceanography: Methods, 2008, 6: 572-579.
[119] MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC[J]. Analytical Methods, 2013, 5(23): 6557-6566.
[120] SHUTOVA Y, BAKER A, BRIDGEMAN J, et al. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths[J]. Water Research, 2014, 54: 159-169.
[121] TOMCO P L, ZULUETA R C, MILLER L C, et al. DOC export is exceeded by C fixation in May Creek: A late-successional watershed of the Copper River Basin, Alaska[J]. Plos One, 2019, 14(11): 271.
[122] LIN H, GUO L. Variations in colloidal DOM composition with molecular weight within individual water samples as characterized by flow field-flow fractionation and EEM-PARAFAC analysis[J]. Environment Science & Technology. 2020, 54(3): 1657-1667.
[123] MARTIN T D, CREED J T, BROCKHOFF C A. Sample preparation procedure for spectrochemical determination of total recoverable elements [R]. Environmental monitoring systems laboratory Office of Research and Development US. Environmental Protection Agency, Cincinnati, 1991, Ohio 45268.
[124] SINGH J K, KUMAR P, KUMAR R. Ecological risk assessment of heavy metal contamination in mangrove forest sediment of Gulf of Khambhat region, West Coast of India[J]. SN Applied Sciences, 2020, 2(12): 2027.
[125] BERGAMASCHI L, RIZZIO E, VALCUVIA M G, et al. Determination of trace elements and evaluation of their enrichment factors in Himalayan lichens[J]. Environmental Pollution, 2002, 120(1): 137-144.
[126] KUMAR A, RAMANATHAN A L, PRABHA S, et al. Metal speciation studies in the aquifer sediments of Semria Ojhapatti, Bhojpur District, Bihar[J]. Environmental Monitoring and Assessment, 2012, 184: 3027-3042.
[127] KRAHFORST C, SHERMAN L A, KEHM K. Trace metal enrichment in a tidally influenced, rural tributary of the upper Chesapeake Bay[J]. Marine Pollution Bulletin, 2022, 175: 113377.
[128] SINEX S A, WRIGHT D A. Distribution of trace metals in the sediments and biota of Chesapeake Bay[J]. Marine Pollution Bulletin, 1988, 19(9): 425-431.
[129] BARUT I F, ERGIN M, MERIÇ E, et al. Contribution of natural and anthropogenic effects in the Iznik Lake bottom sediment: Geochemical and microfauna assemblages evidence[J]. Quaternary International, 2018, 486: 129-142.
[130] DIRISU C E, BIOSE E, AIGHEWI I T. Heavy metal contamination of Ewhare dumpsite environment in Nigeria’s Niger Delta[J]. SCIREA Journal of Environment, 2019, 3(2): 30-45.
[131] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6): 611-626.
[132] WANG C Y, HE S J, ZOU Y M, et al. Quantitative evaluation of in-situ bioremediation of compound pollution of oil and heavy metal in sediments from the Bohai Sea, China[J]. Marine Pollution Bulletin, 2019, 150: 110787.
[133] KUTLU B, OZCAN T, OZCAN G. Analysis of heavy metal contamination in surface sediments of Iskenderun Bay, Turkey[J]. Oceanological and Hydrobiological Studies, 2021, 50(4): 411-420.
[134] Shepard, F P. Nomenclature based on sand-silt-clay ratio[J]. Journal of Sedimentary Geology, 1954, 24(3):151-158.
[135] REEF R, SCHMITZ N, ROGERS B A, et al. Differential responses of the mangrove Avicennia marina to salinity and abscisic acid. Functional Plant Biology, 2012, 39(12): 1038-1046.
[136] MARCHAND C, BALTZER F, LALLIER-VERGÈS E, et al. Pore-water chemistry in mangrove sediments: Relationship with species composition and developmental stages (French Guiana) [J]. Marine Geology, 2004, 208(2): 361-381.
[137] FERREIRA T O, OTERO X L, DE SOUZA, V S, et al. Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (Sao Paulo) [J]. Journal of Soils and Sediments, 2010, 10(6): 995-1006.
[138] SUKARDJO S. Soils in the mangrove forests of the Apar Nature Reserve, Tanah Grogot, East Kalimantan[J]. Indonesia, 1994, 32: 385-398.
[139] MORENO A N M, CALDERON J H M. Quantification of organic matter and physical-chemical characterization of mangrove soil at Hooker Bay, San Andres Island-Colombia[C]. Paper presented at the Global Conference on Global Warming, Lisbon, Portugal. 2011.
[140] SAH K D, SAHOO A K, GUPTA S K, et al. Mangrove vegetations of Sunderbans and their effect on the physicochemical and nutrient status of the soils[C]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 1989, 55, 8.
[141] 张云峰,张振克,丁海燕等.江苏启东嘴潮滩敏感粒度组分及环境意义[J].海洋环境科学,2021,40(01):81-86.
[142] WU W R, WANG L L, LEI X Y, et al. Sustainable estuarine governance based on artificial island scheme for a highly anthropogenic influenced Shenzhen Bay, China [J]. Journal of Hydrology, 2023, 128784.
[143] CABEZAS A, MITSCH W J, MACDONNELL C, et al. Methane emissions from mangrove soils in hydrologically disturbed and reference mangrove tidal creeks in southwest Florida[J]. Ecological Engineering, 2018, 114: 57-65.
[144] MAURYA P, KUMARI R. Spatiotemporal variation of the nutrients and heavy metals in mangroves using multivariate statistical analysis, Gulf of Kachchh (India) [J]. Environmental Research, 2021, 195: 110803.
[145] MATOS C R L, BERREDO J F, MACHADO W, et al. Seasonal changes in metal and nutrient fluxes across the sediment-water interface in tropical mangrove creeks in the Amazon region[J]. Applied Geochemistry, 2022, 138.
[146] DAVIS S, CORRONADO-MOLINA C, CHILDERS D, et al. Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades[J]. Aquatic Botany, 2003, 75: 199-215.
[147] ROMERO L M, SMITH T J, FOURQUREAN J W. Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest[J]. Journal of Ecology, 2005, 93: 618-631.
[148] ROMIGH M M, DAVIS S E, RIVERA-MONROY V H, et al. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades[J]. Hydrobiologia, 2006, 569, 505-516.
[149] TAILLARDAT P, ZIEGLER A D, FRIESS D A, et al. Assessing nutrient dynamics in mangrove porewater and adjacent tidal creek using nitrate dual-stable isotopes: a new approach to challenge the Outwelling Hypothesis?[J]. Marine Chemistry, 2019, 214: 103662.
[150] ADAME M F, VIRDIS B, LOVELOCK C E. Effect of geomorphological setting and rainfall on nutrient exchange in mangroves during tidal inundation[J]. Marine and Freshwater Research, 2010, 61(10): 1197-1206.
[151] BLASCO J, SAENZ V, GOMEZ-PARRA A. Heavy metal fluxes at the sediment-water interface of three coastal ecosystems from south-west of the Iberian Peninsula[J]. Science of the Total Environment, 2000, 247(2-3): 189-199.
[152] MAANAN M. Heavy metal concentrations in marine molluscs from the Moroccan coastal region[J]. Environmental Pollution, 2008, 153(1): 176-183.
[153] LI L Q. Heavy metals in the mangrove wetland of China (in Chinese with English Abstract) [D]. Xiamen: Xiamen University. 2008.
[154] BOWER J, SAVAGE K S, WEINMAN B, et al. Immobilization of mercury by pyrite (FeS2) [J]. Environmental Pollution, 2008, 156(2): 504-514.
[155] HAN D S, SONG J K, BATCHELOR B, et al. Removal of arsenite(As(III)) and arsenate(As(V)) by synthetic pyrite (FeS2): Synthesis, effect of contact time, and sorption/desorption envelopes[J]. Journal of Colloid Interface Science, 2013, 392: 311-318.
[156] RICHARD J H, BISCHOFF C, AHRENS C G M, et al. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater[J]. Science of Total Environment, 2016, 539: 36-44.
[157] LIN J G, CHEN S Y, SU C R. Assessment of sediment toxicity by metal speciation in different particle-size fractions of river sediment[J]. Water Science and Technology, 2003, 47(7-8): 233-241.
[158] VOLVOIKAR S P, NAYAK G N. Reading source and processes with time from mangrove sedimentary environment of Vaitarna estuary, west coast of India[J]. Indian Journal of Geo-Marine Sciences, 2014, 43(6): 1063-1075.
[159] RAHMAN M, SAIMA J, RIMA S A, et al. Ecological risks of heavy metals on surficial sediment of Nijhum Dweep (Island), an important biodiversity area of Bangladesh[J]. Marine Pollution Bulletin, 2022, 179: 113688.
[160] BONE S E, GONNEEA M E, CHARETTE M A. Geochemical cycling of arsenic in a coastal aquifer[J]. Environmental Science Technology, 2006, 40(10): 3273-3278.
[161] KALNEJAIS L H, MARTIN W R, BOTHNER M H. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes[J]. Science of The Total Environment, 2015, 517: 178-194.
[162] PAN F, CAI Y, GUO Z R, et al. Kinetic characteristics of mobile Mo associated with Mn, Fe and S redox geochemistry in estuarine sediments[J]. Journal of Hazardous Materials, 2021, 418: 126200.
[163] WANG L, CUI X, CHENG H, et al. A review of soil cadmium contamination in China including a health risk assessment[J]. Environmental Science and Pollution Reserch, 2015, 22: 16441-16452.
[164] DU L G, DE V R, VANDECASTEELE B, et al. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary[J]. Estuarine Coastal and Shelf Science, 2008, 77: 589-602.
[165] MARÍA-CERVANTES A, CONESA H M, GONZ´ALEZ-ALCARAZ M N, et al. Rhizosphere and flooding regime as key factors for the mobilisation of arsenic and potentially harmful metals in basic, mining-polluted salt marsh soils[J]. Applied Geochemistry, 2010, 25: 1722-1733.
[166] ZHANG L Y, GAO M, CUI J, et al. Wet Deposition of Trace Metals at a Typical Urban Site in Southwestern China: Fluxes, Sources and Contributions to Aquatic Environments[J]. Sustainability, 2018, 10(1).
[167] LEE P K, BAILLIF P, TOURAY J C. Geochemical behaviour and relative mobility of metals (Mn, Cd, Zn and Pb) in recent sediments of a retention pond along the A-71 motorway in Sologne, France[J]. Environmental Geology, 1997, 32(2): 142-152.
[168] PAL S K, WALLIS S G, ARTHUR S. An assessment of heavy metals pollution potential of road sediment derived from a suburban road network under different weather conditions[J]. Environmental Engineering and Management Journal, 2018, 17 (8): 1955-1966.
[169] ZHANG C, YU Z G, ZENG G M, et al. Effects of sediment geochemical properties on heavy metal bioavailability[J]. Environmental International, 2014, 73: 270281.
[170] DENG J, GUO P, ZHANG X, et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary, Fujian, China[J]. Ecotoxicology and Environmental Safety, 2019, 180: 501-508.
[171] NELSON C H, LAMOTHE P J. Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain[J]. Estuaries, 1993, 16(3): 496-511.
[172] BARREIRO R, REAL C, CARBALLEIRA A. Heavy-metal horizontal distribution in surface sediments from a small estuary (Pontedeume, Spain) [J]. Science of the Total Environment, 1994, 154(1): 87-100.
[173] VEERASINGAM S, VETHAMONY P, MURALI R M, et al. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India[J]. Marine Pollution Bulletin, 2015, 91(1): 362-367.
[174] CARDOSO P G, PEREIRA E, DUARTE A C, et al. Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web[J]. Marine Pollution Bulletin, 2014, 87: 39-47.
[175] FONSECA V F, FRANÇA S, DUARTE B, et al. Spatial variation in mercury bioaccumulation and magnification in a temperate estuarine food web[J]. Frontiers in Marine Science, 2019, 6, 117-134.
[176] DUAN S W, BIANCHI T S, SAMPERE T P. Temporal variability in the composition and abundance of terrestrially-derived dissolved organic matter in the lower Mississippi and Pearl Rivers[J]. Marine Chemistry, 2007, 103(1-2): 172-184.
[177] TALAMINI G, SHAO D, SU X, et al. Combined sewer overflow in Shenzhen, China: the case study of Dasha River, 8th International Conference on Sustainable Development and Planning[J]. WIT Transactions on Ecology and the Environment, Malaysia, 2016, pp. 785-796.
[178] QIANG Y J, ZHANG L M, HE J, et al. Urban flood analysis for Pearl River Delta cities using an equivalent drainage method upon combined rainfall-high tide-storm surge events[J]. Journal of Hydrology, 2021, 597: 126293.
[179] LIU J, MA K, QU L. Ecological risk assessments and context-dependence analysis of heavy metal contamination in the sediments of mangrove swamp in Leizhou Peninsula, China[J]. Marine Pollution Bulletin, 2015, 100(1): 224-230.
[180] LI Z Y, PAN F, XIAO K, et al. An integrated study of the spatiotemporal character, pollution assessment, and migration mechanism of heavy metals in the groundwater of a subtropical mangrove wetland[J]. Journal of Hydrology, 2022, 612(Pt C): 128251.
[181] BODIN N, N’GOM-KÂ R, KÂ S, et al. Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa[J]. Chemosphere, 2013, 90(2): 150-157.
[182] BARROS A B, AZEVEDO J A M, DE MIRANDA P R B, et al. Bioavailability of heavy metals in mangrove soil in Alagoas, Brazil[J]. Bioscience Journal, 2019, 35(3): 818-825.
[183] BEHERA B C, MISHRA R R, PATRA J K, et al. Impact of heavy metals on bacterial communities from mangrove soils of the Mahanadi Delta (India) [J]. Chemistry and Ecology, 2013, 29: 604-619.
[184] SUTTIARPORN P, HONGSAWAT P, SIRIPOKHARATTANA K, et al. Residue in the Mangrove Surface Sediment with the Feasibility of Phytoremediation Application, 2nd International Conference on Environment Sciences and Renewable Energy (ESRE). IOP Conference Series-Earth and Environmental Science, 2020, Electr Network.
[185] AL-KAHTANY K, EL-SOROGY A, AL-KAHTANY F, et al. Heavy metals in mangrove sediments of the central Arabian Gulf shoreline, Saudi Arabia[J]. Arabian Journal of Geosciences, 2018, 11(7): 1-12.
[186] VANE C H, HARRISON I, KIM A W, et al. Organic and metal contamination in surface mangrove sediments of South China[J]. Marine Pollution Bulletin, 2009, 58(1): 134-144.
[187] 吴丹, 赵志忠, 季一诺等. 海南岛八门湾红树林湿地表层沉积物重金属分布特征及污染评价[J]. 海南师范大学学报(自然科学版), 2015, 28(04): 432-437.
[188] JIANG R, HUANG S, WANG W, et al. Heavy metal pollution and ecological risk assessment in the Maowei sea mangrove, China[J]. Marine Pollution Bulletin, 2020, 161 (Pt B): 111816.
[189] XIAO Y Z, HE M Y, XIE J F, et al. Effects of heavy metals and organic matter fractions on the fungal communities in mangrove sediments from Techeng Isle, South China[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112545.
[190] TANG D B, LUO S Y, DENG S Y, et al. Heavy metal pollution status and deposition history of mangrove sediments in Zhanjiang Bay, China[J]. Frontiers in Marine Science, 2022, 9: 989584.
[191] FÖRSTNER U, WITTMANN G T. Metal pollution in the aquatic environment[J]. Springer Science & Business Media, 1981.
[192] AVNIMELECH Y, RITVO G, MEIJER L E, et al. Water content, organic carbon and dry bulk density in flooded sediments[J]. Aquacultural Engineering, 2001, 25(1): 25–33.
[193] BURONE L, MUNIZ P, PIRES-VANIN A M S, et al. Spatial distribution of organic matter in the surface sediments of Ubatuba Bay (southeastern–Brazil) [J]. Anais da Academia Brasileira de Ciências, 2003, 75(1): 77-90.
[194] RAY A K, TRIPATHY S C, PATRA S, et al. Assessment of Godavari estuarine mangrove ecosystem through trace metal studies[C]. Environment International, 2006, 32(2): 219-223.
[195] ALONGI, D. The energetics of mangrove forests. Springer Science & Business Media, 2009.
[196] MARCHAND C, FERNANDEZ J M, MORETON B, et al. The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia) [J]. Chemical Geology, 2012, 300: 70-80.
[197] MARCHAND C, FERNANDEZ J M, MORETON B. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia) [J]. Science of the Total Environment, 2016, 562: 216-227.
[198] GAONKAR C V, NASNODKAR M R, MATTA V M. Assessment of metal enrichment and contamination in surface sediment of Mandovi estuary, Goa, West coast of India[J]. Environmental Science and Pollution Research, 2021, 28(41): 57872-57887.
修改评论