[1] 包为民. 航天飞行器控制技术研究现状与发展趋势[J]. 自动化学报, 2013, 39(6): 697-702.
[2] 陈宗基, 张汝麟, 张平, 等. 飞行器控制面临的机遇与挑战[J]. 自动化学报, 2013, 39(6): 703-710.
[3] MOLENT L, DIXON B. Airframe metal fatigue revisited[J]. International Journal of Fatigue, 2020, 131: 105323.
[4] CHULIANG Y, KEGE L. Theory of economic life prediction and reliability assessment of aircraft structures[J]. Chinese Journal of Aeronautics, 2011, 24(2): 164-170.
[5] GONG X, BANSMER S. Horn–Schunck optical flow applied to deformation measurement of a birdlike airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1305-1315.
[6] BLACK J T, PITCHER N A, REEDER M F, et al. Videogrammetry dynamics measurements of a lightweight flexible wing in a wind tunnel[J]. Journal of aircraft, 2010, 47(1): 172-180.
[7] BURNER A, LIU T, DELOACH R. Uncertainty of videogrammetric techniques used for aerodynamic testing[C]//22nd AIAA aerodynamic measurement technology and ground testing conference. 2002: 2794.
[8] 张华强, 刘林, 秦昌礼, 等. 基于分布式惯导测量的机翼弹性形变算法[J]. 北京邮电大学学报, 44(6): 33.
[9] WU X, XU Z, ZENG J. Reconstruction of Wing Structure Deformation Based on Particle Swarm Optimization Ridge Regression[J]. International Journal of Aerospace Engineering, 2022, 2022.
[10] KO W L, RICHARDS W L, TRAN V T. Displacement theories for in-flight deformed shape predictions of aerospace structures[R]. 2007.
[11] MA Z, CHEN X. Fiber Bragg gratings sensors for aircraft wing shape measurement: Recent applications and technical analysis[J]. Sensors, 2018, 19(1): 55.
[12] WISSMAN J, PEREZ-ROSADO A, EDGERTON A, et al. New compliant strain gauges for selfsensing dynamic deformation of flapping wings on miniature air vehicle[J]. Smart materials and structures, 2013, 22(8): 085031.
[13] BODEN F, BODENSIEK K, STASICKI B. Application of image pattern correlation for nonintrusive deformation measurements of fast rotating objects on aircrafts[C]//Fourth International Conference on Experimental Mechanics: volume 7522. SPIE, 2010: 789-798.
[14] 马振. 基于 FBG 的机翼分布式测量技术研究[D]. 中南大学, 2017.
[15] ZHU Z, ZHANG M, ZHOU X. A new baseline measurement method for multinode and multibaseline interferometric SAR systems using fiber Bragg gratings[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 58(1): 4-16.
[16] SORIANO-AMAT M, FRAGAS-SÁNCHEZ D, MARTINS H F, et al. Monitoring of a highly flexible aircraft model wing using time-expanded phase-sensitive OTDR[J]. Sensors, 2021, 21(11): 3766.
[17] 李小路, 江月松, 何云涛. 机翼变形的双激光器实时测量原理[J]. 光学技术, 2006, 32(3):333-336.
[18] LI X, XU L, TAN C, et al. Real-time measurement of aerodynamic deformation of wing by laser rangefinder[C]//2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE, 2010: 1581-1584.
[19] 班建华, 汪西, 刘思仁, 等. 组合式测量技术在飞机部件形位检测中的应用[J]. 现代制造工程, 2019(2): 100-104.
[20] ALDAO E, GONZÁLEZ-JORGE H, PÉREZ J. Metrological comparison of LiDAR and photogrammetric systems for deformation monitoring of aerospace parts[J]. Measurement, 2021, 174: 109037.
[21] 季红侠. 飞机大部件对接中的自动测量技术研究与系统开发 [D][D]. 南京: 南京航空航天大学, 2012.
[22] PILCH A, MAHAJAN A, CHU T. Measurement of whole-field surface displacements and strain using a genetic algorithm based intelligent image correlation method[J]. J. Dyn. Sys., Meas., Control, 2004, 126(3): 479-488.
[23] MOLINA-VIEDMA A J, LÓPEZ-ALBA E, FELIPE-SESÉ L, et al. Operational deflection shape extraction from broadband events of an aircraft component using 3D-DIC in magnified images[J]. Shock and Vibration, 2019, 2019.
[24] SOUSA P J, BARROS F, TAVARES P J, et al. Displacement measurement and shape acquisition of an RC helicopter blade using Digital Image Correlation[J]. Procedia Structural Integrity, 2017, 5: 1253-1259.
[25] WU J, YU Z, WANG T, et al. Airplane wing deformation and flight flutter detection method by using three-dimensional speckle image correlation technology[J]. JOSA A, 2017, 34(6): 924-930.
[26] STASICKI B, BODEN F. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system[C]//International Conference on Experimental Mechanics 2014: volume 9302. SPIE, 2015: 412-417.
[27] LI L G, LIANG J, GUO X, et al. Full-field wing deformation measurement scheme for inflight cantilever monoplane based on 3D digital image correlation[J]. Measurement Science and Technology, 2014, 25(6): 065202.
[28] WANG L, BI S, LU X, et al. Deformation measurement of high-speed rotating drone blades based on digital image correlation combined with ring projection transform and orientation codes[J]. Measurement, 2019, 148: 106899.
[29] FAYYAD T M, LEES J M. Application of digital image correlation to reinforced concrete fracture[J]. Procedia Materials Science, 2014, 3: 1585-1590.
[30] LIU Y, SU X, GUO X, et al. A novel concentric circular coded target, and its positioning and identifying method for vision measurement under challenging conditions[J]. Sensors, 2021, 21 (3): 855.
[31] SOUTO JANEIRO A, FERNÁNDEZ LÓPEZ A, CHIMENO MANGUAN M, et al. ThreeDimensional Digital Image Correlation Based on Speckle Pattern Projection for Non-Invasive Vibrational Analysis[J]. Sensors, 2022, 22(24): 9766.
[32] MARR D. A computational investigation into the human representation and processing of visual information[J]. Vision, 1982: 125-126.
[33] WALLACH H, O’CONNELL D. The kinetic depth effect.[J]. Journal of experimental psychology, 1953, 45(4): 205.
[34] 丁少闻, 张小虎, 于起峰, 等. 非接触式三维重建测量方法综述[J]. 激光与光电子学进展, 2017, 54(7): 070003.
[35] 梁磊. 基于双目视觉的小型飞机位姿估计[Z]. 中国民用航空飞行学院, 2021.
[36] LIU Y, GE Z, YUAN Y, et al. Wing deformation measurement using the stereo-vision methods in the presence of camera movements[J]. Aerospace Science and Technology, 2021, 119: 107161.
[37] 赵浚壹. 基于深度相机的无人机三维场景重建技术研究[D]. 桂林电子科技大学, 2021.
[38] ZOLLHÖFER M, NIESSNER M, IZADI S, et al. Real-time non-rigid reconstruction using an RGB-D camera[J]. ACM Transactions on Graphics (ToG), 2014, 33(4): 1-12.
[39] NESBIT P R, HUGENHOLTZ C H. Enhancing UAV–SFM 3D model accuracy in high-relief landscapes by incorporating oblique images[J]. Remote Sensing, 2019, 11(3): 239.
[40] SHANG H, LIU C, WANG R. Measurement methods of 3D shape of large-scale complex surfaces based on computer vision: A review[J]. Measurement, 2022: 111302.
[41] SEITZ S M, CURLESS B, DIEBEL J, et al. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]//2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06): volume 1. IEEE, 2006: 519-528.
[42] 隋婧, 金伟其. 双目立体视觉技术的实现及其进展[J]. 电子技术应用, 2004, 30(10): 4-6.
[43] 赵晨园, 李文新, 张庆熙. 双目视觉的立体匹配算法研究进展[J]. 计算机科学与探索, 2020,14(7): 1104-1113.
[44] DO P N B, NGUYEN Q C. A review of stereo-photogrammetry method for 3-D reconstruction in computer vision[C]//2019 19th International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2019: 138-143.
[45] MATTOCCIA S. Stereo vision: Algorithms and applications[J]. University of Bologna, 2011, 22.
[46] HIRSCHMULLER H, SCHARSTEIN D. Evaluation of stereo matching costs on images with radiometric differences[J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 31(9): 1582-1599.
[47] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60: 91-110.
[48] BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up robust features[J]. Lecture notes in computer science, 2006, 3951: 404-417.
[49] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF [C]//2011 International conference on computer vision. Ieee, 2011: 2564-2571.
[50] HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on pattern analysis and machine intelligence, 2007, 30(2): 328-341.
[51] YAO G, CUI J, DENG K, et al. Robust Harris corner matching based on the quasi-homography transform and self-adaptive window for wide-baseline stereo images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(1): 559-574.
[52] SAN T T, WAR N. Stereo matching algorithm by hill-climbing segmentation[C]//2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). IEEE, 2017: 1-2.
[53] CHU T, RANSON W, SUTTON M A. Applications of digital-image-correlation techniques to experimental mechanics[J]. Experimental mechanics, 1985, 25: 232-244.
[54] SUN D, YANG X, LIU M Y, et al. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8934-8943.
[55] GUO X, YANG K, YANG W, et al. Group-wise correlation stereo network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3273-3282.
[56] ZBONTAR J, LECUN Y, et al. Stereo matching by training a convolutional neural network to compare image patches.[J]. J. Mach. Learn. Res., 2016, 17(1): 2287-2318.
[57] CHEN L, FAN L, CHEN J, et al. A full density stereo matching system based on the combination of CNNs and slanted-planes[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 50(2): 397-408.
[58] LUO W, SCHWING A G, URTASUN R. Efficient deep learning for stereo matching[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 5695-5703.
[59] MAYER N, ILG E, HAUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 4040-4048.
[60] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of the IEEE international conference on computer vision. 2017: 66-75.
[61] ZHANG F, PRISACARIU V, YANG R, et al. Ga-net: Guided aggregation net for end-to-end stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 185-194.
[62] HUANG X, MEI G, ZHANG J, et al. A comprehensive survey on point cloud registration[A]. 2021.
[63] AIGER D, MITRA N J, COHEN-OR D. 4-points congruent sets for robust pairwise surface registration[M]//ACM SIGGRAPH 2008 papers. 2008: 1-10.
[64] RUSU R B, BLODOW N, MARTON Z C, et al. Aligning point cloud views using persistent feature histograms[C]//2008 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2008: 3384-3391.
[65] 顾旭波, 张永举, 张健, 等. 基于 SIFT 算法及阈值筛选的点云配准技术研究[J]. 计算机测量与控制, 2017, 25(12): 247-250.
[66] MELLADO N, AIGER D, MITRA N J. Super 4pcs fast global pointcloud registration via smart indexing[C]//Computer graphics forum: volume 33. Wiley Online Library, 2014: 205-215.
[67] CHEN Y, MEDIONI G. Object modelling by registration of multiple range images[J]. Image and vision computing, 1992, 10(3): 145-155.
[68] MARTULL S, PERIS M, FUKUI K. Realistic CG stereo image dataset with ground truth disparity maps[C]//ICPR workshop TrakMark2012: volume 111. 2012: 117-118.
[69] RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[C]//Proceedings third international conference on 3-D digital imaging and modeling. IEEE, 2001: 145-152.
[70] KHOSHELHAM K. Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 78-91.
[71] ZHU H, GUO B, ZOU K, et al. A review of point set registration: From pairwise registration to groupwise registration[J]. Sensors, 2019, 19(5): 1191.
[72] HE Y, YANG J, LI Z, et al. ICP registration based on 3D point clouds feature descriptor[C]// Twelfth International Conference on Graphics and Image Processing (ICGIP 2020): volume 11720. SPIE, 2021: 196-205.
[73] LU W, WAN G, ZHOU Y, et al. Deepvcp: An end-to-end deep neural network for point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 12-21.
[74] QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.
[75] GOJCIC Z, ZHOU C, WEGNER J D, et al. Learning multiview 3d point cloud registration[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 1759-1769.
[76] KAEHLER A, BRADSKI G. Learning OpenCV 3: computer vision in C++ with the OpenCV library[M]. ” O’Reilly Media, Inc.”, 2016.
[77] HARTLEY R I. Theory and practice of projective rectification[J]. International Journal of Computer Vision, 1999, 35(2): 115.
[78] BOUGUET J Y, PERONA P. Camera calibration from points and lines in dual-space geometry [C]//Proc. 5th European Conf. on Computer Vision. Citeseer, 1998: 2-6.
[79] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International journal of computer vision, 2002, 47: 7-42.
[80] 一颗小树 x. 立体匹配算法[EB/OL]. 2021. https://bbs.huaweicloud.com/blogs/313208.
[81] 吕明哲. 什么是体素 (Voxel)?[EB/OL]. 2021. https://zhuanlan.zhihu.com/p/348563616.
[82] SI H, QIU J, LI Y. A review of point cloud registration algorithms for laser scanners: applications in large-scale aircraft measurement[J]. Applied Sciences, 2022, 12(20): 10247.
[83] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration [C]//2009 IEEE international conference on robotics and automation. IEEE, 2009: 3212-3217.
[84] BELLO S A, YU S, WANG C, et al. Deep learning on 3D point clouds[J]. Remote Sensing, 2020, 12(11): 1729.
[85] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[86] DENG H, BIRDAL T, ILIC S. Ppfnet: Global context aware local features for robust 3d point matching[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 195-205.
[87] AOKI Y, GOFORTH H, SRIVATSAN R A, et al. Pointnetlk: Robust & efficient point cloud registration using pointnet[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 7163-7172.
[88] LUCAS B D. Generalized image matching by the method of differences[M]. Carnegie Mellon University, 1985.
[89] WANG Y, SOLOMON J M. Deep closest point: Learning representations for point cloud registration[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 3523-3532.
[90] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[A]. 2020.
[91] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[92] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[93] SUN J, SHEN Z, WANG Y, et al. LoFTR: Detector-free local feature matching with transformers[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 8922-8931.
[94] Forrest Ding. 【点云局部特征描述子】PFH & FPFH)?[EB/OL]. 2020. https://https://zhuanl an.zhihu.com/p/192343758.
[95] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention– MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015: 234-241.
[96] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[97] GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3d semantic segmentation with submanifold sparse convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 9224-9232.
[98] CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 8958-8966.
修改评论