中文版 | English
题名

深部脑刺激下丘脑视内侧核引发亚低温的机制及对脑缺血损伤保护作用的研究

其他题名
THE MECHANISM OF HYPOTHERMIA EVOKED BY STIMULATION OF MEDIAL PREOPTIC NUCLEUS AND ITS PROTECTION IN CEREBRAL ISCHAEMIA
姓名
姓名拼音
ZHANG Xinpei
学号
12032766
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
侯圣陶
导师单位
神经生物学系
论文答辩日期
2023-05-16
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

脑卒中是一种高致残率和高死亡率的血管性疾病,然而治疗方法十分有限。亚低温对脑卒中具有显著的神经保护作用,但物理体表降温作为现有的低温诱导手段,不仅降温效率低,而且会产生极度不适感,并引起严重的不良反应,如寒战、脏器损伤等,这些都极大地影响了亚低温治疗的 效果并限制了临床上的应用,亟需发现更好的亚低温诱导方法。

恒温动物的体温调节中枢位于下丘脑视前区。研究显示,激活下丘脑视前区 (Preoptic Area, POA) 中负责感受热温度的神经元可以显著降低体温。因此,本研究首先采用化学遗传学的方法,激活视前区中 Vglut2+神经元,这种方式不仅使小鼠核心体温降低到 30℃,而且显著降低了局灶性脑缺血再灌注损伤,并且不会引起寒战等冷应激副反应。在此基础上,本研究首次利用深部脑刺激 (Deep Brain Stimulation, DBS) 技术双侧刺激下丘脑内侧视前核 (Median Preoptic Nucleus, MPN) 区域。通过对刺激电压、频率、持续时间的优化,发现使用 4V, 100Hz, 90us 的参数,能使小鼠核心体温在电刺激 30 分钟后下降至 32-34℃,呈现亚低温状态,而不会引起寒战、血糖升高及去甲肾上腺素升高等冷应激反应。在代谢方面,小鼠表现为氧气消耗量、产热及呼吸交换率降低的低代谢特征。因此,DBS 能够介导小鼠低温低代谢的类蛰眠状态。深部脑刺激 MPN 形成的类蛰眠状态可显著降低小鼠局灶性脑缺血再灌注损伤,表明这种方法潜在的临床应用价值。进一步研究发现,其主要通过激活温敏神经元,实现了亚低温状态的介导。

综上所述,本研究使用深部脑刺激技术,通过双侧刺激下丘脑 MPN 中的温敏神经元诱发了小鼠的亚低温状态。其作为一种治疗手段显著降低了脑缺血再灌注损伤。与传统的物理降温相比,该方法有效避免了寒战等冷应激反应,也消除了潜在的脏器损伤等副作用,为脑卒中的低温治疗提供了新手段。 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] COLLABORATORS GBDLROS, FEIGIN V L, NGUYEN G, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016[J]. New England Journal of Medicine, 2018, 379(25): 2429-2437.
[2] LIU L, WANG D, WONG K S, et al. Stroke and stroke care in China: Huge burden, significant workload, and a national priority[J]. Stroke, 2011, 42(12): 3651 -3654.
[3] VAN DER WORP H B, SENA E S, DONNAN G A, et al. Hypothermia in animal models of acute ischaemic stroke: A systematic review and meta-analysis[J]. Brain, 2007, 130(Pt 12): 3063-3074.
[4] HYPOTHERMIA AFTER CARDIAC ARREST STUDY G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest[J]. New England Journal of Medicine, 2002, 346(8): 549-556.
[5] VAN DER WORP H B, MACLEOD M R, BATH P M, et al. EuroHYP-1: European multicenter, randomized, phase III clinical trial of therapeutic hypothermia plus best medical treatment vs. best medical treatment alone for acute ischemic stroke[J]. International Journal of Stroke, 2014, 9(5): 642-645.
[6] WU C, ZHAO W, AN H, et al. Safety, feasibility, and potential efficacy of intraarterial selective cooling infusion for stroke patients treated with mechanical thrombectomy[J]. Journal of Cerebral Blood Flow and Metabolism, 2018, 38(12): 2251 -2260.
[7] YENARI M, KIM J. Hypothermia for treatment of stroke[J]. Brain Circulation, 2015, 1(1): 14.
[8] POLDERMAN K H. Mechanisms of action, physiological effects, and complications of hypothermia[J]. Critical Care Medicine, 2009, 37(7 Suppl): S186 -202.
[9] YENARI M, KITAGAWA K, LYDEN P, et al. Metabolic downregulation: A key to successful neuroprotection?[J]. Stroke, 2008, 39(10): 2910-2917.
[10] KUCZYNSKI A M, MARZOUGHI S, AL SULTAN A S, et al. Therapeutic hypothermia in acute ischemic stroke-a systematic review and meta-analysis[J]. Current Neurology and Neuroscience Reports, 2020, 20(5): 13.
[11] BUSTO R, DIETRICH W D, GLOBUS M Y, et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury[J]. Journal of Cerebral Blood Flow and Metabolism, 1987, 7(6): 729-738.
[12] LAMB J A, RAJPUT P S, LYDEN P D. Novel method for inducing rapid, controllable therapeutic hypothermia in rats using a perivascular implanted closed -loop cooling circuit[J]. Journal of Neuroscience Methods, 2016, 267: 55-61.
[13] BI M, MA Q, ZHANG S, et al. Local mild hypothermia with thrombolysis for acute ischemic stroke within a 6-h window[J]. Clinical Neurology and Neurosurgery, 2011, 113(9): 768-773.
[14] POLI S, PURRUCKER J, PRIGLINGER M, et al. Induction of cooling with a passive head and neck cooling device: Effects on brain temperature after stroke[J]. Stroke, 2013, 44(3): 708-713.
[15] WANG C H, LIN Y T, CHOU H W, et al. Novel approach for independent control of brain hypothermia and systemic normothermia: Cerebral selective deep hypothermia for refractory cardiac arrest[J]. Journal of Neurointerventional Surgery, 2017, 9(8): e32.
[16] CLARK D L, COLBOURNE F. A simple method to induce focal brain hypothermia in rats[J]. Journal of Cerebral Blood Flow and Metabolism, 2007, 27(1): 115 -122.
[17] CHEN J, LIU L, ZHANG H, et al. Endovascular hypothermia in acute ischemic stroke: Pilot study of selective intra-arterial cold saline infusion[J]. Stroke, 2016, 47(7): 1933-1935.
[18] COLBOURNE F, SUTHERLAND G R, AUER R N. An automated system for regulating brain temperature in awake and freely moving rodents[J]. Journal of Neuroscience Methods, 1996, 67(2): 185-190.
[19] BERNARD S A, BUIST M. Induced hypothermia in critical care medicine: A review[J]. Critical Care Medicine, 2003, 31(7): 2041-2051.
[20] SCHWAB S, SCHWARZ S, SPRANGER M, et al. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction[J]. Stroke, 1998, 29(12): 2461-2466.
[21] SCHWAB S, GEORGIADIS D, BERROUSCHOT J, et al. Feasibility and safety of moderate hypothermia after massive hemispheric infarction[J]. Stroke, 2001, 32(9): 2033-2035.
[22] VALERI C R, FEINGOLD H, CASSIDY G, et al. Hypothermia-induced reversible platelet dysfunction[J]. Annals of Surgery, 1987, 205(2): 175-181.
[23] WOLBERG A S, MENG Z H, MONROE D M, 3RD, et al. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function[J]. Journal of Trauma-Injury, Infection and Critical Care, 2004, 56(6): 1221-1228.
[24] GULUMA K Z, LIU L, HEMMEN T M, et al. Therapeutic hypothermia is associated with a decrease in urine output in acute stroke patients[J]. Resuscitation, 2010, 81(12): 1642-1647.
[25] KURISU K, YENARI M A. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise[J]. Neuropharmacology, 2018, 134(Pt B): 302-309.
[26] LIU K, KHAN H, GENG X, et al. Pharmacological hypothermia: A potential for future stroke therapy?[J]. Neurological Research, 2016, 38(6): 478-490.
[27] MUZZI M, BLASI F, CHIARUGI A. AMP-dependent hypothermia affords protection from ischemic brain injury[J]. Journal of Cerebral Blood Flow and Metabolism, 2013, 33(2): 171-174.
[28] MUZZI M, BLASI F, MASI A, et al. Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia[J]. Journal of Cerebral Blood Flow and Metabolism, 2013, 33(2): 183-190.
[29] BALDWIN B A, INGRAM D L. Effect of heating & cooling the hypothalamus on behavioral thermoregulation in the pig[J]. The Journal of Physiology, 1967, 191(2): 375-392.
[30] SONG K, WANG H, KAMM G B, et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia[J]. Science, 2016, 353(6306): 1393-1398.
[31] TAN C L, COOKE E K, LEIB D E, et al. Warm-sensitive neurons that control body temperature[J]. Cell, 2016, 167(1): 47-59.e15.
[32] KRAUSS J K, LIPSMAN N, AZIZ T, et al. Technology of deep brain stimulation: current status and future directions[J]. Nature Reviews Neurology, 2021, 17(2): 75-87.
[33] POOL J L. Psychosurgery in older people[J]. Journal of the American Geriatrics Society, 1954, 2(7): 456-466.
[34] BENABID A L, POLLAK P, LOUVEAU A, et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease[J]. Applied Neurophysiology, 1987, 50(1-6): 344-346.
[35] TISCH S. Deep brain stimulation in dystonia: Factors contributing to variability in outcome in short and long term follow-up[J]. Current Opinion in Neurology, 2022, 35(4): 510-517.
[36] FIGEE M, RIVA-POSSE P, CHOI K S, et al. Deep brain stimulation for depression[J]. Neurotherapeutics, 2022, 19(4): 1229-1245.
[37] FORMOLO D A, GASPAR J M, MELO H M, et al. Deep brain stimulation for obesity: A review and future directions[J]. Frontiers in Neuroscience, 2019, 13: 323.
[38] RAPINESI C, KOTZALIDIS G D, FERRACUTI S, et al. Brain stimulation in obsessive-compulsive disorder (OCD): A systematic review[J]. Current Neuropharmacology, 2019, 17(8): 787-807.
[39] TAN C L, KNIGHT Z A. Regulation of body temperature by the nervous system[J]. Neuron, 2018, 98(1): 31-48.
[40] ZHANG K X, D'SOUZA S, UPTON B A, et al. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons[J]. Nature, 2020, 585(7825): 420 -425.
[41] ZHANG Z, REIS F, HE Y, et al. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice[J]. Nature Communications, 2020, 11(1): 6378.
[42] KAMM G B, BOFFI J C, ZUZA K, et al. A synaptic temperature sensor for body cooling[J]. Neuron, 2021, 109(20): 3283-3297 e3211.
[43] LUNARDI BACCETTO S, LEHMANN C. Microcirculatory changes in experimental models of stroke and CNS-injury induced immunodepression[J]. International Journal of Molecular Sciences, 2019, 20(20): 5184.
[44] YU S H, QUALLS-CREEKMORE E, REZAI-ZADEH K, et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis[J]. Journal of Neuroscience, 2016, 36(18): 5034-5046.
[45] MIYAZAWA T, TAMURA A, FUKUI S, et al. Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies[J]. Neurological Research, 2003, 25(5): 457-464.
[46] TAKAHASHI T M, SUNAGAWA G A, SOYA S, et al. A discrete neuronal circuit induces a hibernation-like state in rodents[J]. Nature, 2020, 583(7814): 109-114.
[47] MORRISON S F, NAKAMURA K. Central Mechanisms for Thermoregulation[J]. Annual Review of Physiology, 2019, 81: 285-308.
[48] CHEN Y S, SHU K, KANG H C. Deep brain stimulation in Alzheimer's disease: Targeting the nucleus basalis of meynert[J]. Journal of Alzheimer’s Disease, 2021, 80(1): 53-70.
[49] ZHOU Q, FU X, XU J, et al. Hypothalamic warm-sensitive neurons require TRPC4 channel for detecting internal warmth and regulating body temperature in mice[J]. Neuron, 2023, 111(3): 387-404 e388.
[50] HRVATIN S, SUN S M, WILCOX O F, et al. Neurons that regulate mouse torpor[J]. Nature, 2020, 583(7814): 115-121.
[51]ELIAS G J B, NAMASIVAYAM A A, LOZANO A M. Deep brain stimulation for stroke: Current uses and future directions[J]. Brain Stimulation, 2018, 11(1): 3-28.
[52] CONTI B, SANCHEZ-ALAVEZ M, WINSKY-SOMMERER R, et al. Transgenic mice with a reduced core body temperature have an increased life span[J]. Science, 2006, 314(5800): 825-828.
[53] THORNHILL J, HALVORSON I. Activation of shivering and non-shivering thermogenesis by electrical stimulation of the lateral and medial preoptic areas[J]. Brain Research, 1994, 656(2): 367-374.
[54] GINSBERG M D, BUSTO R. Combating hyperthermia in acute stroke: A significant clinical concern[J]. Stroke, 1998, 29(2): 529-534.
[55] ZHAO Z D, YANG W Z, GAO C C, et al. A hypothalamic circuit that controls body temperature (vol 114, pg 2042, 2017)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): E1755-E1755.
[56] KROEGER D, ABSI G, GAGLIARDI C, et al. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice[J]. Nature Communications, 2018, 9(1): 4129.
[57] BEKAR L, LIBIONKA W, TIAN G F, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor[J]. Nature Medicine, 2008, 14(1): 75-80.
[58] SHINTANI M, TAMURA Y, MONDEN M, et al. Characterization of N-6-cyclohexyladenosine-induced hypothermia in Syrian hamsters[J]. Journal of Pharmacological Sciences, 2005, 97(3): 451-454.
[59] TUPONE D, MADDEN C J, MORRISON S F. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat[J]. The Journal of Neuroscience, 2013, 33(36): 14512-14525.
[60] ALLEN W E, DENARDO L A, CHEN M Z, et al. Thirst-associated preoptic neurons encode an aversive motivational drive[J]. Science, 2017, 357(6356): 1149-1155.
[61] ZHANG Z, SHAN L, WANG Y, et al. Primate preoptic neurons drive hypothermia and cold defense[J]. Innovation (Cambridge (Mass)), 2023, 4(1): 100358.
[62] ZARZYCKI M Z, DOMITRZ I. Stimulation-induced side effects after deep brain stimulation - a systematic review[J]. Acta Neuropsychiatrica, 2020, 32(2): 57-64.

所在学位评定分委会
生物学
国内图书分类号
Q426
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544723
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
张馨培. 深部脑刺激下丘脑视内侧核引发亚低温的机制及对脑缺血损伤保护作用的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032766-张馨培-生物系.pdf(4157KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张馨培]的文章
百度学术
百度学术中相似的文章
[张馨培]的文章
必应学术
必应学术中相似的文章
[张馨培]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。