中文版 | English
题名

光纤形态传感系统研究

其他题名
RESEARCH ON FIBER OPTIC SHAPE SENSING SYSTEM
姓名
姓名拼音
KONG Lingyu
学号
12132007
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
宋章启
导师单位
创新创业学院
论文答辩日期
2023-05-22
论文提交日期
2023-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

海底滑坡监测于自然灾害机理研究和保护人类活动与财产安全都有重要意义,而目前仍没有行之有效的实时监测手段。光纤形态传感器因其具有灵敏度高、耐腐蚀、耐高压,低能耗等优点被应用于结构形态传感领域。

本文针对海底滑坡监测研制了一体自融式光纤形态传感器系统。论文首先介绍了光纤形态传感系统的组成以及基于光纤光栅串的光纤形态传感原理和恢复算法,采样了标准曲率模块对每个传感点进行了标定。开发了基于树莓派的水下管理系统。最后对整个系统进行了实验研究,全向形变测试精度达到单方向弯曲40cm内,最大形态恢复误差小于1.6%。港池测试中系统观测到了5次贯入动作,记录了土层静止状态下90分钟的数据,经过形态恢复传感器首尾两端欧式距离尾端标准差为61μm,相对未弯曲时方向夹角的标准差为0.06°。综合试验结果表明该系统各项功能工作正常,能够有效记录各传感器数据,形态传感器工作稳定,达到设计要求。

其他摘要

The underwater landslide monitoring is of great significance in the research and protection of human activities and property security in natural disaster mechanisms, and there are still no effective real -time monitoring methods. The optical fiber morphology sensor is applied to the field of structural morphology due to the advantages of high sensitivity, corrosion resistance, high pressure resistance, and low energy consumption.

In this paper, an integrated optical fiber shape sensor system is developed for submarine landslide monitoring. The paper first introduces the composition of the fiber optic shape sensing system, the principle of fiber optic shape sensing and the recovery algorithm based on the fiber grating string, and samples the standard curvature module to calibrate each sensing point. Developed an underwater management system based on Raspberry Pi. Finally, the whole system is experimentally studied, and the accuracy of the omnidirectional deformation test reaches within 40cm of bending in one direction, and the maximum shape recovery error is less than 1.6\%. During the harbor basin test, the system observed 5 penetration actions, and recorded 90 minutes of data in the static state of the soil layer. After the form recovery, the standard deviation of the Euclidean distance between the first and last ends of the sensor is 61 μm, and the standard deviation of the angle between the direction and the direction when it is not bent The difference is 0.06°. The comprehensive test results show that all functions of the system work normally, can effectively record the data of each sensor, and the shape sensor works stably, meeting the design requirements.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1]年廷凯, 沈月强, 郑德凤, 等. 海底滑坡链式灾害研究进展[J]. 工程地质学报, 2021, 29(6):19.
[2] 宋晓帅, 孙志文, 朱超祁, 等. 深海滑坡研究进展[J]. 海洋地质与第四纪地质, 2022, 42(1):14.
[3] 王超. 基于光纤光栅传感器的软体机械臂三维形状检测方法[J]. 化工自动化及仪表, 2015(10): 4.
[4] 张新华. 基于光纤光栅的结构形状传感技术研究[D]. 南京航空航天大学.
[5] 赵士元, 崔继文, 陈勐勐. 光纤形状传感技术综述[J]. 光学精密工程, 2020, 28(1).
[6] MOE A, AMINOSSADATI S M, KIZIL M S, et al. Recent Developments in Fibre Optic ShapeSensing[J]. Measurement, 2018: S0263224118305608-.
[7] 廖光萌何建新朱玉琴王莞. 光纤光栅传感器及其应用[J]. 装备环境工程, 2022, 19(11):142-149.
[8] 杨洋, 孔令宇, 蔡伟康, 等. 光纤形态传感器研究进展[J]. 半导体光电, 2022, 43(4): 13.
[9] ZHANG X, SONG Y, SUN G, et al. Fiber Bragg grating curvature sensor based on flexiblecomposite matrix[J]. Infrared and Laser Engineering, 2019, 48(2).
[10] KIM D H, KOO B. Directional Bending Sensor based on Triangular Shaped Fiber Bragg Grat-ings[J]. Optics Express, 2020, 28(5).
[11] 李爱群, 周广东. 光纤 Bragg 光栅传感器测试技术研究进展与展望 (￿): 应变、温度测试[J].东南大学学报: 自然科学版, 2009.
[12] ABAYAZID M, MEMBER S, IEEE, et al. Integrating Deflection Models and Image Feedbackfor Real-Time Flexible Needle Steering[J]. IEEE Transactions on Robotics, 2013, 29(2): 542-553.
[13] LIU H L, ZHU Z W, ZHENG Y, et al. Experimental study on an FBG strain sensor[J]. OpticalFiber Technology, 2018, 40(JAN.): 144-151.
[14] RYU S C, DUPONT P E. FBG-based shape sensing tubes for continuum robots[C]//Roboticsand Automation (ICRA), 2014 IEEE International Conference on. 2014.
[15] WOLF A, DOSTOVALOV A, BRONNIKOV K, et al. Arrays of fiber Bragg gratings selectivelyinscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. OpticsExpress, 2019, 27(10): 13978.
[16] MOORE J P, ROGGE M D. Shape sensing using multi-core fiber optic cable and parametriccurve solutions[J]. Optics Express, 2012, 20(3): 2967-2973.
[17] WESTBROOK P S, KREMP T, FEDER K S, et al. Continuous Multicore Optical Fiber GratingArrays for Distributed Sensing Applications[J]. Journal of Lightwave Technology, 2017, PP(6):1-1.66参考文献
[18] FLORIS I, MADRIGAL J, SALES S, et al. Twisting measurement and compensation of opticalshape sensor based on spun multicore fiber[J]. Mechanical systems and signal processing, 2020,140(Jun.): 106700.1-106700.9.
[19] KHAN F, DENASI A, BARRERA D, et al. Multi-Core Optical Fibers With Bragg Gratings asShape Sensor for Flexible Medical Instruments[J]. IEEE sensors journal, 2019, 19(14): 5878-5884.
[20] Fiber optical shape sensing of flexible instruments for endovascular navigation: volume 14[M].Springer International Publishing, 2019: 2137-2145.
[21] YI X, QIAN J, SHEN L, et al. An Innovative 3D Colonoscope Shape Sensing Sensor Based onFBG Sensor Array[C]//International Conference on Information Acquisition. 2007.
[22] JIANG B, GAO W, KACHER D, et al. Kalman filter-based EM-optical sensor fusion for needledeflection estimation[J]. International Journal of Computer Assisted Radiology and Surgery,2018.
[23] Kalman-Filter-Based, Dynamic 3-D Shape Reconstruction for Steerable Needles With FiberBragg Gratings in Multicore Fibers: volume 38[M]. IEEE, 2022: 2262-2275.
[24] SEFATI S, HEGEMAN R, ALAMBEIGI F, et al. FBG-Based Position Estimation of Highly De-formable Continuum Manipulators: Model-Dependent vs. Data-Driven Approaches[Z]. 2018.
[25] 黄崇武. 基于光纤应变的海底电缆形状传感技术研究[D]. 华北电力大学.
[26] 朱晓锦, 季玲晓, 张合生, 等. 基于空间正交曲率信息的三维曲线重构方法分析[J]. 应用基础与工程科学学报, 2011, 19(2): 9.
[27] 肖海, 章亚男, 沈林勇, 等. 光纤光栅曲线重建算法中的曲率连续化研究[J]. 仪器仪表学报, 2016, 37(5): 7.
[28] CHENG, L. K, DANKELMAN, et al. Error Analysis of FBG-Based Shape Sensors for MedicalNeedle Tracking[J]. IEEE/ASME transactions on mechatronics: A joint publication of the IEEEIndustrial Electronics Society and the ASME Dynamic Systems and Control Division, 2014, 19(5): 1523-1531.
[29] ROESTHUIS R J, KEMP M, VAN J J, den Dobbelsteen, et al. Three-Dimensional Needle ShapeReconstruction Using an Array of Fiber Bragg Grating Sensors[J]. IEEE/ASME Transactionson Mechatronics, 2014, 19(4): 1115-1126.
[30] SEIFABADI R, GOMEZ E E, AALAMIFAR F, et al. Real-time tracking of a bevel-tip needlewith varying insertion depth: Toward teleoperated MRI-guided needle steering[J]. EEE/RSJInternational Conference on Intelligent Robots and Systems, 2013.
[31] BISHOP R L. There is More than One Way to Frame a Curve[J]. The American mathematicalmonthly, 1975, 82(3): 246-.
[32] VADDADI V, PARNE S R, AFZULPURKAR S, et al. Design and development of pressuresensor based on Fiber Bragg Grating (FBG) for ocean applications[J]. The European PhysicalJournal Applied Physics, 2020, 90(3): -.
[33] TARI, HAFEZ. On the parametric large deflection study of Euler–Bernoulli cantilever beamssubjected to combined tip point loading[J]. International Journal of Non-Linear Mechanics,2013, 49: 90-99.67参考文献
[34] BROJAN M, CEBRON M, KOSEL F. Large deflections of non-prismatic nonlinearly elasticcantilever beams subjected to non-uniform continuous load and a concentrated load at the freeend[J]. Acta Mechanica Sinica, 2012(03): 863-869.
[35] LAN C C. Analysis of large-displacement compliant mechanisms using an incremental lin-earization approach[J]. Mechanism & Machine Theory, 2008, 43(5): 641-658.
[36] TOLOU N, HERDER J L. A Seminalytical Approach to Large Deflections in Compliant Beamsunder Point Load[J]. Mathematical Problems in Engineering, 2009, 2009: 266-287.
[37] 杨亚平, 王先. 计算梁大挠度变形的数值积分法[J]. 青海大学学报(自然科学版), 1998(6): 17-22.
[38] 陈英杰. 大挠度悬臂梁的计算[J]. 燕山大学学报, 2003, 27(3): 3.
[39] 赵则昂, 赵则昂, 邓宗白, 等. 悬臂梁大挠度变形的近似估计法[J]. 力学与实践, 2014, 36(3): 5.
[40] 胡辉. 伽辽金法在悬臂梁大挠度问题中的应用[J]. 力学与实践, 1996, 18(002): 61-62.
[41] SUSHANTA G, NATH S K. Large deflection analysis of curved beam problem with varyingcurvature and moving boundaries[J]. Engineering Science and Technology, an InternationalJournal, 2018, 21(3): 408-420.
[42] LIMING, DAI, KAI, et al. Nonlinear Behavior Characterization of a 3-Layer Laminated Can-tilever Beam System[J]. Nonlinear Engineering, 2014, 3(2): 57-69.
[43] 李银山, 谢晨, 霍树浩, 等. 集中载荷作用下大挠度悬臂梁的计算机仿真[Z]. 2021.
[44] GAO F, LIAO W H, WU X. Being gradually softened approach for solving large deflection ofcantilever beam subjected to distributed and tip loads[J]. Mechanism and Machine Theory: Dy-namics of Machine Systems Gears and Power Trandmissions Robots and Manipulator SystemsComputer-Aided Design Methods, 2022(174-): 17

所在学位评定分委会
材料与化工
国内图书分类号
TN212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544725
专题创新创业学院
推荐引用方式
GB/T 7714
孔令宇. 光纤形态传感系统研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132007-孔令宇-创新创业学院.(36613KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孔令宇]的文章
百度学术
百度学术中相似的文章
[孔令宇]的文章
必应学术
必应学术中相似的文章
[孔令宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。