[1]年廷凯, 沈月强, 郑德凤, 等. 海底滑坡链式灾害研究进展[J]. 工程地质学报, 2021, 29(6):19.
[2] 宋晓帅, 孙志文, 朱超祁, 等. 深海滑坡研究进展[J]. 海洋地质与第四纪地质, 2022, 42(1):14.
[3] 王超. 基于光纤光栅传感器的软体机械臂三维形状检测方法[J]. 化工自动化及仪表, 2015(10): 4.
[4] 张新华. 基于光纤光栅的结构形状传感技术研究[D]. 南京航空航天大学.
[5] 赵士元, 崔继文, 陈勐勐. 光纤形状传感技术综述[J]. 光学精密工程, 2020, 28(1).
[6] MOE A, AMINOSSADATI S M, KIZIL M S, et al. Recent Developments in Fibre Optic ShapeSensing[J]. Measurement, 2018: S0263224118305608-.
[7] 廖光萌何建新朱玉琴王莞. 光纤光栅传感器及其应用[J]. 装备环境工程, 2022, 19(11):142-149.
[8] 杨洋, 孔令宇, 蔡伟康, 等. 光纤形态传感器研究进展[J]. 半导体光电, 2022, 43(4): 13.
[9] ZHANG X, SONG Y, SUN G, et al. Fiber Bragg grating curvature sensor based on flexiblecomposite matrix[J]. Infrared and Laser Engineering, 2019, 48(2).
[10] KIM D H, KOO B. Directional Bending Sensor based on Triangular Shaped Fiber Bragg Grat-ings[J]. Optics Express, 2020, 28(5).
[11] 李爱群, 周广东. 光纤 Bragg 光栅传感器测试技术研究进展与展望 (): 应变、温度测试[J].东南大学学报: 自然科学版, 2009.
[12] ABAYAZID M, MEMBER S, IEEE, et al. Integrating Deflection Models and Image Feedbackfor Real-Time Flexible Needle Steering[J]. IEEE Transactions on Robotics, 2013, 29(2): 542-553.
[13] LIU H L, ZHU Z W, ZHENG Y, et al. Experimental study on an FBG strain sensor[J]. OpticalFiber Technology, 2018, 40(JAN.): 144-151.
[14] RYU S C, DUPONT P E. FBG-based shape sensing tubes for continuum robots[C]//Roboticsand Automation (ICRA), 2014 IEEE International Conference on. 2014.
[15] WOLF A, DOSTOVALOV A, BRONNIKOV K, et al. Arrays of fiber Bragg gratings selectivelyinscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. OpticsExpress, 2019, 27(10): 13978.
[16] MOORE J P, ROGGE M D. Shape sensing using multi-core fiber optic cable and parametriccurve solutions[J]. Optics Express, 2012, 20(3): 2967-2973.
[17] WESTBROOK P S, KREMP T, FEDER K S, et al. Continuous Multicore Optical Fiber GratingArrays for Distributed Sensing Applications[J]. Journal of Lightwave Technology, 2017, PP(6):1-1.66参考文献
[18] FLORIS I, MADRIGAL J, SALES S, et al. Twisting measurement and compensation of opticalshape sensor based on spun multicore fiber[J]. Mechanical systems and signal processing, 2020,140(Jun.): 106700.1-106700.9.
[19] KHAN F, DENASI A, BARRERA D, et al. Multi-Core Optical Fibers With Bragg Gratings asShape Sensor for Flexible Medical Instruments[J]. IEEE sensors journal, 2019, 19(14): 5878-5884.
[20] Fiber optical shape sensing of flexible instruments for endovascular navigation: volume 14[M].Springer International Publishing, 2019: 2137-2145.
[21] YI X, QIAN J, SHEN L, et al. An Innovative 3D Colonoscope Shape Sensing Sensor Based onFBG Sensor Array[C]//International Conference on Information Acquisition. 2007.
[22] JIANG B, GAO W, KACHER D, et al. Kalman filter-based EM-optical sensor fusion for needledeflection estimation[J]. International Journal of Computer Assisted Radiology and Surgery,2018.
[23] Kalman-Filter-Based, Dynamic 3-D Shape Reconstruction for Steerable Needles With FiberBragg Gratings in Multicore Fibers: volume 38[M]. IEEE, 2022: 2262-2275.
[24] SEFATI S, HEGEMAN R, ALAMBEIGI F, et al. FBG-Based Position Estimation of Highly De-formable Continuum Manipulators: Model-Dependent vs. Data-Driven Approaches[Z]. 2018.
[25] 黄崇武. 基于光纤应变的海底电缆形状传感技术研究[D]. 华北电力大学.
[26] 朱晓锦, 季玲晓, 张合生, 等. 基于空间正交曲率信息的三维曲线重构方法分析[J]. 应用基础与工程科学学报, 2011, 19(2): 9.
[27] 肖海, 章亚男, 沈林勇, 等. 光纤光栅曲线重建算法中的曲率连续化研究[J]. 仪器仪表学报, 2016, 37(5): 7.
[28] CHENG, L. K, DANKELMAN, et al. Error Analysis of FBG-Based Shape Sensors for MedicalNeedle Tracking[J]. IEEE/ASME transactions on mechatronics: A joint publication of the IEEEIndustrial Electronics Society and the ASME Dynamic Systems and Control Division, 2014, 19(5): 1523-1531.
[29] ROESTHUIS R J, KEMP M, VAN J J, den Dobbelsteen, et al. Three-Dimensional Needle ShapeReconstruction Using an Array of Fiber Bragg Grating Sensors[J]. IEEE/ASME Transactionson Mechatronics, 2014, 19(4): 1115-1126.
[30] SEIFABADI R, GOMEZ E E, AALAMIFAR F, et al. Real-time tracking of a bevel-tip needlewith varying insertion depth: Toward teleoperated MRI-guided needle steering[J]. EEE/RSJInternational Conference on Intelligent Robots and Systems, 2013.
[31] BISHOP R L. There is More than One Way to Frame a Curve[J]. The American mathematicalmonthly, 1975, 82(3): 246-.
[32] VADDADI V, PARNE S R, AFZULPURKAR S, et al. Design and development of pressuresensor based on Fiber Bragg Grating (FBG) for ocean applications[J]. The European PhysicalJournal Applied Physics, 2020, 90(3): -.
[33] TARI, HAFEZ. On the parametric large deflection study of Euler–Bernoulli cantilever beamssubjected to combined tip point loading[J]. International Journal of Non-Linear Mechanics,2013, 49: 90-99.67参考文献
[34] BROJAN M, CEBRON M, KOSEL F. Large deflections of non-prismatic nonlinearly elasticcantilever beams subjected to non-uniform continuous load and a concentrated load at the freeend[J]. Acta Mechanica Sinica, 2012(03): 863-869.
[35] LAN C C. Analysis of large-displacement compliant mechanisms using an incremental lin-earization approach[J]. Mechanism & Machine Theory, 2008, 43(5): 641-658.
[36] TOLOU N, HERDER J L. A Seminalytical Approach to Large Deflections in Compliant Beamsunder Point Load[J]. Mathematical Problems in Engineering, 2009, 2009: 266-287.
[37] 杨亚平, 王先. 计算梁大挠度变形的数值积分法[J]. 青海大学学报(自然科学版), 1998(6): 17-22.
[38] 陈英杰. 大挠度悬臂梁的计算[J]. 燕山大学学报, 2003, 27(3): 3.
[39] 赵则昂, 赵则昂, 邓宗白, 等. 悬臂梁大挠度变形的近似估计法[J]. 力学与实践, 2014, 36(3): 5.
[40] 胡辉. 伽辽金法在悬臂梁大挠度问题中的应用[J]. 力学与实践, 1996, 18(002): 61-62.
[41] SUSHANTA G, NATH S K. Large deflection analysis of curved beam problem with varyingcurvature and moving boundaries[J]. Engineering Science and Technology, an InternationalJournal, 2018, 21(3): 408-420.
[42] LIMING, DAI, KAI, et al. Nonlinear Behavior Characterization of a 3-Layer Laminated Can-tilever Beam System[J]. Nonlinear Engineering, 2014, 3(2): 57-69.
[43] 李银山, 谢晨, 霍树浩, 等. 集中载荷作用下大挠度悬臂梁的计算机仿真[Z]. 2021.
[44] GAO F, LIAO W H, WU X. Being gradually softened approach for solving large deflection ofcantilever beam subjected to distributed and tip loads[J]. Mechanism and Machine Theory: Dy-namics of Machine Systems Gears and Power Trandmissions Robots and Manipulator SystemsComputer-Aided Design Methods, 2022(174-): 17
修改评论