[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] ZENG X, WARD S E, ZHOU J, et al. Liver Immune Microenvironment and Metastasis from Colorectal Cancer-Pathogenesis and Therapeutic Perspectives[J]. Cancers (Basel), 2021, 13(10)
[3] ZHOU H, LIU Z, WANG Y, et al. Colorectal liver metastasis: molecular mechanism and interventional therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 70.
[4] CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA Cancer J Clin, 2022, 72(4): 372-401.
[5] WU Y, YANG S, MA J, et al. Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level[J]. Cancer Discov, 2022, 12(1): 134-153.
[6] LIU J, DANG H, WANG X W. The significance of intertumor and intratumor heterogeneity in liver cancer[J]. Exp Mol Med, 2018, 50(1): e416.
[7] YUAN Y, JIANG Y C, SUN C K, et al. Role of the tumor microenvironment in tumor progression and the clinical applications (Review)[J]. Oncol Rep, 2016, 35(5): 2499-2515.
[8] PAN Y, YU Y, WANG X, et al. Tumor-Associated Macrophages in Tumor Immunity[J]. Front Immunol, 2020, 11: 583084.
[9] ZHANG L, LI Z, SKRZYPCZYNSKA K M, et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer[J]. Cell, 2020, 181(2): 442-459 e429.
[10] SUN K, XU R, MA F, et al. scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory[J]. Nat Commun, 2022, 13(1): 4943.
[11] CHOW A, SCHAD S, GREEN M D, et al. Tim-4(+) cavity-resident macrophages impair anti-tumor CD8(+) T cell immunity[J]. Cancer Cell, 2021, 39(7): 973-988 e979.
[12] WYNN T A, CHAWLA A, POLLARD J W. Macrophage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455.
[13] PERDIGUERO E G, GEISSMANN F. The development and maintenance of resident macrophages[J]. Nat Immunol, 2016, 17(1): 2-8.
[14] GAUTIER E L, SHAY T, MILLER J, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages[J]. Nat Immunol, 2012, 13(11): 1118-1128.
[15] HUME D A, SUMMERS K M, REHLI M. Transcriptional Regulation and Macrophage Differentiation[J]. Microbiol Spectr, 2016, 4(3)
[16] CASSETTA L, POLLARD J W. Targeting macrophages: therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 17(12): 887-904.
[17] BOUTILIER A J, ELSAWA S F. Macrophage Polarization States in the Tumor Microenvironment[J]. Int J Mol Sci, 2021, 22(13)
[18] WU K, LIN K, LI X, et al. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment[J]. Front Immunol, 2020, 11: 1731.
[19] MUKHERJEE S, SONANINI D, MAURER A, et al. The yin and yang of imaging tumor associated macrophages with PET and MRI[J]. Theranostics, 2019, 9(25): 7730-7748.
[20] CHEN Z, WU A. Progress and challenge for computational quantification of tissue immune cells[J]. Brief Bioinform, 2021, 22(5)
[21] CASAMASSIMI A, FEDERICO A, RIENZO M, et al. Transcriptome Profiling in Human Diseases: New Advances and Perspectives[J]. Int J Mol Sci, 2017, 18(8)
[22] KUKSIN M, MOREL D, AGLAVE M, et al. Applications of single-cell and bulk RNA sequencing in onco-immunology[J]. Eur J Cancer, 2021, 149: 193-210.
[23] THIND A S, MONGA I, THAKUR P K, et al. Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology[J]. Brief Bioinform, 2021, 22(6)
[24] FINOTELLO F, TRAJANOSKI Z. Quantifying tumor-infiltrating immune cells from transcriptomics data[J]. Cancer Immunol Immunother, 2018, 67(7): 1031-1040.
[25] ARAN D, SIROTA M, BUTTE A J. Systematic pan-cancer analysis of tumour purity[J]. Nat Commun, 2015, 6: 8971.
[26] ARAN D, HU Z, BUTTE A J. xCell: digitally portraying the tissue cellular heterogeneity landscape[J]. Genome Biol, 2017, 18(1): 220.
[27] BECHT E, GIRALDO N A, LACROIX L, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression[J]. Genome Biol, 2016, 17(1): 218.
[28] STURM G, FINOTELLO F, PETITPREZ F, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology[J]. Bioinformatics, 2019, 35(14): i436-i445.
[29] NEWMAN A M, LIU C L, GREEN M R, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5): 453-457.
[30] NEWMAN A M, STEEN C B, LIU C L, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry[J]. Nat Biotechnol, 2019, 37(7): 773-782.
[31] FINOTELLO F, MAYER C, PLATTNER C, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data[J]. Genome Med, 2019, 11(1): 34.
[32] HAO Y, YAN M, HEATH B R, et al. Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares[J]. PLoS Comput Biol, 2019, 15(5): e1006976.
[33] WANG X, PARK J, SUSZTAK K, et al. Bulk tissue cell type deconvolution with multisubject single-cell expression reference[J]. Nat Commun, 2019, 10(1): 380.
[34] LIU C, ZHANG Y, LI X, et al. Ovarian cancer-specific dysregulated genes with prognostic significance: scRNA-Seq with bulk RNA-Seq data and experimental validation[J]. Ann N Y Acad Sci, 2022, 1512(1): 154-173.
[35] QU X, ZHAO X, LIN K, et al. M2-like tumor-associated macrophage-related biomarkers to construct a novel prognostic signature, reveal the immune landscape, and screen drugs in hepatocellular carcinoma[J]. Front Immunol, 2022, 13: 994019.
[36] CASANOVA-ACEBES M, DALLA E, LEADER A M, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells[J]. Nature, 2021, 595(7868): 578-584.
[37] ZHANG Y, WANG D, PENG M, et al. Single-cell RNA sequencing in cancer research[J]. J Exp Clin Cancer Res, 2021, 40(1): 81.
[38] HONG M, TAO S, ZHANG L, et al. RNA sequencing: new technologies and applications in cancer research[J]. J Hematol Oncol, 2020, 13(1): 166.
[39] SATHE A, GRIMES S M, LAU B T, et al. Single-Cell Genomic Characterization Reveals the Cellular Reprogramming of the Gastric Tumor Microenvironment[J]. Clin Cancer Res, 2020, 26(11): 2640-2653.
[40] CHENG S, LI Z, GAO R, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells[J]. Cell, 2021, 184(3): 792-809 e723.
[41] ZHANG L, YU X, ZHENG L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018, 564(7735): 268-272.
[42] CHEN J, RENIA L, GINHOUX F. Constructing cell lineages from single-cell transcriptomes[J]. Mol Aspects Med, 2018, 59: 95-113.
[43] TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32(4): 381-386.
[44] QIU X, MAO Q, TANG Y, et al. Reversed graph embedding resolves complex singlecell trajectories[J]. Nat Methods, 2017, 14(10): 979-982.
[45] EFREMOVA M, VENTO-TORMO M, TEICHMANN S A, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligandreceptor complexes[J]. Nat Protoc, 2020, 15(4): 1484-1506.
[46] JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat[J]. Nat Commun, 2021, 12(1): 1088.
[47] TAN W C C, NERURKAR S N, CAI H Y, et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy[J]. Cancer Commun (Lond), 2020, 40(4): 135-153.
[48] BLACK S, PHILLIPS D, HICKEY J W, et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies[J]. Nat Protoc, 2021, 16(8): 3802-3835.
[49] XU Y, SU G H, MA D, et al. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence[J]. Signal Transduct Target Ther, 2021, 6(1): 312.
[50] KUETT L, CATENA R, OZCAN A, et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment[J]. Nat Cancer, 2022, 3(1): 122-133.
[51] RAO A, BARKLEY D, FRANCA G S, et al. Exploring tissue architecture using spatial transcriptomics[J]. Nature, 2021, 596(7871): 211-220.
[52] LODEWIJK I, NUNES S P, HENRIQUE R, et al. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy[J]. Clin Epigenetics, 2021, 13(1): 63.
[53] SAEED S, QUINTIN J, KERSTENS H H, et al. Epigenetic programming of monocyteto-macrophage differentiation and trained innate immunity[J]. science, 2014, 345(6204): 1251086.
[54] LOCATI M, CURTALE G, MANTOVANI A. Diversity, Mechanisms, and Significance of Macrophage Plasticity[J]. Annu Rev Pathol, 2020, 15: 123-147.
[55] TU M, KLEIN L, ESPINET E, et al. TNF-alpha-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer[J]. Nat Cancer, 2021, 2(11): 1185-1203.
[56] ZHANG Q, CHENG S, WANG Y, et al. Interrogation of the microenvironmental landscape in spinal ependymomas reveals dual functions of tumor-associated macrophages[J]. Nat Commun, 2021, 12(1): 6867.
[57] SCHMIDT D R, PATEL R, KIRSCH D G, et al. Metabolomics in cancer research and emerging applications in clinical oncology[J]. CA Cancer J Clin, 2021, 71(4): 333-358.
[58] UMEMURA N, SUGIMOTO M, KITOH Y, et al. Metabolomic profiling of tumorinfiltrating macrophages during tumor growth[J]. Cancer Immunol Immunother, 2020, 69(11): 2357-2369.
[59] DIAS A S, ALMEIDA C R, HELGUERO L A, et al. Metabolic Reprogramming of Breast Tumor-Educated Macrophages Revealed by NMR Metabolomics[J]. Cancers (Basel), 2023, 15(4)
[60] MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820.
[61] LI X, LIU R, SU X, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J]. Mol Cancer, 2019, 18(1): 177.
[62] KATZENELENBOGEN Y, SHEBAN F, YALIN A, et al. Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer[J]. Cell, 2020, 182(4): 872-885 e819.
[63] BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396.
[64] GUERRIERO J L, SOTAYO A, PONICHTERA H E, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages[J]. Nature, 2017, 543(7645): 428-432.
[65] ZANG X, ZHANG X, ZHAO X, et al. Targeted Delivery of miRNA 155 to Tumor Associated Macrophages for Tumor Immunotherapy[J]. Mol Pharm, 2019, 16(4): 1714-1722.
[66] SHI W, WANG Y, ZHANG C, et al. Isolation and purification of immune cells from the liver[J]. Int Immunopharmacol, 2020, 85: 106632.
[67] LYNCH R W, HAWLEY C A, PELLICORO A, et al. An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias[J]. J Leukoc Biol, 2018, 104(3): 579-586.
[68] CHEN Z, QUAN L, HUANG A, et al. seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-Seq Data[J]. Front Immunol, 2018, 9: 1286.
[69] MIAO Y R, XIA M, LUO M, et al. ImmuCellAI-mouse: a tool for comprehensive prediction of mouse immune cell abundance and immune microenvironment depiction[J]. Bioinformatics, 2022, 38(3): 785-791.
[70] PETITPREZ F, LEVY S, SUN C M, et al. The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression[J]. Genome Med, 2020, 12(1): 86.
[71] HEIJSTEK M W, KRANENBURG O, BOREL RINKES I H. Mouse models of colorectal cancer and liver metastases[J]. Dig Surg, 2005, 22(1-2): 16-25.
[72] LEE W Y, HONG H K, HAM S K, et al. Comparison of colorectal cancer in differentially established liver metastasis models[J]. Anticancer Res, 2014, 34(7): 3321-3328.
[73] BONNARDEL J, T'JONCK W, GAUBLOMME D, et al. Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche[J]. Immunity, 2019, 51(4): 638-654 e639.
[74] YEOH W J, VU V P, KREBS P. IL-33 biology in cancer: An update and future perspectives[J]. Cytokine, 2022, 157: 155961.
[75] VAN DEN EYNDEN G G, MAJEED A W, ILLEMANN M, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications[J]. Cancer Res, 2013, 73(7): 2031-2043.
[76] CINER A T, JONES K, MUSCHEL R J, et al. The unique immune microenvironment of liver metastases: Challenges and opportunities[J]. Semin Cancer Biol, 2021, 71: 143-156.
[77] KINOSHITA M, UCHIDA T, SATO A, et al. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice[J]. J Hepatol, 2010, 53(5): 903-910.
[78] YU J, GREEN M D, LI S, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J]. Nat Med, 2021, 27(1): 152-164
修改评论