[1] 刘天刚. 基于小型无人机的航姿测量系统研究与设计[D]. 重庆大学, 2015.
[2] 路小燕. 基于自适应扩展卡尔曼滤波的微小型航姿系统设计与实现[D]. 南京航空航天大学, 2018.
[3] 周建民, 康永, 刘蔚. 无人机导航技术应用与发展趋势[J]. 中国电子科学研究院学报, 2015, 10(3): 274-277.
[4] 张科. 基于逆向有限元法的结构变形重构方法研究[D]. 南京航空航天大学, 2020.
[5] 吴慧峰. 基于光纤光栅传感技术的机翼形变测量方法研究与分析[J]. 桂林航天工业学院学报, 2017, 22(4): 359-364.
[6] 苗青. 无人机导航技术研究分析[J]. 中国新通信, 2020, 22(6): 55-56.
[7] 江文. 小型无人机MIMU/GNSS 组合导航技术研究[D]. 哈尔滨工业大学, 2020.
[8] VOUCH O, MINETTO A, FALCO G, et al. On the adaptivity of unscented particle filter for gnss/ins tightly-integrated navigation unit in urban environment[J]. IEEE Access, 2021, 9: 144157-144170.
[9] SUN R, ZHANG Z, CHENG Q, et al. Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas[J]. GPS Solutions, 2022, 26: 1-13.
[10] 董亮, 许东欢, 臧中原, 等. 时钟模型辅助的惯性/卫星紧组合导航算法研究[J]. 导航定位与授时, 2022, 9(2): 112-117.
[11] 高威, 李亚峰, 王可东. 信号级GNSS/SINS 超紧组合导航仿真平台设计[J]. 系统工程与电子技术, 2023, 45(1): 184-192.
[12] FENG W, DENG Y, XIE Y. IMU/GPS Integrated Navigation Algorithm Based on Adaptive Kalman filter[J]. Scientific Journal of Intelligent Systems Research, 2021, 3(12): 208-213.
[13] 梁娜, 丁丹. SINS/GPS 组合导航系统研究[J]. 计算机仿真, 2022, 39(12): 34-37.
[14] MAHONY R, HAMEL T, PFLIMLIN J. Nonlinear complementary filters on the special orthogonal group[J]. IEEE Transactions on automatic control, 2008, 53(5): 1203-1218.
[15] MADGWICK S O, WILSON S, TURK R, et al. An extended complementary filter for fullbody MARG orientation estimation[J]. IEEE/ASME Transactions on mechatronics, 2020, 25(4): 2054-2064.
[16] 王健, 厉彦一. 基于重力和磁场双重互补滤波的无人机姿态解算算法[J]. 中国科技论文, 2021, 16(1): 1-6.
[17] YUFEI L, NOGICHI N, ISHII K. Development of a small-sized and low-cost attitude measurement unit for agricultural robot application[J]. Journal of Agricultural Sciences, 2018, 24(1): 33-41.
[18] 王鼎杰. 卫星辅助增强微惯性导航精度方法研究[D]. 国防科技大学, 2018.
[19] RONG H, ZHU Y, LV J, et al. Conditional equivalence between Extended Kalman filter and complementary filter for two-vector gyro-aided attitude determination[J]. Measurement, 2021, 168: 108428.
[20] LIU F, LIU Y, SUN X, et al. A new multi-sensor hierarchical data fusion algorithm based on unscented Kalman filter for the attitude observation of the wave glider[J]. Applied Ocean Research, 2021, 109: 102562.
[21] LIU Y, FAN X, LV C, et al. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles[J]. Mechanical Systems and Signal Processing, 2018, 100: 605-616.
[22] WEI X, LI J, FENG K, et al. A mixed optimization method based on adaptive Kalman filter and wavelet neural network for INS/GPS during GPS outages[J]. IEEE Access, 2021, 9: 47875-47886.
[23] TANG Y, JIANG J, LIU J, et al. A GRU and AKF-Based Hybrid Algorithm for Improving INS/GNSS Navigation Accuracy during GNSS Outage[J]. Remote Sensing, 2022, 14(3): 752.
[24] 唐伏乾. 车载组合导航系统卡尔曼滤波模型误差研究[D]. 吉林大学, 2022.
[25] 蔡頔. GNSS/INS 组合导航数据融合算法研究[D]. 南京信息工程大学, 2022.
[26] XIONG L, XIA X, LU Y, et al. IMU-based automated vehicle body sideslip angle and attitude estimation aided by GNSS using parallel adaptive Kalman filters[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10668-10680.
[27] 吴晓倩. GNSS/INS 松组合导航滤波算法研究与实现[D]. 山东科技大学, 2020.
[28] 魏传达. 基于应变信息的飞机机翼变形测量及形变重构理论研究[D]. 西安电子科技大学, 2015.
[29] 周永兴. 飞行试验机翼变形测量的一种方法[J]. 测控技术, 2013, 32(4): 15-17.
[30] LIU T, BURNER A W, JONES T W, et al. Photogrammetric techniques for aerospace applications[J]. Progress in Aerospace Sciences, 2012, 54: 1-58.
[31] GHERLONE M, CERRACCHIO P, MATTONE M, et al. Shape sensing of 3D frame structures using an inverse finite element method[J]. International Journal of Solids and Structures, 2012, 49(22): 3100-3112.
[32] NIU S, ZHAO Y, BAO H. Shape sensing of plate structures through coupling inverse finite element method and scaled boundary element analysis[J]. Measurement, 2022, 190: 110676.
[33] ZHU Z, ZHANG M, ZHOU X. A new baseline measurement method for multinode and multibaseline interferometric SAR systems using fiber Bragg gratings[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 58(1): 4-16.
[34] 冯荻. 基于光纤光栅应变传感的结构变形重构技术研究[D]. 大连理工大学, 2020.
[35] FOSS G, HAUGSE E. Using modal test results to develop strain to displacement transformations[C]//Proceedings of the 13th international modal analysis conference: volume 2460. 1995: 112.
[36] FREYDIN M, RATTNER M K, RAVEH D E, et al. Fiber-optics-based aeroelastic shape sensing[J]. AIAA Journal, 2019, 57(12): 5094-5103.
[37] KO W L, RICHARDS W L, TRAN V T. Displacement theories for in-flight deformed shape predictions of aerospace structures[R]. 2007.
[38] 赵飞飞, 曹开拓, 保宏, 等. Timoshenko 梁的变形场重构及传感器位置优化[J]. 机械工程学报, 2020, 56(20): 1-11.
[39] DING G, YUE S, ZHANG S, et al. Strain-deformation reconstruction of CFRP laminates based on Ko displacement theory[J]. Nondestructive Testing and Evaluation, 2021, 36(2): 145-157.
[40] TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells[J]. Computer methods in applied mechanics and engineering, 2005, 194(2-5): 327-339.
[41] ZHU H, DU Z, TANG Y. Numerical study on the displacement reconstruction of subsea pipelines using the improved inverse finite element method[J]. Ocean Engineering, 2022, 248: 110763.
[42] 潘兴琳. 基于光纤光栅的结构变形测量系统研究[D]. 西安电子科技大学, 2018.
[43] FU Z, ZHAO Y, BAO H, et al. Dynamic deformation reconstruction of variable section WING with fiber Bragg grating sensors[J]. Sensors, 2019, 19(15): 3350.
[44] 南荣昌. 基于FBG 的相控阵天线结构形变重构方法与实验[D]. 西安电子科技大学, 2021.
[45] NICOLAS M J, SULLIVAN R W, RICHARDS W L. Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing[J]. Aerospace, 2016, 3(3): 18.
修改评论