[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81: 637–654.
[2] 苏治, 卢曼, 李德轩. 深度学习的金融实证应用: 动态、贡献与展望[J]. 金融研究, 2017, 05: 111-126.
[3] VECER J. A new PDE approach for pricing arithmetic average Asian options[J]. Journal of computational finance, 2001, 4(4): 105-113.
[4] YANG Z, EWALD C O, MENKENS O. Pricing and hedging of Asian options: quasi-explicit solutions via Malliavin calculus[J]. Mathematical Methods of Operations Research, 2011, 74(1): 93-120.
[5] 田国强, 赵旭霞. 金融体系效率与地方政府债务的联动影响——民企融资难融资贵的一个双重分析视角[J]. 经济研究, 2019, 54(08): 4-20.
[6] 林毅夫, 孙希芳. 信息、非正规金融与中小企业融资[J]. 经济研究, 2005, 07: 35-44.
[7] JAMES R B, DANIEL N D. On executives of financial institutions as outside directors[J]. Journal of Corporate Finance, 1999, 5(3): 227-250.
[8] BURAK A G, ULRIKE M, GEOFFREY T. Financial expertise of directors[J]. Journal of Financial Economics, 2008, 88(2): 323-354.
[9] 王凤荣, 郑文风, 李亚飞. 政治关联、金融关联与民营企业债务融资——基于并购视角的实证分析[J]. 山东社会科学, 2020(01): 104-113.
[10] YANG Z, FAN Y, SHI S, et al. Political Connections and Corporate Borrowing: an Analysis on the Listed Real Estate Firms in China[J]. The Journal of Real Estate Finance and Economics, 2018, 57(3): 315-350.
[11] CUSTóDIO C, METZGER D. Financial expert CEOs: CEO ׳s work experience and firm’s financial policies[J]. Journal of Financial Economics, 2014, 114(1): 125-154.
[12] FAN J P H, WONG T J, ZHANG T. Politically connected CEOs, corporate governance, and Post-IPO performance of China’s newly partially privatized firms[J]. Journal of Financial Economics, 2007, 84(2): 330-357.
[13] YUAN R, LI Z, GUAN X, et al. An SVM-based machine learning method for accurate internet traffic classification[J]. Information Systems Frontiers, 2010, 12(2): 149-156.
[14] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[EB/OL]. 2016. https://arxiv.org/abs/1512.03385.
[15] BRISHTEL I, KRAUß S, SCHMIDT T, et al. Classification of Manual Versus Autonomous Driving based on Machine Learning of Eye Movement Patterns[C]//2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2022: 700-705.
[16] CHEN D, MANNING C. A Fast and Accurate Dependency Parser using Neural Networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha, Qatar, 2014: 740-750.
[17] MEHDI H, MAHBOOBEH J, ZAHRA R, et al. Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception[J]. Tenth International Conference on Machine Vision (ICMV 2017), 2018, 1069612.
[18] DENG L, LI X. Machine Learning Paradigms for Speech Recognition: An Overview[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(5): 1060-1089.
[19] GU S, KELLY B, XIU D. Empirical Asset Pricing via Machine Learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273.
[20] YU P, YAN X. Stock price prediction based on deep neural networks[J]. Neural Computing and Applications, 2020, 32(6): 1609-1628.
[21] LIU Q, TAO Z, TSE Y, et al. Stock market prediction with deep learning: The case of China[J]. Finance Research Letters, 2022, 46: 102209.
[22] KIM A, YANG Y, LESSMANN S, et al. Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting[J]. European Journal of Operational Research, 2020, 283(1): 217-234.
[23] LI Q, XU Z, SHEN X, et al. Predicting Business Risks of Commercial Banks Based on BP-GA Optimized Model[J]. Computational Economics, 2022, 59(4): 1423-1441.
[24] SADHWANI A, GIESECKE K, SIRIGNANO J. Deep Learning for Mortgage Risk[J]. Journal of Financial Econometrics, 2021, 19(2): 313-368.
[25] LEVENBERG K. A Method for The Solution of Certain Nonlinear Problems in Least Squares[J]. The Quarterly of Applied Mathematics, 1944, 2(2): 164-168.
[26] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)[J]. The Annals of Statistics, 2000, 28(2): 337-407.
[27] TIBSHIRANI R. Regression Shrinkage and Selection Via the Lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[28] GORDON A D. Classification and Regression Trees[J]. Biometrics, 1984, 40(3): 874-874.
[29] 雷欣南, 林乐凡, 肖斌卿, 等. 小微企业违约特征再探索:基于SHAP 解释方法的机器学习模型[J]. 中国管理科学, 2023.
[30] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
[31] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016: 785-794.
[32] CORTES C, VLADIMIR V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[33] 胡海青, 张琅, 张道宏, 等. 基于支持向量机的供应链金融信用风险评估研究[J]. 软科学, 2011, 25(05): 26-30+36.
[34] 杨毓, 蒙肖莲. 用支持向量机(SVM) 构建企业破产预测模型[J]. 金融研究, 2006(10): 65-75.
[35] ROSENBLATT F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386–408.
[36] 禹建丽, 孙增圻, KROUMOV V, 等. 基于BP 神经网络的股市建模与决策[J]. 系统工程理论与实践, 2003(05): 15-19+58.
[37] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training Very Deep Networks[EB/OL]. 2015. https://arxiv.org/abs/1507.06228.
[38] FAN J, MA C, ZHONG Y. A Selective Overview of Deep Learning[J]. Statistical Science, 2019, 36(2): 264-290.
[39] HINTON G E, OSINDERO S, TEH Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[40] ZHANG Y, CHAN W, JAITLY N. Very deep convolutional networks for end-to-end speech recognition[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017: 4845-4849.
[41] STOLL H R. The relationship between put and call option prices[J]. Journal of Finance, 1969, 24(5): 183-184.
[42] MERTON R C. Rational theory of option pricing[J]. Bell Journal of Economics and Management Science, 1973, 4: 141-183.
[43] COX J C, ROSS S A, RUBINSTEIN M. Option Pricing: A Simplified Approach[J]. Journal of financial Economics, 1979, 7(3): 229-26.
[44] HESTON S. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[J]. The Review of Financial Studies, 1993, 6(2): 327-343.
[45] BATES D. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options[J]. The Review of Financial Studies, 1996, 9(1): 69-107.
[46] CARR P, GEMAN H, MADAN D, et al. Stochastic volatility for Lévy processes[J]. Mathematical finance, 2003, 13(3): 345-382.
[47] MALLIARIS M, SALCHENBERGER L. A neural network model for estimating option prices[J]. Applied Intelligence, 1993, 3(3): 193-206.
[48] GARCIA R, GENçAY R. Pricing and hedging derivative securities with neural networks and a homogeneity hint[J]. Journal of Econometrics, 2000, 94(1): 93-115.
[49] GRADOJEVIC N, GENçAY R, KUKOLJ D. Option Pricing With Modular Neural Networks[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20(4): 626-637.
[50] YAO J, LI Y, TAN C L. Option price forecasting using neural networks[J]. Omega, 2000, 28(4): 455-466.
[51] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.
[52] HEATON J, POLSON N G, WITTE J H. Deep learning in finance[A]. 2016.
[53] CULKIN R, DAS S R. Machine Learning in Finance: The Case of Deep Learning for Option Pricing[J]. Journal of Investment Management, 2017, 15(4): 92-100.
[54] YAN J A. Introduction to Stochastic Finance[M]. Springer, 2018.
[55] YANG Z, HUANG L, MA C. Explicit solutions to the valuation and hedging of the arithmetic Asian Option[J]. Journal of Systems Science and Complexity, 2003, 16(4): 557-561.
[56] FERGUSON R, GREEN A. Applying Deep Learning to Derivatives Valuation[EB/OL]. 2018. https://arxiv.org/abs/1809.02233v1.
[57] ANDERSON D, ULRYCH U. Accelerated American Option Pricing with Deep Neural Networks[J]. Swiss Finance Institute Research Paper, 2022, 22-03.
[58] MCGHEE W. An artificial neural network representation of the SABR stochastic volatility model[J]. Journal of Computational Finance, 2020, 25(2).
[59] HIRSA A, KARATAS T, OSKOUI A. Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes[EB/OL]. 2019.https://arxiv.org/abs/1902.05810v1.
[60] HE W, GUAN M. Parameter estimation method of option pricing model based on convolutional neural network in high frequency financial trading[J]. Annals of Operations Research, 2022.
[61] LIANG L, CAI X. Time-sequencing European options and pricing with deep learning–Analyzing based on interpretable ALE method[J]. Expert Systems with Applications, 2022, 187:115951.
[62] 何万里. 期权定价模型构建与参数估计研究[D]. 东北财经大学, 2019.
[63] LIVIERIS I E, PINTELAS E, PINTELAS P. A CNN–LSTM model for gold price time-series forecasting[J]. Neural Computing and Applications, 2020, 32(23): 17351-17360.
[64] 谭朵朵. 基于BP 神经网络的S&P500 指数期权定价[J]. 统计与信息论坛, 2008, 23(11):40-43.
[65] 谢合亮, 游涛. 基于深度学习算法的欧式股指期权定价研究——来自50ETF 期权市场的证据[J]. 统计与信息论坛, 2018, 33(06): 99-106.
[66] LUNDBERG S M, LEE S I. A Unified Approach to Interpreting Model Predictions[C]//NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 4768–4777.
[67] ZENG W, YAO C, LI H. The exploration of information extraction and analysis about science and technology policy in China[J]. The Electronic Library, 2017, 35(4): 709-723.
[68] CARLINI F, CUCINELLI D, PREVITALI D, et al. Don’t talk too bad! stock market reactions to bank corporate governance news[J]. Journal of Banking & Finance, 2020, 121: 105962.
[69] DAVIS A K, PIGER J M, SEDOR L M. Beyond the Numbers: Measuring the Information Content of Earnings Press Release Language[J]. Contemporary Accounting Research, 2012, 29(3): 845-868.
[70] GENTZKOW M, KELLY B, TADDY M. Text as Data[J]. Journal of Economic Literature, 2019, 57(3): 535-574.
[71] SHORT J, BROBERG J, COGLISER C, et al. Construct validation using computer-aided text analysis (CATA): An illustration using entrepreneurial orientation[J]. Organizational Research Methods, 2010, 13(2): 320-347.
[72] LOUGHRAN T, MCDONALD B, YUN H. A Wolf in Sheep’s Clothing: The Use of Ethics-Related Terms in 10-K Reports[J]. Journal of Business Ethics, 2009, 89: 39-49.
[73] KARAPANDZA R. Stock returns and future tense language in 10-K reports[J]. Journal of Banking & Finance, 2016, 71: 50-61.
[74] PRICE S M, DORAN J S, PETERSON D R, et al. Earnings Conference Calls and Stock Returns: The Incremental Informativeness of Textual Tone[J]. Journal of Banking & Finance, 2012, 36:992–1011.
[75] HESTON S L, SINHA N R. News vs. Sentiment: Predicting Stock Returns from News Stories[J]. Financial Analysts Journal, 2017, 73(3): 67-83.
[76] ADAMMER P, SCHUSSLER R A. Forecasting the Equity Premium: Mind the News![J]. Review of Finance, 2020, 24(6): 1313-1355.
[77] HEIDINGER D, GATZERT N. Awareness, determinants and value of reputation risk management: Empirical evidence from the banking and insurance industry[J]. Journal of Banking & Finance, 2018, 91: 1061-118.
[78] 彭红枫, 林川. 言之有物: 网络借贷中语言有用吗?——来自人人贷借款描述的经验证据[J]. 金融研究, 2018, 11: 133-152.
[79] LOUGHRAN T, MCDONALD B. When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks[J]. Journal of Finance, 2011, 66: 35-65.
[80] 范超, 王磊, 解明明. 新经济业态P2P 网络借贷的风险甄别研究[J]. 统计研究, 2017, 32(02): 33-43.
[81] ANTWEILER W, FRANK. M. Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards[J]. Journal of Finance, 2004, 59(02): 1259–94.
[82] 部慧, 解峥, 李佳鸿, 等. 基于股评的投资者情绪对股票市场的影响[J]. 管理科学学报, 2018, 21(04): 86-101.
[83] MANELA A, MOREIRA A. News implied volatility and disaster concerns[J]. Journal of Financial Economics, 2017, 123(1): 137-162.
[84] 伊志宏, 杨圣之, 陈钦源. 分析师能降低股价同步性吗——基于研究报告文本分析的实证研究[J]. 中国工业经济, 2019: 156-173.
[85] IMED C, MOHAMED IMEN G, MANARA T. Political connections and corporate debt: Evidence from two U.S. election campaigns[J]. The Quarterly Review of Economics and Finance, 2020, 75: 229-239.
[86] KHWAJA A I, MIAN A. Do Lenders Favor Politically Connected Firms? Rent Provision in an Emerging Financial Market*[J]. The Quarterly Journal of Economics, 2005, 120(4): 1371-1411.
[87] CHEN C J P, LI Z, SU X, et al. Rent-seeking incentives, corporate political connections, and the control structure of private firms: Chinese evidence[J]. Journal of Corporate Finance, 2011, 17(2): 229-243.
[88] LIU Y, LI X, ZENG H, et al. Political connections, auditor choice and corporate accounting transparency: evidence from private sector firms in China[J]. Accounting & Finance, 2017, 57(4): 1071-1099.
[89] SHEN L, ZHOU K Z, WANG K, et al. Do political ties facilitate operational efficiency? A contingent political embeddedness perspective[J]. Journal of Operations Management, 2023, 69(1): 159-184.
[90] XIAORONG L, KAM C C. Communist party control and stock price crash risk: Evidence from China[J]. Economics Letters, 2016, 141: 5-7.
[91] GILLAN S L, STARKS L T. The Evolution of Shareholder Activism in the United States[J]. Journal of Applied Corporate Finance, 2007, 19(1): 55-73.
[92] KANG M J, KIM Y H, LIAO Q. Do bankers on the board reduce crash risk?[J]. European Financial Management, 2020, 26(3): 684-723.
[93] BYRD D T, MIZRUCHI M S. Bankers on the board and the debt ratio of firms[J]. Journal of Corporate Finance, 2005, 11(1): 129-173.
[94] 于蔚, 汪淼军, 金祥荣. 政治关联和融资约束: 信息效应与资源效应[J]. 经济研究, 2012, 47(09): 125-139.
[95] LI H, MENG L, WANG Q, et al. Political connections, financing and firm performance: Evidence from Chinese private firms[J]. Journal of Development Economics, 2008, 87(2): 283-299.
[96] 祝继高; 韩非池; 陆正飞. 产业政策、银行关联与企业债务融资——基于A股上市公司的实证研究[J]. 金融研究, 2015, 3: 176-191.
[97] 王世权. 监事会的本原性质、作用机理与中国上市公司治理创新[J]. 管理评论, 2011, 23(04): 47-53.
[98] 王跃堂, 朱林, 陈世敏. 董事会独立性、股权制衡与财务信息质量[J]. 会计研究, 2008(01):55-62+96.
[99] 薛祖云, 黄彤. 董事会、监事会制度特征与会计信息质量——来自中国资本市场的经验分析[J]. 财经理论与实践, 2004(04): 84-89.
[100] 谭雪, 李婧萱, 吴昊洲. 独立董事投票制度的反思与改进——基于独立董事投票的分析[J]. 经济体制改革, 2021(02): 187-193.
[101] DING S, WU Z, LI Y, et al. Executive compensation, supervisory board, and China’s governance reform: a legal approach perspective[J]. Review of Quantitative Finance and Accounting, 2010, 35(4): 445-471.
[102] GORG H, STROBL E, RUANE F. Determinants of Firm Start-Up Size: An Application of Quantile Regression for Ireland[J]. Small Business Economics, 2000, 14(3): 211-222.
[103] ARELLANO C, BAI Y, BOCOLA L. Sovereign Default Risk and Firm Heterogeneity[J].NBER Working Paper No. w23314, 2017.
[104] 邓建平, 曾勇. 金融生态环境、银行关联与债务融资——基于我国民营企业的实证研究[J]. 会计研究, 2011, 08(12): 78-92.
[105] 邓建平, 曾勇. 金融关联能否缓解民营企业的融资约束?[J]. 金融研究, 2011(08): 78-92.
[106] PENG H, ZHANG X, ZHU X. Political connections of the board of directors and credit financing: evidence from Chinese private enterprises.[J]. Accounting & Finance, 2018, 57(5):1481-1516.
[107] SAEED A, BELGHITAR Y, CLARK E. Political Connections and Leverage: Firm-level Evidence from Pakistan.[J]. Managerial and Decision Economics, 2015, 36(6): 364-383.
[108] MITCHELL K, WALKER M D. Bankers on boards, financial constraints, and financial distress [J]. New York: SSRN, 2008, 1.
[109] YANG J, LIAN J, LIU X. Political connections, bank loans and firm value[J]. Nankai Business Review International, 2012, 3: 376-397.
[110] MCCULLOCH W S, PITTS W. A Logical Calculus of the Ideas Immanent in Nervous Activity[J]. Journal of Symbolic Logic, 1943, 9: 49-50.
[111] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[J]. Conference on Machine Learning (ICML), 2010: 807-814.
[112] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)[EB/OL]. 2016. https://arxiv.org/abs/1511.07289.
[113] RUMELHART D, HINTON G, WILLIAMS R. Learning Internal Representations by Error Propagation[M]//Readings in Cognitive Science. Morgan Kaufmann, 1988: 399-421.
[114] GIROSI F, JONES M, POGGIO T. Regularization Theory and Neural Networks Architectures[J]. Neural Computation, 1995, 7(2): 219-269.
[115] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. IEEE Transactions on Neural Networks, 1989, 2(5): 359-366.
[116] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[117] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-377.
[118] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. PMLR, 2015: 448-456.
[119] HOCHREITER S. Untersuchungen zu dynamischen neuronalen Netzen[J]. Diploma, Technische Universität München, 1991, 91(1).
[120] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization.[J]. Journal of machine learning research, 2011, 12(7).
[121] TIELEMAN T, HINTON G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012.
[122] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[123] SUNDARARAJAN M, TALY A, YAN Q. Axiomatic attribution for deep networks[C]//International conference on machine learning. PMLR, 2017: 3319-3328.
[124] SHAPLEY L S, et al. A value for n-person games[M]. Princeton University Press Princeton, 1953.
[125] YOUNG H P. Monotonic solutions of cooperative games[J]. International Journal of Game Theory, 1985, 14(2): 65-72.
[126] LUNDBERG S M, ERION G, CHEN H, et al. Explainable AI for trees: From local explanations to global understanding[A]. 2019.
[127] 李明耀, 杨静. 基于依存分析的开放式中文实体关系抽取方法[J]. 计算机工程, 2016, 42 (06): 201-207.
[128] TESNIÈRE L. Elements of structural syntax[M]. John Benjamins Publishing Company, 2015.
[129] QIU L, ZHANG Y, P. J, et al. Multi-view Chinese treebanking[C]//In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. 2014: 257–268.
[130] 闫博. 基于HanLP 关键词抽取与句法分析的图谱构建[J]. 电子元器件与信息技术, 2022, 6(09): 77-80+84.
[131] CHE W, LI Z, LIU T. Ltp: A chinese language technology platform[C]//Coling 2010: demonstrations.2010: 13-16.
[132] CHEN D, MANNING C D. A fast and accurate dependency parser using neural networks[C]//Proceedings of the 2014 conference on empirical methods in natural language processing(EMNLP). 2014: 740-750.
[133] NIVRE J. Incrementality in deterministic dependency parsing[C]//Proceedings of the workshop on incremental parsing: Bringing engineering and cognition together. 2004: 50-57.
[134] ZHANG Y, NIVRE J. Transition-based dependency parsing with rich non-local features[C]//Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies. 2011: 188-193.
[135] BUNESCU R, MOONEY R. A shortest path dependency kernel for relation extraction[C]//Proceedings of human language technology conference and conference on empirical methods in natural language processing. 2005: 724-731.
[136] SHARMA A, SWAMINATHAN R, YANG H. A verb-centric approach for relationship extraction in biomedical text[C]//2010 IEEE Fourth International Conference on Semantic Computing. IEEE, 2010: 377-385.
[137] HUTCHINSON J M, LO A W, POGGIO T. A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks[J]. Journal of Finance, 1994, 49(3): 851-889.
[138] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[139] YAKOOB M Y, DURHAM N. An empirical analysis of option valuation techniques using stock index options[J]. The working study, Duke University, Durham, 2002.
[140] GUPTA A, LIANG B. Do hedge funds have enough capital? A value-at-risk approach[J]. Journal of Financial Economics, 2005, 77(1): 219-253.
[141] FORTUNE P. Anomalies in option pricing: The Black-Scholes model revisited[J]. New England Economic Review, 1996: 17-41.
[142] LIN M, CHEN Q, YAN S. Network in network[EB/OL]. 2013. https://arxiv.org/abs/1312.4400.
[143] FRANK M Z, GOYAL V K. Capital structure decisions: which factors are reliably important?[J]. Financial Management, 2009, 38: 1-37.
[144] MYERS S, MAJLUF N. Corporate financing and investment decisions when firms have information that investors do not have[J]. Journal of Financial Economics, 1984, 13: 187-221.
[145] MATEMILOLA B T, BANY-ARIFFIN A N, NASSIR A M, et al. Moderating Effects of Firm Age on the Relationship between Debt and Stock Returns[J]. Journal of Asia-Pacific Business, 2017, 18: 81-96.
[146] DURU A, MANSI S A, REEB D M. Earnings-based bonus plans and the agency costs of debt[J]. Journal of Accounting and Public Policy, 2005, 24(5): 431-447.
[147] JENSEN M C, MURPHY K J. Performance Pay and Top-Management Incentives[J]. Journal of Political Economy, 1990, 98(2): 225-264.
[148] CHAKRABORTI R, DAHIYA S, GE L, et al. Credit Stimulus, Executive Ownership, and Firm Leverage[J]. Management Science, 2022, 68(10): 7682-7700.
[149] BRINDHA S, PRABHA K, SUKUMARAN S. A survey on classification techniques for text mining[C]//2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS): volume 01. 2016: 1-5.
[150] ALONSO M, PALMA N, SIMON-YARZA B. The value of political connections: evidence from China’s anti-corruption campaign[J]. Journal of Institutional Economics, 2022, 18(5): 785-805.
[151] BORAH B J, BASU A. Highlighting differences between conditional and unconditional quantile regression approaches through an application to assess medication adherence[J]. Health Economics, 2013, 22(9): 1052-1070.
[152] KHANAL A R, MISHRA S K, HONEY U. Certified organic food production, financial performance, and farm size: An unconditional quantile regression approach[J]. Land Use Policy, 2018, 78: 367-376.
[153] MARKOWITZ S, ADAMS E K, LEWITT M J, et al. Competitive effects of scope of practice restrictions: Public health or public harm?[J]. Journal of Health Economics, 2017, 55: 201-218.
[154] KOENKER R, HALLOCK K F. Quantile Regression[J]. The Journal of economic perspectives, 2001, 15(4): 143-156.
[155] FIRPO S, FORTIN N M, LEMIEUX T. Unconditional Quantile Regressions: volume 77[Z]. 2009: 953-973.
[156] MA W, RENWICK A, GREIG B. Modelling the heterogeneous effects of stocking rate on dairy production: an application of unconditional quantile regression with fixed effects[J]. Applied economics, 2019, 51(43): 4769-4780.
[157] BORGEN N T. Fixed Effects in Unconditional Quantile Regression[J]. The Stata Journal, 2016, 16(2): 403-415.
[158] CAMERON A C. Microeconometrics using Stata[M]. College Station, Tex. Stata Press, 2010.
[159] FIRTH M, FUNG P M Y, RUI O M. Ownership, two-tier board structure, and the informativeness of earnings–Evidence from China[J]. Journal of Accounting and Public Policy, 2007, 26 (4): 463-496.
[160] XU Y. Anticorruption regulation and firm value: Evidence from a shock of mandated resignation of directors in China[J]. Journal of Banking & Finance, 2018, 92: 67-80.
[161] 高国力, 李天健, 孙文迁. 改革开放四十年我国区域发展的成效、反思与展望[J]. 经济纵横, 2018(10): 26-35+2.
修改评论