中文版 | English
题名

基于机器学习的期权定价以及债务融资影响因素挖掘

其他题名
OPTION PRICING BASED ON MACHINE LEARNING AND MINING THE INFLUENCING FACTORS OF DEBT FINANCING
姓名
姓名拼音
GAN Lirong
学号
11930724
学位类型
博士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
杨招军
导师单位
商学院
论文答辩日期
2023-05-10
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着大数据技术的发展、计算机性能的提高,人工智能进入了一个新时代。机器学习作为人工智能核心技术之一,在许多领域的应用中都取得了显著的成果。本文利用机器学习模型来研究和解决金融问题,包括金融衍生产品定价、公司债务融资影响因素挖掘并进行相关分析。

在金融衍生产品中,由于亚式期权的价格便宜、且其价格不易被操纵的优点,深受投资者的欢迎。但由于算术型亚式期权定价没有解析解,需要进行大量耗时的数值计算才能得到期权价格。因此,本文提出了一种基于反向传播的深度前馈神经网络模型的方法用于快速、精确地对亚式期权进行定价。该模型具有四层神经网络结构,同时采用了自适应矩估计优化算法(Adam)对模型参数进行优化。结果表明,该模型对于模拟期权价格以及实际期权价格预测均有良好的表现,在95%的真实亚式期权数据中的相对定价误差均值为2.015%,计算10000 个期权价格不超过1秒,远远快于蒙特卡洛模拟法的计算速度。

随着神经网络模型深度/层数的增加,会带来梯度消失的问题,导致模型预测精度下降。机器学习模型在期权定价中也存在着类似的问题。因此,本文提出了一个适用于欧式期权定价、具有灵活结构的残差神经网络(ResNet)模型。它由两个基本残差块构成,每个残差块包括三个一维卷积层和一个快速连接通道。该模型的优势在于它能拓展神经网络深度、提高预测精度,并且避免梯度消失。即便随着模型深度的增加,计算耗时会有所增加,但它计算大量的期权价格数据也仅需几秒。实验结果表明该模型在经过大量模拟期权数据的训练后,可以得到1.7%的样本外平均相对预测误差,这表明它能够很好地拟合BS 欧式期权定价公式。此外,该模型在中国上证50ETF 欧式期权真实数据中的定价误差要小于其他神经网络模型的误差。

以上的研究结果表明了机器学习模型能快速、准确地对期权进行定价,避免传统期权定价的理论模型与实际不符的假设。但存在的一个问题是,它们都是黑箱模型,无法解释模型结果。为了帮助决策者理解并信任机器学习模型的预测结果,本文以一个特定的残差神经网络模型为例,利用Gradient-SHAP 方法对它进行事后解释。它研究了上证50ETF 欧式期权价格的多个特征(比如前一期的期权结算价格、行权价格、隐含波动率等)如何影响当期欧式期权结算价格的预测结果。结果表明无论对于上证50ETF 欧式看涨期权还是看跌期权,影响期权结算价格特征的作用程度排序是一致的。尽管这些特征对于看涨或者看跌期权结算价格的边际影响不同,但它们对于期权价格的影响作用都符合看涨或看跌期权的特点,对预测结果能给出合理的解释,提高了机器学习模型的可信度。

机器学习模型不仅可以利用大量数据对金融产品的价格进行预测,还可以用于解析文本句法结构、提取文本特征。通过利用这些特征变量分析金融问题,能加深对金融问题的认识。因此,本文还基于神经网络的句法依存分析器以及实体关系抽取技术从16 万多条中国民营上市公司高管的简历文本中提取了高管背景特征指标。考虑到中国民营企业融资难问题、结合中国上市公司的双层董事会结构,本文研究不同高管职位下的高管政治背景、金融背景特征对中国民营企业的债务融资的影响。固定效应回归模型的结果表明,高管政治背景特征主要通过董事会对债务融资有积极影响,相反高管金融背景特征主要通过监事会对公司债务具有监督作用。此外,无条件分位数回归模型的结果表明,随着公司债务水平的增加,这两种特征对于公司债务水平的影响会逐渐减弱甚至消失。当公司处于较低的债务水平时,高管政治背景特征的积极作用会抑制金融背景特征作用,但它还是会随着公司债务分位数水平的增加而减弱。通过这些分析能够加深对上市民营企业债务融资问题的认识,进而可为解决民营企业债务融资难问题提供一些参考建议。

总之,拥有大量数据的金融行业中有许多问题和场景非常适合利用机器学习方法进行研究和分析。本文的研究很好地体现了这一点,也表明了机器学习在金融领域的应用具有突出意义和光明前景。

其他摘要

With the development of big data technology and the improvement of computer performance, artificial intelligence(AI) has entered a new era. Machine learning, as one of the core technologies of AI, has achieved remarkable results in many fields. This paper proposes and applies machine learning models to solve financial problems, including pricing of financial derivatives, mining the influencing factors of corporate debt financing and their related analysis.

Among financial derivative products, Asian option is popular among investors because of its cheap price and the advantage that its price is not easily manipulated. However, since there is no analytical solution for the arithmetic Asian option pricing, a lot of time-consuming numerical calculations are required to obtain the option price. Therefore, this paper proposes a deep feed-forward neural network model based on back-propagation for fast and accurate pricing of the arithmetic Asian option. The model has a four-layer neural network structure, and an optimization algorithm based on adaptive moment estimation(Adam) is used to optimize the model parameters. The results show that the model performs well for simulated option price forecasts as well as for actual option price forecasts. It has a mean relative pricing error of 2.015% over 95% of the real Asian option data and calculates 10,000 option prices in less than 1 second, much faster than the Monte Carlo simulation method.

As the depth of the neural network model increases, the problem of gradient disappearance is introduced, resulting in a decrease in prediction accuracy. A similar problem exists in the application of machine learning models to option pricing. Therefore, this paper also proposes a residual neural network (ResNet) model with a flexible structure suitable for European option pricing. It consists of two basic residual blocks, each of which includes three one-dimensional convolutional layers and a fast connection channel. The advantage of this model is that it can extend the depth of the neural network, improving the prediction accuracy of the model, and avoiding gradient disappearance. Even though its computation time increases as the depth of the model increases, it takes only a few seconds to compute a large amount of option price data. The experimental results show that the model can obtain an out-of-sample relative prediction error of 1.7% after being trained with a large amount of simulated option data, which means it can fit the BS European option pricing formula very well. In addition, the prediction errors of the model in the real data of European option on the Shanghai Stock Exchange(SSE) 50ETF are smaller than those of other neural network models.

The above findings show that machine learning models can price options quickly and accurately, avoiding the reality-inconsistent assumptions of traditional option pricing theory. However, one problem is they are black-box models. To help decision makers understand and trust the prediction results of machine learning models, this paper takes a specific residual neural network model as an example and interprets it ex-post by using the Gradient-SHAP method. It investigates how multiple features of the SSE 50 ETF European option price (e.g., the option settlement price of the previous period, the strike price, the implied volatility of the proximity, etc.) affect the prediction of the current European option settlement price. The results show that the importance ranking of these features affecting option prices is the same for the SSE 50 ETF European call and put options. These features have different marginal effects on call and put option prices. And the findings are consistent with the characteristics of the options and also provide a reasonable explanation for the prediction results, improving the credibility of the machine learning model.

Besides, machine learning model can not only predict the price of financial products, but also analyze the syntactic structure of text and extract text features. By using these characteristic variables to analyze financial problems, it can deepen the understanding of financial problems. Therefore, based on the dependency analyzer of neural network and entity relationship extraction technology, this paper extracts the features of executives from more than 160000 resumes of executives of Chinese private listed companies. Considering the financing problem of for Chinese private firms and the two-tier board structure of Chinese listed companies, this paper investigates the impacts of the political and financial background characteristics of executives under different executive positions on the financing of Chinese private firms. The results of the fixed-effects regression model indicate that executive political background characteristics have a positive impact on debt financing mainly through the board of directors. While on the contrary, executive financial background characteristics have a supervisory role on corporate debt mainly through the board of supervisors. The results of the unconditional quantile regression model indicate that the effect of both characteristics on the level of corporate debt diminishes or even disappears as the level of corporate debt increases. When the companies are at low debt levels, the positive effect of the political background characteristics suppresses the negative effect of the financial background characteristics, but it still diminishes with the increase of the debt level. These analyses can deepen the understanding of debt financing research problems of listed private enterprises, and then provide references to solve the problem of debt financing difficulties of private enterprises.

In conclusion, there are many problems and scenarios in the financial industry with a large number of data that are well suited for research and analysis using machine learning method. This study reflects this well, and also shows that the application of machine learning in finance is important in practice and has a bright future.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81: 637–654.
[2] 苏治, 卢曼, 李德轩. 深度学习的金融实证应用: 动态、贡献与展望[J]. 金融研究, 2017, 05: 111-126.
[3] VECER J. A new PDE approach for pricing arithmetic average Asian options[J]. Journal of computational finance, 2001, 4(4): 105-113.
[4] YANG Z, EWALD C O, MENKENS O. Pricing and hedging of Asian options: quasi-explicit solutions via Malliavin calculus[J]. Mathematical Methods of Operations Research, 2011, 74(1): 93-120.
[5] 田国强, 赵旭霞. 金融体系效率与地方政府债务的联动影响——民企融资难融资贵的一个双重分析视角[J]. 经济研究, 2019, 54(08): 4-20.
[6] 林毅夫, 孙希芳. 信息、非正规金融与中小企业融资[J]. 经济研究, 2005, 07: 35-44.
[7] JAMES R B, DANIEL N D. On executives of financial institutions as outside directors[J]. Journal of Corporate Finance, 1999, 5(3): 227-250.
[8] BURAK A G, ULRIKE M, GEOFFREY T. Financial expertise of directors[J]. Journal of Financial Economics, 2008, 88(2): 323-354.
[9] 王凤荣, 郑文风, 李亚飞. 政治关联、金融关联与民营企业债务融资——基于并购视角的实证分析[J]. 山东社会科学, 2020(01): 104-113.
[10] YANG Z, FAN Y, SHI S, et al. Political Connections and Corporate Borrowing: an Analysis on the Listed Real Estate Firms in China[J]. The Journal of Real Estate Finance and Economics, 2018, 57(3): 315-350.
[11] CUSTóDIO C, METZGER D. Financial expert CEOs: CEO ׳s work experience and firm’s financial policies[J]. Journal of Financial Economics, 2014, 114(1): 125-154.
[12] FAN J P H, WONG T J, ZHANG T. Politically connected CEOs, corporate governance, and Post-IPO performance of China’s newly partially privatized firms[J]. Journal of Financial Economics, 2007, 84(2): 330-357.
[13] YUAN R, LI Z, GUAN X, et al. An SVM-based machine learning method for accurate internet traffic classification[J]. Information Systems Frontiers, 2010, 12(2): 149-156.
[14] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[EB/OL]. 2016. https://arxiv.org/abs/1512.03385.
[15] BRISHTEL I, KRAUß S, SCHMIDT T, et al. Classification of Manual Versus Autonomous Driving based on Machine Learning of Eye Movement Patterns[C]//2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2022: 700-705.
[16] CHEN D, MANNING C. A Fast and Accurate Dependency Parser using Neural Networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha, Qatar, 2014: 740-750.
[17] MEHDI H, MAHBOOBEH J, ZAHRA R, et al. Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception[J]. Tenth International Conference on Machine Vision (ICMV 2017), 2018, 1069612.
[18] DENG L, LI X. Machine Learning Paradigms for Speech Recognition: An Overview[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(5): 1060-1089.
[19] GU S, KELLY B, XIU D. Empirical Asset Pricing via Machine Learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273.
[20] YU P, YAN X. Stock price prediction based on deep neural networks[J]. Neural Computing and Applications, 2020, 32(6): 1609-1628.
[21] LIU Q, TAO Z, TSE Y, et al. Stock market prediction with deep learning: The case of China[J]. Finance Research Letters, 2022, 46: 102209.
[22] KIM A, YANG Y, LESSMANN S, et al. Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting[J]. European Journal of Operational Research, 2020, 283(1): 217-234.
[23] LI Q, XU Z, SHEN X, et al. Predicting Business Risks of Commercial Banks Based on BP-GA Optimized Model[J]. Computational Economics, 2022, 59(4): 1423-1441.
[24] SADHWANI A, GIESECKE K, SIRIGNANO J. Deep Learning for Mortgage Risk[J]. Journal of Financial Econometrics, 2021, 19(2): 313-368.
[25] LEVENBERG K. A Method for The Solution of Certain Nonlinear Problems in Least Squares[J]. The Quarterly of Applied Mathematics, 1944, 2(2): 164-168.
[26] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)[J]. The Annals of Statistics, 2000, 28(2): 337-407.
[27] TIBSHIRANI R. Regression Shrinkage and Selection Via the Lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[28] GORDON A D. Classification and Regression Trees[J]. Biometrics, 1984, 40(3): 874-874.
[29] 雷欣南, 林乐凡, 肖斌卿, 等. 小微企业违约特征再探索:基于SHAP 解释方法的机器学习模型[J]. 中国管理科学, 2023.
[30] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
[31] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016: 785-794.
[32] CORTES C, VLADIMIR V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[33] 胡海青, 张琅, 张道宏, 等. 基于支持向量机的供应链金融信用风险评估研究[J]. 软科学, 2011, 25(05): 26-30+36.
[34] 杨毓, 蒙肖莲. 用支持向量机(SVM) 构建企业破产预测模型[J]. 金融研究, 2006(10): 65-75.
[35] ROSENBLATT F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386–408.
[36] 禹建丽, 孙增圻, KROUMOV V, 等. 基于BP 神经网络的股市建模与决策[J]. 系统工程理论与实践, 2003(05): 15-19+58.
[37] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training Very Deep Networks[EB/OL]. 2015. https://arxiv.org/abs/1507.06228.
[38] FAN J, MA C, ZHONG Y. A Selective Overview of Deep Learning[J]. Statistical Science, 2019, 36(2): 264-290.
[39] HINTON G E, OSINDERO S, TEH Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[40] ZHANG Y, CHAN W, JAITLY N. Very deep convolutional networks for end-to-end speech recognition[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017: 4845-4849.
[41] STOLL H R. The relationship between put and call option prices[J]. Journal of Finance, 1969, 24(5): 183-184.
[42] MERTON R C. Rational theory of option pricing[J]. Bell Journal of Economics and Management Science, 1973, 4: 141-183.
[43] COX J C, ROSS S A, RUBINSTEIN M. Option Pricing: A Simplified Approach[J]. Journal of financial Economics, 1979, 7(3): 229-26.
[44] HESTON S. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[J]. The Review of Financial Studies, 1993, 6(2): 327-343.
[45] BATES D. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options[J]. The Review of Financial Studies, 1996, 9(1): 69-107.
[46] CARR P, GEMAN H, MADAN D, et al. Stochastic volatility for Lévy processes[J]. Mathematical finance, 2003, 13(3): 345-382.
[47] MALLIARIS M, SALCHENBERGER L. A neural network model for estimating option prices[J]. Applied Intelligence, 1993, 3(3): 193-206.
[48] GARCIA R, GENçAY R. Pricing and hedging derivative securities with neural networks and a homogeneity hint[J]. Journal of Econometrics, 2000, 94(1): 93-115.
[49] GRADOJEVIC N, GENçAY R, KUKOLJ D. Option Pricing With Modular Neural Networks[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20(4): 626-637.
[50] YAO J, LI Y, TAN C L. Option price forecasting using neural networks[J]. Omega, 2000, 28(4): 455-466.
[51] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.
[52] HEATON J, POLSON N G, WITTE J H. Deep learning in finance[A]. 2016.
[53] CULKIN R, DAS S R. Machine Learning in Finance: The Case of Deep Learning for Option Pricing[J]. Journal of Investment Management, 2017, 15(4): 92-100.
[54] YAN J A. Introduction to Stochastic Finance[M]. Springer, 2018.
[55] YANG Z, HUANG L, MA C. Explicit solutions to the valuation and hedging of the arithmetic Asian Option[J]. Journal of Systems Science and Complexity, 2003, 16(4): 557-561.
[56] FERGUSON R, GREEN A. Applying Deep Learning to Derivatives Valuation[EB/OL]. 2018. https://arxiv.org/abs/1809.02233v1.
[57] ANDERSON D, ULRYCH U. Accelerated American Option Pricing with Deep Neural Networks[J]. Swiss Finance Institute Research Paper, 2022, 22-03.
[58] MCGHEE W. An artificial neural network representation of the SABR stochastic volatility model[J]. Journal of Computational Finance, 2020, 25(2).
[59] HIRSA A, KARATAS T, OSKOUI A. Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes[EB/OL]. 2019.https://arxiv.org/abs/1902.05810v1.
[60] HE W, GUAN M. Parameter estimation method of option pricing model based on convolutional neural network in high frequency financial trading[J]. Annals of Operations Research, 2022.
[61] LIANG L, CAI X. Time-sequencing European options and pricing with deep learning–Analyzing based on interpretable ALE method[J]. Expert Systems with Applications, 2022, 187:115951.
[62] 何万里. 期权定价模型构建与参数估计研究[D]. 东北财经大学, 2019.
[63] LIVIERIS I E, PINTELAS E, PINTELAS P. A CNN–LSTM model for gold price time-series forecasting[J]. Neural Computing and Applications, 2020, 32(23): 17351-17360.
[64] 谭朵朵. 基于BP 神经网络的S&P500 指数期权定价[J]. 统计与信息论坛, 2008, 23(11):40-43.
[65] 谢合亮, 游涛. 基于深度学习算法的欧式股指期权定价研究——来自50ETF 期权市场的证据[J]. 统计与信息论坛, 2018, 33(06): 99-106.
[66] LUNDBERG S M, LEE S I. A Unified Approach to Interpreting Model Predictions[C]//NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 4768–4777.
[67] ZENG W, YAO C, LI H. The exploration of information extraction and analysis about science and technology policy in China[J]. The Electronic Library, 2017, 35(4): 709-723.
[68] CARLINI F, CUCINELLI D, PREVITALI D, et al. Don’t talk too bad! stock market reactions to bank corporate governance news[J]. Journal of Banking & Finance, 2020, 121: 105962.
[69] DAVIS A K, PIGER J M, SEDOR L M. Beyond the Numbers: Measuring the Information Content of Earnings Press Release Language[J]. Contemporary Accounting Research, 2012, 29(3): 845-868.
[70] GENTZKOW M, KELLY B, TADDY M. Text as Data[J]. Journal of Economic Literature, 2019, 57(3): 535-574.
[71] SHORT J, BROBERG J, COGLISER C, et al. Construct validation using computer-aided text analysis (CATA): An illustration using entrepreneurial orientation[J]. Organizational Research Methods, 2010, 13(2): 320-347.
[72] LOUGHRAN T, MCDONALD B, YUN H. A Wolf in Sheep’s Clothing: The Use of Ethics-Related Terms in 10-K Reports[J]. Journal of Business Ethics, 2009, 89: 39-49.
[73] KARAPANDZA R. Stock returns and future tense language in 10-K reports[J]. Journal of Banking & Finance, 2016, 71: 50-61.
[74] PRICE S M, DORAN J S, PETERSON D R, et al. Earnings Conference Calls and Stock Returns: The Incremental Informativeness of Textual Tone[J]. Journal of Banking & Finance, 2012, 36:992–1011.
[75] HESTON S L, SINHA N R. News vs. Sentiment: Predicting Stock Returns from News Stories[J]. Financial Analysts Journal, 2017, 73(3): 67-83.
[76] ADAMMER P, SCHUSSLER R A. Forecasting the Equity Premium: Mind the News![J]. Review of Finance, 2020, 24(6): 1313-1355.
[77] HEIDINGER D, GATZERT N. Awareness, determinants and value of reputation risk management: Empirical evidence from the banking and insurance industry[J]. Journal of Banking & Finance, 2018, 91: 1061-118.
[78] 彭红枫, 林川. 言之有物: 网络借贷中语言有用吗?——来自人人贷借款描述的经验证据[J]. 金融研究, 2018, 11: 133-152.
[79] LOUGHRAN T, MCDONALD B. When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks[J]. Journal of Finance, 2011, 66: 35-65.
[80] 范超, 王磊, 解明明. 新经济业态P2P 网络借贷的风险甄别研究[J]. 统计研究, 2017, 32(02): 33-43.
[81] ANTWEILER W, FRANK. M. Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards[J]. Journal of Finance, 2004, 59(02): 1259–94.
[82] 部慧, 解峥, 李佳鸿, 等. 基于股评的投资者情绪对股票市场的影响[J]. 管理科学学报, 2018, 21(04): 86-101.
[83] MANELA A, MOREIRA A. News implied volatility and disaster concerns[J]. Journal of Financial Economics, 2017, 123(1): 137-162.
[84] 伊志宏, 杨圣之, 陈钦源. 分析师能降低股价同步性吗——基于研究报告文本分析的实证研究[J]. 中国工业经济, 2019: 156-173.
[85] IMED C, MOHAMED IMEN G, MANARA T. Political connections and corporate debt: Evidence from two U.S. election campaigns[J]. The Quarterly Review of Economics and Finance, 2020, 75: 229-239.
[86] KHWAJA A I, MIAN A. Do Lenders Favor Politically Connected Firms? Rent Provision in an Emerging Financial Market*[J]. The Quarterly Journal of Economics, 2005, 120(4): 1371-1411.
[87] CHEN C J P, LI Z, SU X, et al. Rent-seeking incentives, corporate political connections, and the control structure of private firms: Chinese evidence[J]. Journal of Corporate Finance, 2011, 17(2): 229-243.
[88] LIU Y, LI X, ZENG H, et al. Political connections, auditor choice and corporate accounting transparency: evidence from private sector firms in China[J]. Accounting & Finance, 2017, 57(4): 1071-1099.
[89] SHEN L, ZHOU K Z, WANG K, et al. Do political ties facilitate operational efficiency? A contingent political embeddedness perspective[J]. Journal of Operations Management, 2023, 69(1): 159-184.
[90] XIAORONG L, KAM C C. Communist party control and stock price crash risk: Evidence from China[J]. Economics Letters, 2016, 141: 5-7.
[91] GILLAN S L, STARKS L T. The Evolution of Shareholder Activism in the United States[J]. Journal of Applied Corporate Finance, 2007, 19(1): 55-73.
[92] KANG M J, KIM Y H, LIAO Q. Do bankers on the board reduce crash risk?[J]. European Financial Management, 2020, 26(3): 684-723.
[93] BYRD D T, MIZRUCHI M S. Bankers on the board and the debt ratio of firms[J]. Journal of Corporate Finance, 2005, 11(1): 129-173.
[94] 于蔚, 汪淼军, 金祥荣. 政治关联和融资约束: 信息效应与资源效应[J]. 经济研究, 2012, 47(09): 125-139.
[95] LI H, MENG L, WANG Q, et al. Political connections, financing and firm performance: Evidence from Chinese private firms[J]. Journal of Development Economics, 2008, 87(2): 283-299.
[96] 祝继高; 韩非池; 陆正飞. 产业政策、银行关联与企业债务融资——基于A股上市公司的实证研究[J]. 金融研究, 2015, 3: 176-191.
[97] 王世权. 监事会的本原性质、作用机理与中国上市公司治理创新[J]. 管理评论, 2011, 23(04): 47-53.
[98] 王跃堂, 朱林, 陈世敏. 董事会独立性、股权制衡与财务信息质量[J]. 会计研究, 2008(01):55-62+96.
[99] 薛祖云, 黄彤. 董事会、监事会制度特征与会计信息质量——来自中国资本市场的经验分析[J]. 财经理论与实践, 2004(04): 84-89.
[100] 谭雪, 李婧萱, 吴昊洲. 独立董事投票制度的反思与改进——基于独立董事投票的分析[J]. 经济体制改革, 2021(02): 187-193.
[101] DING S, WU Z, LI Y, et al. Executive compensation, supervisory board, and China’s governance reform: a legal approach perspective[J]. Review of Quantitative Finance and Accounting, 2010, 35(4): 445-471.
[102] GORG H, STROBL E, RUANE F. Determinants of Firm Start-Up Size: An Application of Quantile Regression for Ireland[J]. Small Business Economics, 2000, 14(3): 211-222.
[103] ARELLANO C, BAI Y, BOCOLA L. Sovereign Default Risk and Firm Heterogeneity[J].NBER Working Paper No. w23314, 2017.
[104] 邓建平, 曾勇. 金融生态环境、银行关联与债务融资——基于我国民营企业的实证研究[J]. 会计研究, 2011, 08(12): 78-92.
[105] 邓建平, 曾勇. 金融关联能否缓解民营企业的融资约束?[J]. 金融研究, 2011(08): 78-92.
[106] PENG H, ZHANG X, ZHU X. Political connections of the board of directors and credit financing: evidence from Chinese private enterprises.[J]. Accounting & Finance, 2018, 57(5):1481-1516.
[107] SAEED A, BELGHITAR Y, CLARK E. Political Connections and Leverage: Firm-level Evidence from Pakistan.[J]. Managerial and Decision Economics, 2015, 36(6): 364-383.
[108] MITCHELL K, WALKER M D. Bankers on boards, financial constraints, and financial distress [J]. New York: SSRN, 2008, 1.
[109] YANG J, LIAN J, LIU X. Political connections, bank loans and firm value[J]. Nankai Business Review International, 2012, 3: 376-397.
[110] MCCULLOCH W S, PITTS W. A Logical Calculus of the Ideas Immanent in Nervous Activity[J]. Journal of Symbolic Logic, 1943, 9: 49-50.
[111] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[J]. Conference on Machine Learning (ICML), 2010: 807-814.
[112] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)[EB/OL]. 2016. https://arxiv.org/abs/1511.07289.
[113] RUMELHART D, HINTON G, WILLIAMS R. Learning Internal Representations by Error Propagation[M]//Readings in Cognitive Science. Morgan Kaufmann, 1988: 399-421.
[114] GIROSI F, JONES M, POGGIO T. Regularization Theory and Neural Networks Architectures[J]. Neural Computation, 1995, 7(2): 219-269.
[115] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. IEEE Transactions on Neural Networks, 1989, 2(5): 359-366.
[116] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[117] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-377.
[118] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. PMLR, 2015: 448-456.
[119] HOCHREITER S. Untersuchungen zu dynamischen neuronalen Netzen[J]. Diploma, Technische Universität München, 1991, 91(1).
[120] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization.[J]. Journal of machine learning research, 2011, 12(7).
[121] TIELEMAN T, HINTON G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012.
[122] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[123] SUNDARARAJAN M, TALY A, YAN Q. Axiomatic attribution for deep networks[C]//International conference on machine learning. PMLR, 2017: 3319-3328.
[124] SHAPLEY L S, et al. A value for n-person games[M]. Princeton University Press Princeton, 1953.
[125] YOUNG H P. Monotonic solutions of cooperative games[J]. International Journal of Game Theory, 1985, 14(2): 65-72.
[126] LUNDBERG S M, ERION G, CHEN H, et al. Explainable AI for trees: From local explanations to global understanding[A]. 2019.
[127] 李明耀, 杨静. 基于依存分析的开放式中文实体关系抽取方法[J]. 计算机工程, 2016, 42 (06): 201-207.
[128] TESNIÈRE L. Elements of structural syntax[M]. John Benjamins Publishing Company, 2015.
[129] QIU L, ZHANG Y, P. J, et al. Multi-view Chinese treebanking[C]//In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. 2014: 257–268.
[130] 闫博. 基于HanLP 关键词抽取与句法分析的图谱构建[J]. 电子元器件与信息技术, 2022, 6(09): 77-80+84.
[131] CHE W, LI Z, LIU T. Ltp: A chinese language technology platform[C]//Coling 2010: demonstrations.2010: 13-16.
[132] CHEN D, MANNING C D. A fast and accurate dependency parser using neural networks[C]//Proceedings of the 2014 conference on empirical methods in natural language processing(EMNLP). 2014: 740-750.
[133] NIVRE J. Incrementality in deterministic dependency parsing[C]//Proceedings of the workshop on incremental parsing: Bringing engineering and cognition together. 2004: 50-57.
[134] ZHANG Y, NIVRE J. Transition-based dependency parsing with rich non-local features[C]//Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies. 2011: 188-193.
[135] BUNESCU R, MOONEY R. A shortest path dependency kernel for relation extraction[C]//Proceedings of human language technology conference and conference on empirical methods in natural language processing. 2005: 724-731.
[136] SHARMA A, SWAMINATHAN R, YANG H. A verb-centric approach for relationship extraction in biomedical text[C]//2010 IEEE Fourth International Conference on Semantic Computing. IEEE, 2010: 377-385.
[137] HUTCHINSON J M, LO A W, POGGIO T. A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks[J]. Journal of Finance, 1994, 49(3): 851-889.
[138] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[139] YAKOOB M Y, DURHAM N. An empirical analysis of option valuation techniques using stock index options[J]. The working study, Duke University, Durham, 2002.
[140] GUPTA A, LIANG B. Do hedge funds have enough capital? A value-at-risk approach[J]. Journal of Financial Economics, 2005, 77(1): 219-253.
[141] FORTUNE P. Anomalies in option pricing: The Black-Scholes model revisited[J]. New England Economic Review, 1996: 17-41.
[142] LIN M, CHEN Q, YAN S. Network in network[EB/OL]. 2013. https://arxiv.org/abs/1312.4400.
[143] FRANK M Z, GOYAL V K. Capital structure decisions: which factors are reliably important?[J]. Financial Management, 2009, 38: 1-37.
[144] MYERS S, MAJLUF N. Corporate financing and investment decisions when firms have information that investors do not have[J]. Journal of Financial Economics, 1984, 13: 187-221.
[145] MATEMILOLA B T, BANY-ARIFFIN A N, NASSIR A M, et al. Moderating Effects of Firm Age on the Relationship between Debt and Stock Returns[J]. Journal of Asia-Pacific Business, 2017, 18: 81-96.
[146] DURU A, MANSI S A, REEB D M. Earnings-based bonus plans and the agency costs of debt[J]. Journal of Accounting and Public Policy, 2005, 24(5): 431-447.
[147] JENSEN M C, MURPHY K J. Performance Pay and Top-Management Incentives[J]. Journal of Political Economy, 1990, 98(2): 225-264.
[148] CHAKRABORTI R, DAHIYA S, GE L, et al. Credit Stimulus, Executive Ownership, and Firm Leverage[J]. Management Science, 2022, 68(10): 7682-7700.
[149] BRINDHA S, PRABHA K, SUKUMARAN S. A survey on classification techniques for text mining[C]//2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS): volume 01. 2016: 1-5.
[150] ALONSO M, PALMA N, SIMON-YARZA B. The value of political connections: evidence from China’s anti-corruption campaign[J]. Journal of Institutional Economics, 2022, 18(5): 785-805.
[151] BORAH B J, BASU A. Highlighting differences between conditional and unconditional quantile regression approaches through an application to assess medication adherence[J]. Health Economics, 2013, 22(9): 1052-1070.
[152] KHANAL A R, MISHRA S K, HONEY U. Certified organic food production, financial performance, and farm size: An unconditional quantile regression approach[J]. Land Use Policy, 2018, 78: 367-376.
[153] MARKOWITZ S, ADAMS E K, LEWITT M J, et al. Competitive effects of scope of practice restrictions: Public health or public harm?[J]. Journal of Health Economics, 2017, 55: 201-218.
[154] KOENKER R, HALLOCK K F. Quantile Regression[J]. The Journal of economic perspectives, 2001, 15(4): 143-156.
[155] FIRPO S, FORTIN N M, LEMIEUX T. Unconditional Quantile Regressions: volume 77[Z]. 2009: 953-973.
[156] MA W, RENWICK A, GREIG B. Modelling the heterogeneous effects of stocking rate on dairy production: an application of unconditional quantile regression with fixed effects[J]. Applied economics, 2019, 51(43): 4769-4780.
[157] BORGEN N T. Fixed Effects in Unconditional Quantile Regression[J]. The Stata Journal, 2016, 16(2): 403-415.
[158] CAMERON A C. Microeconometrics using Stata[M]. College Station, Tex. Stata Press, 2010.
[159] FIRTH M, FUNG P M Y, RUI O M. Ownership, two-tier board structure, and the informativeness of earnings–Evidence from China[J]. Journal of Accounting and Public Policy, 2007, 26 (4): 463-496.
[160] XU Y. Anticorruption regulation and firm value: Evidence from a shock of mandated resignation of directors in China[J]. Journal of Banking & Finance, 2018, 92: 67-80.
[161] 高国力, 李天健, 孙文迁. 改革开放四十年我国区域发展的成效、反思与展望[J]. 经济纵横, 2018(10): 26-35+2.

所在学位评定分委会
金融
国内图书分类号
F224
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544733
专题商学院_金融系
推荐引用方式
GB/T 7714
甘丽蓉. 基于机器学习的期权定价以及债务融资影响因素挖掘[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930724-甘丽蓉-金融系.pdf(6387KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[甘丽蓉]的文章
百度学术
百度学术中相似的文章
[甘丽蓉]的文章
必应学术
必应学术中相似的文章
[甘丽蓉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。