中文版 | English
题名

选区激光熔化铝合金表面粗糙度的实验 研究与人工神经网络预测

其他题名
Experimental study on surface roughness of selective laser melting aluminum alloy and prediction by artificial neural network
姓名
姓名拼音
SHAN Xuepeng
学号
12132031
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
严明
导师单位
材料科学与工程系
外机构导师
毕云杰
外机构导师单位
季华实验室
论文答辩日期
2023-05-17
论文提交日期
2023-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

AlSi10Mg(铝合金牌号ZL114)是目前在增材制造中应用最广泛的铝合金,在航空增材制造中被广泛应用。但该合金打印的样品表面粗糙度和表面质量表现并不如316L不锈钢、Ti合金等一些较常用的增材制造合金,研究如何控制与改善AlSi10Mg打印样品的表面粗糙度和表面质量在实际应用中具有显著价值。

本文对影响AlSi10Mg表面粗糙度的多种因素进行了研究,实验表明,在工艺参数中,激光功率、扫描速度、扫描间距会对打印样品的表面粗糙度产生影响,其中扫描间距的影响最为显著,在本实验中,最优的扫描间距为0.12µm。提升激光体能量密度且选择合适的扫描间距能够降低打印样品的表面粗糙度。

本文还研究了倾角角度、偏置系数、风场方向对表面粗糙度的影响。倾角会带来台阶效应增加样品的表面粗糙度;不合理的偏置系数容易导致样品的侧表面标识与纹理残缺不清;风场会加剧飞溅粉末对于样品的影响进而影响打印样品的表面粗糙度。

机器学习方面,本文还利用了Pytorch搭建了人工神经网络,对样品的表面粗糙度数值以及样品不同测量点的表面粗糙度方差进行了预测。通过对模型的修缮与改进,提高了预测的准确性,降低了过拟合的可能性。利用建立的模型能够进行较为准确的预测,能够打印出具有合适表面粗糙度且表现稳定的样品。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 徐刚,夏明莉,王治国,等. 喷丸试件表面粗糙度与残余应力相关性分析[J]. 现代制造技术与装备,2021,57(3):96-97.
[2] 李斌,张江伟,马清妍. 航空发动机风扇叶片表面粗糙度影响的研究 [J]. 机械制造,2021,59(10):9-12.
[3] 陈光军,韩松鑫,潘佳琦,等. 切削加工表面粗糙度影响因素及预测建模综述[J]. 机床与液压,2020,48(13):185-188.
[4] FANG R C, WANG B X, PAN J J, et al. Effect of concrete surface roughness on shear strength of frozen soil–concrete interface based on 3D printing technology[J].Construction and Building Materials, 2023,366:130158.
[5] 魏杰,李耀明,张煌,等. 基于 SIED 深孔钻表面粗糙度影响因素的研究[J]. 组合机床与自动化加工技术,2016,8:19-21.
[6] 张洪萍,罗凯文,张天宇,等. 国内外增材制造发展政策及标准建设研究[J]. 中国高新科技,2022,9:104-105.
[7] LU Z L, CAO J W, SONG Z Q, et al. Research progress of ceramic matrix composite parts based on additive manufacturing technology [J]. Virtual and Physical Prototyping, 2019,14(4):333-348.
[8] 张 立浩 ,钱 波,张朝 瑞,等 . 金属 增材 制造技 术发展 趋势 综述 [J]. 材 料 科学 与工艺,2022,30(1):42-52.
[9] 于忠斌 , 张 中 标 , 尹 婷 婷 , 等 . 金 属 3D 打 印 技 术 概 述 [J]. 机械管理开发,2022,37(1):266-268.
[10] 王旭葆,曲波. 基于 SLM 工艺的航空支架优化设计[J]. 航空制造技术,2017,20:68-72.
[11] 珠三角首台超大尺寸 SLM 金属 3D 打印设备研制成功[J]. 模具工业,2022,48(4):前插 3.
[12] 陈光霞,王泽敏,关凯,等. 工艺参数对 SLM 激光快速成型件表面粗糙度的影响[J]. 制造技术与机床,2009,12:86-89.
[13] 刘睿诚,杨永强,王迪. 选区激光熔化成型金属零件上表面粗糙度的研究[J]. 激光技术,2013,4:425-430.
[14] SELTZMAN A H, WUKITCH S J. Surface roughness and finishing techniques in selective laser melted GRCop-84 copper for an additive manufactured lower hybrid current drive launcher[J]. Fusion Engineering and Design,2020,160:1-20.
[15] SNEDDON S, XU Y, DIXON M, et al. Sensitivity of material failure to surface roughness: A study on titanium alloys Ti64 and Ti407[J]. Materials & Design,2021,200: 1094.
[16] 曹永清. SLM 成形 ZL114A 铝合金尺寸精度及表面粗糙度研究[D]. 南昌: 南昌航空大学, 2020.
[17] 黄卫东,张伟杰,练国富,等. SLM 成形工艺参数对 316L 不锈钢成形件表面粗糙度的影响[J]. 应用激光,2020,40(1):35-41.
[18] 田杰,戚文军,黄正华,等. SLM 打印成形 CoCrMo 合金牙冠的表面粗糙度和硬度优化[J]. 钢铁研究学报,2018,30(5):411-417.
[19] 王昌飞,门正兴,杜青泉,等. 激光选区熔化成形件表面粗糙度控制[J]. 大型铸锻件,2018,6:41-43.
[20] 魏建锋,武美萍,韩基泰. 扫描策略对 SLM 成形 Inconel 718 表面质量的影响机制[J]. 应用激光,2020,40(4):621-625.
[21] 安超,张远明,张金松. 选区激光熔化工艺参数对钴铬合金材料成型件致密度与表面粗糙度的影响规律研究[J]. 应用激光,2018,38(3):328-333.
[22] 赵进炎,仇毅,刘富荣,等. SLM 成型医用钴铬合金的表面粗糙度与致密度研究[J]. 应用激光,2014,34(6):524-527.
[23] 张润,王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版),2016,23(2):10-18,24.
[24] 陈凯,朱钰. 机器学习及其相关算法综述[J]. 统计与信息论坛,2007,22(5):105-112.
[25] 李沁璘. 人工神经网络综述[J]. 科学与信息化,2021,7:181-182.
[26] ZUPAN B, DEMŠAR J, KATTEN W M, et al. Machine learning for survival analysis: a case study on recurrence of prostate cancer[J]. Artificial Intelligence in Medicine,2000,20: 59-75.
[27] ZHANG R Z, JIA X J, QIAN Q F. Analysis of lower-boundary climate factors contributing to the summer heatwave frequency over eastern Europe using a machine -learning model[J]. 大气和海洋科学快报(英文版),2022,15(5):49-54.
[28] KISTENEV Y V, VRAZHNOV D A, SHNAIDER E E, et al. Predictive models for COVID-19 detection using routine blood tests and machine learning,Heliyon,2022,8(10) : e11185-e11185.
[29] 景艳龙,李杰,石文天,等. 基于神经网络的选区激光熔化残余应力预测[J]. 强激光与粒子束,2021,33(10):140-147.
[30] YONG R, QIAN W, PANAGIOTIS M. A Physics-Informed Two-Level Machine Learning Model for Predicting Melt-Pool Size in Laser Powder Bed Fusion[J]. Journal of Dynamic Systems, Measurement, and Control,2021,143(12):121006.
[31] GUO S H, AGARWAL M, COOPER C, et al. Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm[J]. Journal of Manufacturing Systems,2022,65:145-163.
[32] CIAMPAGLIA A, TRIDELLO A, PAOLINO D S, Data driven method for predicting the effect of process parameters on the fatigue response of additive manufactured AlSi10Mg parts, International Journal of Fatigue,2023,170:107500.
[33] GOGULAMUDI B, BANDLAMUDI R K, BHANAVATHU B, et al. A Prediction Model for Additive Manufacturing of AlSi10Mg Alloy[J], Trans Indian Inst Met, 2022,76(2) : 571-579.
[34] FOTOVVATI B, CHOU K. Build surface study of single-layer raster scanning in selective laser melting: Surface roughness prediction using deep learning[J],Manufacturing Letters,2022,33:701-711.
[35] LI Z X, ZHANG Z Y, SHI J C, et al. Prediction of surface roughness in extrusion based additive manufacturing with machine learning[J]. Robotics and Computer-Integrated Manufacturing,2019,57: 488-495.
[36] 吴淑婷 ,张 鲲 . 改 进 人 工 神 经 网 络 的 激 光 立 体 成 形 表 面 质 量 预 测 [J]. 激光杂志,2016,37(8):33-36.
[37] YANG D H, MA L, HUANG W D. Component′s Surface Quality Predictions by Laser Rapid Forming Based on Artificial Neural Networks [J]. Chinese Journal of Lasers,2011,38(8):83-88.
[38] TANG P J, HE X L, YANG B, et al. Microstructure and Properties of AlSi10Mg Powder for Selective Laser Melting [J]. 航空材料学报,2018,38(1):47-53.
[39] HEBB, D.O. The organization of behavior[M]. New York: Wiley & Sons,1949: 62-78.
[40] Where Does AlphaGo Go: From Church-Turing Thesis to AlphaGo Thesis and Beyond[J]. 自动化学报(英文版),2016,3(2):113-120.
[41] 张继祥,刘嘉源,李欢,等. AlSi10Mg 合金选区激光熔化大层厚成型及热处理工艺参数研究[J]. 重庆交通大学学报(自然科学版),2022,41(8):149-156.
[42] DUAN J, WU J, DUANMU F Y, et al. Method for Measuring Laser Energy Density Distribution [J]. 吉林大学学报(理学版),2009,47(2):311-316.
[43] WANG Y H, HU Q, ZHANG J H, et al. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg [J]. Powder Metallurgy Technology,2022,40(2):152-158.
[44] CHEN K Y, XU L M, GAN J, et al. Effects of Laser Power on Microstructure and Mechanical Properties of Selective Laser Melted AlSi10Mg [J]. LASER & OPTOELECTRONICS PROGRESS,2021,58(13):339-347.
[45] 佚名. 详解梯度下降算法[EB/OL].
[2021-08-20]. http://t.csdn.cn/daTWr.
[46] 佚名. loss 函数之 SoftMarginLoss[EB/OL].
[2021-06-19]. http://t.csdn.cn/CQrgI.
[47] 黄杰亭. 基于深度学习的滚动轴承剩余寿命预测方法研究及其应用 [D]. 南昌:东华理工大学,2022.

所在学位评定分委会
材料科学与工程
国内图书分类号
TG146.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544737
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
单雪鹏. 选区激光熔化铝合金表面粗糙度的实验 研究与人工神经网络预测[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132031-单雪鹏-材料科学与工程(3140KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[单雪鹏]的文章
百度学术
百度学术中相似的文章
[单雪鹏]的文章
必应学术
必应学术中相似的文章
[单雪鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。