[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: a cancer journal for clinicians, 2018, 68(6): 394-424.
[2] CHEN Y P, CHAN A T C, LE Q T, et al. Nasopharyngeal carcinoma [J]. Lancet (London, England), 2019, 394(10192): 64-80.
[3] TANG L L, CHEN W Q, XUE W Q, et al. Global trends in incidence and mortality of nasopharyngeal carcinoma [J]. Cancer letters, 2016, 374(1): 22-30.
[4] WEI K R, ZHENG R S, ZHANG S W, et al. Nasopharyngeal carcinoma incidence and mortality in China, 2013 [J]. Chinese journal of cancer, 2017, 36(1): 90.
[5] THOMPSON L. World Health Organization classification of tumours: pathology and genetics of head and neck tumours [J]. Ear, nose, & throat journal, 2006, 85(2): 74.
[6] MARKS J E, PHILLIPS J L, MENCK H R. The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma [J]. Cancer, 1998, 83(3): 582-8.
[7] Yao KT. Epidemiological characteristics and presumed carcinogenics of nasopharyngeal carcinoma in hunan province- based on 1973-1975 cancer mortality surgery. Bulletin of Hunan Medical College[J]. 1982, 7:10-7.
[8] MCKENZIE J, EL-GUINDY A. Epstein-Barr Virus Lytic Cycle Reactivation [J]. Current topics in microbiology and immunology, 2015, 391: 237-61.
[9] Comprehensive molecular characterization of gastric adenocarcinoma [J]. Nature, 2014, 513(7517): 202-9.
[10] JHA H C, PEI Y, ROBERTSON E S. Epstein-Barr Virus: Diseases Linked to Infection and Transformation [J]. Frontiers in microbiology, 2016, 7: 1602.
[11] YU M C, YUAN J M. Epidemiology of nasopharyngeal carcinoma [J]. Seminars in cancer biology, 2002, 12(6): 421-9.
[12] BEI J X, LI Y, JIA W H, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci [J]. Nature genetics, 2010, 42(7): 599-603.
[13] TANG M, LAUTENBERGER J A, GAO X, et al. The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove [J]. PLoS genetics, 2012, 8(11): e1003103.
[14] TSE K P, SU W H, CHANG K P, et al. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3 [J]. American journal of human genetics, 2009, 85(2): 194-203.
[15] SU W H, HILDESHEIM A, CHANG Y S. Human leukocyte antigens and epstein-barr virus-associated nasopharyngeal carcinoma: old associations offer new clues into the role of immunity in infection-associated cancers [J]. Frontiers in oncology, 2013, 3: 299.
[16] XUE W Q, QIN H D, RUAN H L, et al. Quantitative association of tobacco smoking with the risk of nasopharyngeal carcinoma: a comprehensive meta-analysis of studies conducted between 1979 and 2011 [J]. American journal of epidemiology, 2013, 178(3): 325-38.
[17] LONG M, FU Z, LI P, et al. Cigarette smoking and the risk of nasopharyngeal carcinoma: a meta-analysis of epidemiological studies [J]. BMJ open, 2017, 7(10): e016582.
[18] CHANG E T, LIU Z, HILDESHEIM A, et al. Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China [J]. American journal of epidemiology, 2017, 185(12): 1272-80.
[19] CHANG E T, YE W, ZENG Y X, et al. The Evolving Epidemiology of Nasopharyngeal Carcinoma [J]. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2021, 30(6): 1035-47.
[20] CHEN Y, CHANG E T, LIU Z, et al. Residence characteristics and risk of nasopharyngeal carcinoma in southern China: A population-based case-control study [J]. Environment international, 2021, 151: 106455.
[21] LI W, RAY R M, GAO D L, et al. Occupational risk factors for nasopharyngeal cancer among female textile workers in Shanghai, China [J]. Occupational and environmental medicine, 2006, 63(1): 39-44.
[22] BEIGZADEH Z, POURHASSAN B, KALANTARY S, et al. Occupational exposure to wood dust and risk of nasopharyngeal cancer: A systematic review and meta-analysis [J]. Environmental research, 2019, 171: 170-6.
[23] CAO S M, SIMONS M J, QIAN C N. The prevalence and prevention of nasopharyngeal carcinoma in China [J]. Chinese journal of cancer, 2011, 30(2): 114-9.
[24] CHAN A T, HSU M M, GOH B C, et al. Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma [J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2005, 23(15): 3568-76.
[25] FANG W, ZHANG J, HONG S, et al. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy [J]. Oncotarget, 2014, 5(23): 12189-202.
[26] HSU C, LEE S H, EJADI S, et al. Safety and Antitumor Activity of Pembrolizumab in Patients With Programmed Death-Ligand 1-Positive Nasopharyngeal Carcinoma: Results of the KEYNOTE-028 Study [J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2017, 35(36): 4050-6.
[27] MA B B Y, LIM W T, GOH B C, et al. Antitumor Activity of Nivolumab in Recurrent and Metastatic Nasopharyngeal Carcinoma: An International, Multicenter Study of the Mayo Clinic Phase 2 Consortium (NCI-9742) [J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2018, 36(14): 1412-8.
[28] LUO W. Nasopharyngeal carcinoma ecology theory: cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem [J]. Theranostics, 2023, 13(5): 1607-31.
[29] COX T R. The matrix in cancer [J]. Nature reviews Cancer, 2021, 21(4): 217-38.
[30] KAI F, DRAIN A P, WEAVER V M. The Extracellular Matrix Modulates the Metastatic Journey [J]. Developmental cell, 2019, 49(3): 332-46.
[31] YAP L, TAY H G, NGUYEN M T X, et al. Laminins in Cellular Differentiation [J]. Trends in cell biology, 2019, 29(12): 987-1000.
[32] LI Y, GUAN B, LIU J, et al. MicroRNA-200b is downregulated and suppresses metastasis by targeting LAMA4 in renal cell carcinoma [J]. EBioMedicine, 2019, 44: 439-51.
[33] ZHANG H, PAN Y Z, CHEUNG M, et al. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway [J]. Cell death & disease, 2019, 10(3): 230.
[34] MALINDA K M, KLEINMAN H K. The laminins [J]. The international journal of biochemistry & cell biology, 1996, 28(9): 957-9.
[35] COLOGNATO H, YURCHENCO P D. Form and function: the laminin family of heterotrimers [J]. Developmental dynamics : an official publication of the American Association of Anatomists, 2000, 218(2): 213-34.
[36] DEVISME L, BOUCHET C, GONZALèS M, et al. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies [J]. Brain : a journal of neurology, 2012, 135(Pt 2): 469-82.
[37] RADMANESH F, CAGLAYAN A O, SILHAVY J L, et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities [J]. American journal of human genetics, 2013, 92(3): 468-74.
[38] TESSIER-LAVIGNE M, GOODMAN C S. The molecular biology of axon guidance [J]. Science (New York, NY), 1996, 274(5290): 1123-33.
[39] RAN T, CHEN Z, ZHAO L, et al. LAMB1 Is Related to the T Stage and Indicates Poor Prognosis in Gastric Cancer [J]. Technology in cancer research & treatment, 2021, 20: 15330338211004944.
[40] LEE H, KIM W J, KANG H G, et al. Upregulation of LAMB1 via ERK/c-Jun Axis Promotes Gastric Cancer Growth and Motility [J]. International journal of molecular sciences, 2021, 22(2).
[41] UEBERHAM E, LöW R, UEBERHAM U, et al. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis [J]. Hepatology (Baltimore, Md), 2003, 37(5): 1067-78.
[42] LIM S O, PARK S J, KIM W, et al. Proteome analysis of hepatocellular carcinoma [J]. Biochemical and biophysical research communications, 2002, 291(4): 1031-7.
[43] OZAKI I, YAMAMOTO K, MIZUTA T, et al. Differential expression of laminin receptors in human hepatocellular carcinoma [J]. Gut, 1998, 43(6): 837-42.
[44] PETZ M, THEM N C, HUBER H, et al. PDGF enhances IRES-mediated translation of Laminin B1 by cytoplasmic accumulation of La during epithelial to mesenchymal transition [J]. Nucleic acids research, 2012, 40(19): 9738-49.
[45] GOVAERE O, PETZ M, WOUTERS J, et al. The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma [J]. Oncogene, 2017, 36(47): 6605-16.
[46] CHEN Q, LU G, CAI Y, et al. MiR-124-5p inhibits the growth of high-grade gliomas through posttranscriptional regulation of LAMB1 [J]. Neuro-oncology, 2014, 16(5): 637-51.
[47] DIAO B, YANG P. Comprehensive Analysis of the Expression and Prognosis for Laminin Genes in Ovarian Cancer [J]. Pathology oncology research : POR, 2021, 27: 1609855.
[48] LIN Q, LIM H S, LIN H L, et al. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer [J]. Proteomics, 2015, 15(22): 3905-20.
[49] WENZEL E S, SINGH A T K. Cell-cycle Checkpoints and Aneuploidy on the Path to Cancer [J]. In vivo (Athens, Greece), 2018, 32(1): 1-5.
[50] BARNUM K J, O'CONNELL M J. Cell cycle regulation by checkpoints [J]. Methods in molecular biology (Clifton, NJ), 2014, 1170: 29-40.
[51] LARA-GONZALEZ P, WESTHORPE F G, TAYLOR S S. The spindle assembly checkpoint [J]. Current biology : CB, 2012, 22(22): R966-80.
[52] LI X, NICKLAS R B. Mitotic forces control a cell-cycle checkpoint [J]. Nature, 1995, 373(6515): 630-2.
[53] RIEDER C L, COLE R W, KHODJAKOV A, et al. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores [J]. The Journal of cell biology, 1995, 130(4): 941-8.
[54] MUSACCHIO A, SALMON E D. The spindle-assembly checkpoint in space and time [J]. Nature reviews Molecular cell biology, 2007, 8(5): 379-93.
[55] MUSACCHIO A, DESAI A. A Molecular View of Kinetochore Assembly and Function [J]. Biology, 2017, 6(1).
[56] WATSON E R, BROWN N G, PETERS J M, et al. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division [J]. Trends in cell biology, 2019, 29(2): 117-34.
[57] BARFORD D. Structural interconversions of the anaphase-promoting complex/cyclosome (APC/C) regulate cell cycle transitions [J]. Current opinion in structural biology, 2020, 61: 86-97.
[58] SCHROCK M S, STROMBERG B R, SCARBERRY L, et al. APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis [J]. Seminars in cancer biology, 2020, 67(Pt 2): 80-91.
[59] SUDAKIN V, CHAN G K, YEN T J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2 [J]. The Journal of cell biology, 2001, 154(5): 925-36.
[60] FAESEN A C, THANASOULA M, MAFFINI S, et al. Basis of catalytic assembly of the mitotic checkpoint complex [J]. Nature, 2017, 542(7642): 498-502.
[61] KULUKIAN A, HAN J S, CLEVELAND D W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding [J]. Developmental cell, 2009, 16(1): 105-17.
[62] SIMONETTA M, MANZONI R, MOSCA R, et al. The influence of catalysis on mad2 activation dynamics [J]. PLoS biology, 2009, 7(1): e10.
[63] LARA-GONZALEZ P, PINES J, DESAI A. Spindle assembly checkpoint activation and silencing at kinetochores [J]. Seminars in cell & developmental biology, 2021, 117: 86-98.
[64] YU H. Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model [J]. The Journal of cell biology, 2006, 173(2): 153-7.
[65] ELLIS H M, HORVITZ H R. Genetic control of programmed cell death in the nematode C. elegans [J]. Cell, 1986, 44(6): 817-29.
[66] ELLIS R E, YUAN J Y, HORVITZ H R. Mechanisms and functions of cell death [J]. Annual review of cell biology, 1991, 7: 663-98.
[67] KASHYAP D, GARG V K, GOEL N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis [J]. Advances in protein chemistry and structural biology, 2021, 125: 73-120.
[68] PARK J H, ARAKAWA-TAKEUCHI S, JINNO S, et al. Rho-associated kinase connects a cell cycle-controlling anchorage signal to the mammalian target of rapamycin pathway [J]. The Journal of biological chemistry, 2011, 286(26): 23132-41.
[69] ZHU X, OHTSUBO M, BöHMER R M, et al. Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein [J]. The Journal of cell biology, 1996, 133(2): 391-403.
[70] ASSOIAN R K, SCHWARTZ M A. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression [J]. Current opinion in genetics & development, 2001, 11(1): 48-53.
[71] JONES M C, ZHA J, HUMPHRIES M J. Connections between the cell cycle, cell adhesion and the cytoskeleton [J]. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 2019, 374(1779): 20180227.
[72] ELBæK C R, PETROSIUS V, SøRENSEN C S. WEE1 kinase limits CDK activities to safeguard DNA replication and mitotic entry [J]. Mutation research, 2020, 819-820: 111694.
[73] GHEGHIANI L, LOEW D, LOMBARD B, et al. PLK1 Activation in Late G2 Sets Up Commitment to Mitosis [J]. Cell reports, 2017, 19(10): 2060-73.
[74] THIERY J P, ACLOQUE H, HUANG R Y, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5): 871-90.
[75] MASCHLER S, WIRL G, SPRING H, et al. Tumor cell invasiveness correlates with changes in integrin expression and localization [J]. Oncogene, 2005, 24(12): 2032-41.
[76] BAE Y H, MUI K L, HSU B Y, et al. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling [J]. Science signaling, 2014, 7(330): ra57.
[77] ARAGONA M, PANCIERA T, MANFRIN A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors [J]. Cell, 2013, 154(5): 1047-59.
[78] BERTRAN M T, SDELCI S, REGUé L, et al. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5 [J]. The EMBO journal, 2011, 30(13): 2634-47.
[79] RODRíGUEZ-FERNáNDEZ J L, GóMEZ M, LUQUE A, et al. The interaction of activated integrin lymphocyte function-associated antigen 1 with ligand intercellular adhesion molecule 1 induces activation and redistribution of focal adhesion kinase and proline-rich tyrosine kinase 2 in T lymphocytes [J]. Molecular biology of the cell, 1999, 10(6): 1891-907.
[80] FIELDING A B, DOBREVA I, MCDONALD P C, et al. Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization [J]. The Journal of cell biology, 2008, 180(4): 681-9.
[81] PETRIDOU N I, SKOURIDES P A. FAK transduces extracellular forces that orient the mitotic spindle and control tissue morphogenesis [J]. Nature communications, 2014, 5: 5240.
[82] KUMAR A, MAZZANTI M, MISTRIK M, et al. ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress [J]. Cell, 2014, 158(3): 633-46.
[83] ZHU H M, FEI Q, QIAN L X, et al. Identification of key pathways and genes in nasopharyngeal carcinoma using bioinformatics analysis [J]. Oncology letters, 2019, 17(5): 4683-94.
[84] PARKIN D M, MUIR C S. Cancer Incidence in Five Continents. Comparability and quality of data [J]. IARC scientific publications, 1992, (120): 45-173.
[85] AL-SARRAF M, LEBLANC M, GIRI P G, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099 [J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 1998, 16(4): 1310-7.
[86] LEE A W, FOO W, LAW S C, et al. Nasopharyngeal carcinoma: presenting symptoms and duration before diagnosis [J]. Hong Kong medical journal = Xianggang yi xue za zhi, 1997, 3(4): 355-61.
[87] GUO Z, ZHANG X, ZHU H, et al. TELO2 induced progression of colorectal cancer by binding with RICTOR through mTORC2 [J]. Oncology reports, 2021, 45(2): 523-34.
[88] JONES M C, ASKARI J A, HUMPHRIES J D, et al. Cell adhesion is regulated by CDK1 during the cell cycle [J]. The Journal of cell biology, 2018, 217(9): 3203-18.
[89] KAMRANVAR S A, RANI B, JOHANSSON S. Cell Cycle Regulation by Integrin-Mediated Adhesion [J]. Cells, 2022, 11(16).
[90] MIRANTI C K, BRUGGE J S. Sensing the environment: a historical perspective on integrin signal transduction [J]. Nature cell biology, 2002, 4(4): E83-90.
[91] SANJUáN X, FERNáNDEZ P L, MIQUEL R, et al. Overexpression of the 67-kD laminin receptor correlates with tumour progression in human colorectal carcinoma [J]. The Journal of pathology, 1996, 179(4): 376-80.
[92] MARTIGNONE S, MéNARD S, BUFALINO R, et al. Prognostic significance of the 67-kilodalton laminin receptor expression in human breast carcinomas [J]. Journal of the National Cancer Institute, 1993, 85(5): 398-402.
[93] TARABOLETTI G, BELOTTI D, GIAVAZZI R, et al. Enhancement of metastatic potential of murine and human melanoma cells by laminin receptor peptide G: attachment of cancer cells to subendothelial matrix as a pathway for hematogenous metastasis [J]. Journal of the National Cancer Institute, 1993, 85(3): 235-40.
[94] KOPS G, SNEL B, TROMER E C. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes [J]. Current biology : CB, 2020, 30(10): R589-r602.
[95] KOPS G J, WEAVER B A, CLEVELAND D W. On the road to cancer: aneuploidy and the mitotic checkpoint [J]. Nature reviews Cancer, 2005, 5(10): 773-85.
[96] HENRIQUES A C, RIBEIRO D, PEDROSA J, et al. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution [J]. Cancer letters, 2019, 440-441: 64-81.
修改评论