[1] MEALEY, M. R. A Method for Calculating Error Probabilities in a Radar CommunicationSystem[J]. IEEE Transactions on Space Electronics and Telemetry, 2007, 9(2): 37-42.
[2] COLEMAN J. Architecture for a demonstration radar-communication link[J]. NAVAL RE SEARCH LAB WASHINGTON DC, 1984.
[3] HUGHES P K, CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]//IEEE International Conference on Phased Array Systems & Technology. 2000.
[4] ANTONIK P, BONNEAU R, BROWN R, et al. Bistatic radar denial/embedded communicationsvia waveform diversity[C]//Radar Conference. 2001.
[5] 王毅凡, 周密, 宋志慧. 水下无线通信技术发展研究[J]. 通信技术, 2014, 47(6): 6.
[6] 曾凤娇, 杨康建, 晏旭, 等. 水下激光通信系统研究进展[J]. 激光与光电子学进展, 2021, 58(3): 12.
[7] 王海斌, 汪俊, 台玉朋, 等. 水声通信技术研究进展与技术水平现状[J]. 信号处理, 2019, 35(9): 9.
[8] 卢俊, 张群飞, 史文涛, 等. 探测通信一体化研究现状与发展趋势[J]. 信号处理, 2019, 35(9): 12.
[9] 代爽玲, 张汉泉, 韦成龙, 等. 单点检波光纤水听器阵列在海域天然气水合物地震勘探中的应用初探[J]. 物探装备, 2018, 28(3): 7.
[10] 郝小柱, 张汉泉, 韦成龙, 等. 光纤水听器阵列应用于海洋地震勘探的试验[J]. 热带海洋学报, 2018, 37(3): 6.
[11] MENG Z, CHEN W, WANG J, et al. Recent progress in fiber-optic hydrophones[J]. PhotonicSensors, 2021, 11: 109-122.
[12] 荣民, 王兰勋, 薛林, 等. 基于光强度调制技术的光纤水听器[J]. 半导体光电, 2003(3): 4.
[13] TAKAHASHI N, YOSHIMURA K, TAKAHASHI S, et al. Characteristics of fiber Bragg grat ing hydrophone[J]. IEICE Transactions on Electronics, 2000, 83(3): 275-281.
[14] 张仁和, 倪明. 光纤水听器的原理与应用[J]. 物理, 2004, 33(7): 5.
[15] UDD E. Fiber-Optic Acoustic Sensor Based On The Sagnac Interferometer[C]//Techincal Sym posium. 1983.
[16] KRåKENES K, BLøTEKJAER K. Sagnac interferometer for underwater sound detection: noiseproperties[J]. Optics Letters, 1989, 14(20): 1152-4.
[17] KRAKENES K, BLOTEKJAER K. Effect of laser phase noise in Sagnac interferometers[J].Journal of Lightwave Technology, 1993, 11(4): 643-653.
[18] KNUDSEN S, BLOTEKJAER K. An ultrasonic fiber-optic hydrophone incorporating a push pull transducer in a Sagnac interferometer[J]. Journal of Lightwave Technology, 2002, 12(9):1696-1700.
[19] HAN K H, WANG J L, KIM B Y. Fiber-optic sensor array based on Sagnac interferometer withstable phase bias[J]. IEEE Photonics Technology Letters, 2001, 13(2): 148-150.
[20] VAKOC B J. Development of a novel Sagnac interferometer-based fiber-optic acoustic sensorarray.[D]. Stanford University., 2001.
[21] VAKOC B J, DIGONNET M, KINO G S. Demonstration of a 16-sensor time-division multiplexed Sagnac-interferometer-based acoustic sensor array with an amplified telemetry anda polarization-based biasing scheme[C]//Optical Fiber Sensors Conference Technical DigestOfs. 2002.
[22] BLIN S, BISHOP M, PARAMESWARAN K, et al. Pickup suppression in Sagnac-based fiber optic acoustic sensor array[J]. Journal of Lightwave Technology, 2006, 24(7): 2889-2897.
[23] DIGONNET M J, BISHOP M, KINO G S. Modeling and measurement of the acoustic leadsensitivity in Sagnac fiber sensor arrays[J]. Journal of lightwave technology, 2006, 24(7): 2877.
[24] 田军政. Sagnac 光纤水听器增敏技术研究[D]. 兰州交通大学, 2015.
[25] 王瑞琴, 杨远洪, 李慧. 基于 Sagnac 干涉仪的光纤耦合器耦合相移检测技术[J]. 中国激光,2022, 49(9): 8.
[26] STOJANOVIC M. Underwater acoustic communications[C]//Electro/95 International. Profes sional Program Proceedings. 1995.
[27] KIDA Y, SHIMURA T, DEGUCHI M. The relationship of time-reversal and multi-channeldecision feedback equalization in underwater acoustic communication[J]. Japanese Journal ofApplied Physics, 2019, 58(SG): SGGF03.
[28] 马璐, 李梦瑶, 刘凇佐, 等. 多波束分集深海远程正交频分复用水声通信[J]. 声学学报,2021, 47(5): 579-590.
[29] 杨国梁. “无人船 + 拖缆”机动型水下目标定位系统及算法关键技术研究[D]. 天津大学,2021.
[30] JOHN, PARKER, BURG. The Relationship Between Maximum Entropy Spectra And Maxi mum Likelihood Spectra[J]. Geophysics, 1972.
[31] CAPON J. High-Resolution Frequency-Wavenumber Spectrum Analysis[J]. Proceedings of theIEEE, 1969, 57(8): 1408-1418.
[32] SCHMIDT R, SCHMIDT R O. Multiple emitter location and signal parameter estimation[J].IEEE Transactions on Antennas & Propagation, 1986, 34(3): 276-280.
[33] DOGAN M C, MENDEL J M. Applications of cumulants to array processing .I. Apertureextension and array calibration[J]. Signal Processing IEEE Transactions on, 1995, 43(5): 1200-1216.
[34] CARLSON B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace Electronic Systems, 1988, 24(4): 397-401.
[35] 周镓杰. 基于压缩感知的水下 DOA 估计方法研究[D]. 华南理工大学, 2021.
[36] DU W, KIRLIN R L. Improved spatial smoothing techniques for DOA estimation of coherentsignals[J]. Signal Processing IEEE Transactions on, 1991, 39(5): 1208-1210.
[37] WAX M, SHAN T J, KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Trans.acoust.speech Signal Process, 1984, 32(4): 817-827.
[38] WANG H. Coherent signal-subspace processing for the detection and estimation of angles ofarrival of multiple wideband sources[J]. IEEE Trans. Acoust., Speech, Signal Proc, 1985, 33.
[39] LEE T S. Efficient Wideband Source Localization Using Beamforming Invariance Technique[J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1376-1387.
[40] JUN L, QIU-HUA L, CHUN-YU K, et al. DOA Estimation for Underwater Wideband WeakTargets Based on Coherent Signal Subspace and Compressed Sensing[J]. Sensors, 2018, 18(3):902.
[41] 鄢社锋, 马晓川, YAN, 等. 宽带波束形成器的设计与实现[J]. 声学学报, 2008, 33(4): 11.
[42] 张小飞, 徐大专. 一种新的频域自适应波束形成算法[J]. 兵工学报, 2006(3).
[43] XU Z, ZAKHAROV Y V, KODANEV V P. Space-time signal processing of OFDM signals infast-varying underwater acoustic channel[C]//Oceans 2007-Europe. IEEE, 2007: 1-6.
[44] LI J, ZAKHAROV Y V. Efficient Use of Space-Time Clustering for Underwater Acoustic Com munications[J]. IEEE Journal of Oceanic Engineering, 2017: 1-11.
[45] LI J, BAI Y, ZHANG Y, et al. Cross power spectral density based beamforming for underwateracoustic communications[J]. Ocean Engineering, 2020.
[46] 刘广钟, 夏晓丽. 水声通信中 RLS-LCMV 波束形成算法的研究[J]. 现代电子技术, 2011,34(021): 89-91.
[47] 翟昌宇. 波束形成技术及其在水声通信中的应用研究[D]. 上海交通大学, 2014.
[48] HE C, CHENG K, LI Q, et al. Beam diversity for single-carrier block transmission under water acoustic communications[C]//2016 IEEE International Conference on Signal Processing,Communications and Computing (ICSPCC). 2016.
[49] LI J, WANG J, WANG X, et al. Optimal Beamforming Design for Underwater Acoustic Commu nication With Multiple Unsteady Sub-Gaussian Interferers[J]. IEEE Transactions on VehicularTechnology, 2019, PP(99): 1-1.
[50] ZHANG W, ZHANG B, ZHOU F. Space–time receiver for spread spectrum communicationsystems with beam tracking[J]. IET radar, sonar & navigation, 2022(6): 16.
[51] SUN H, FENG X, WANG J, et al. Beamforming Design via Deep Learning for UnderwaterAcoustic Communications[C/OL]//2021 IEEE 21st International Conference on Communica tion Technology (ICCT). 2021: 576-580. DOI: 10.1109/ICCT52962.2021.9658110.
[52] 陆胤亨, 赵云江, 青昕, 等. 带内全双工水声通信空间域自干扰抵消方法[J]. 数字海洋与水下攻防, 2022, 5(6): 8.
[53] 周天敬, 陈岳承, 张燕. 多载波调制 OFDM 技术在无线图传系统中的应用[J]. 自动化应用,2018(12): 2.
[54] HUANG,KEQIN, WANG,KE, ZHAO,DELONG E A. A PAPR suppressing technology ofOFDM underwater acoustic communication based on fiber optic hydrophone[J]. Proceedingsof SPIE - The International Society for Optical Engineering, 2022.
[55] 汪裕民. OFDM 关键技术与应用[M]. OFDM 关键技术与应用, 2007.
[56] 张歆, 张小蓟. 水声通信理论与应用[M]. 水声通信理论与应用, 2012.
[57] 杨学志. 通信之道[M]. 通信之道, 2016.
[58] 周胜利、王昭辉、胡晓毅、任欢、籍顺心. 《OFDM 水声通信》[J]. 声学学报, 2020, 45(6): 1.
[59] 张贺勇, 王新宇, 杨杰, 等. 基于空间平滑的单次快拍 DOA 估计方法[J]. 火力与指挥控制,2021, 46(6): 6.
[60] 张小飞, 陈华伟, 仇小锋. 阵列信号处理及 MATLAB 实现[M]. 阵列信号处理及 MATLAB实现, 2015.
[61] KAY A. Operational amplifier noise techniques and tips for analyzing and reducing noise[J].Newnes, 2012.
[62] JIANG J, LIU H, DUAN F, et al. Self-Contained High-SNR Underwater Acoustic Signal Acqui sition Node and Synchronization Sampling Method for Multiple Distributed Nodes[J]. Sensors,2019, 19(21): 4749.
[63] 雷王微. SIMO 水声通信系统关键技术的研究与应用[D]. 厦门大学, 2013.
修改评论