[1] ASHFORD D L, GLASSON C, NORRIS M R, et al. Controlling Ground and Excited State Properties through Ligand Changes in Ruthenium Polypyridyl Complexes[J]. Inorganic Chemistry, 2014, 53(11):5637-5646.
[2] AL-RAWASHDEH N A F, CHATTERJEE S, KRAUSE J A, et al. Ruthenium bis-diimine complexes with a chelating thioether ligand: delineating 1, 10-phenanthrolinyl and 2, 2’-bipyridyl ligand substituent effects[J]. Inorganic Chemistry, 2014, 53(1): 294-307.
[3] RILLEMA D P, TAGHDIRI D G, JONES D S, et al. Structure and redox and photophysical properties of a series of ruthenium heterocycles based on the ligand 2, 3-bis(2-pyridyl) quinoxaline[J]. Inorganic Chemistry, 1987, 26(4): 578-585.
[4] ANDERSON P A, KEENE F R, MEYER T J, et al. Manipulating the properties of MLCT excited states[J]. Journal of the Chemical Society, Dalton Transactions, 2002: 3820-3831.
[5] ZHOU Q X, LEI W H, SUN Y, et al. [Ru(bpy)3-n(dpb)n]2+: Unusual photophysical property and efficient DNA photocleavage activity[J]. Inorganic Chemistry, 2010, 49(11): 4729-4731.
[6] SUN Q, MOSQUERA-VAZQUEZ S, SUFFREN Y, et al. On the role of ligand-field states for the photophysical properties of ruthenium(II) polypyridyl complexes[J]. Coordination Chemistry Reviews, 2015, 282: 87-99.
[7] JURIS A, BALZANI V, BARIGELLETTI F, et al. Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence[J]. Coordination Chemistry Reviews, 1988, 84: 85-277.
[8] THOMPSON D W, ITO A, MEYER T J. [Ru(bpy)3]2+* and other remarkable metal-to-ligand charge transfer (MLCT) excited states[J]. Pure and Applied Chemistry, 2013, 85(7): 1257-1305.
[9] DONGARE P, MYRON B D B, WANG L, et al. [Ru(bpy)3]2+∗ revisited. Is it localized or delocalized? How does it decay[J]. Coordination Chemistry Reviews, 2017, 345: 86-107.
[10] JURIS A, BALZANI V, BELSER P, et al. Characterization of the excited state properties of some new photosensitizers of the ruthenium(polypyridine) family[J]. Helvetica Chimica Acta, 1981, 64(7): 2175-2182.
[11] MARCUS R A. Chemical and electrochemical electron-transfer theory[J]. Annual Review of Physical Chemistry, 1964, 15(1): 155-196.
[12] ARNAUT L, BURROWS H. Chemical kinetics: from molecular structure to chemical reactivity[M]. Elsevier, 2006.
[13] SOUPART A, ALARY F, HEULLY J L, et al. Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states[J]. Coordination Chemistry Reviews, 2020, 408: 213184.
[14] WHITE J K, SCHMEHL R H, TURRO C. An overview of photosubstitution reactions of Ru(II) imine complexes and their application in photobiology and photodynamic therapy[J]. Inorganica Chimica Acta, 2017, 454: 7-20.
[15] LIU Y, HAMMITT R, LUTTERMAN D A, et al. Ru(II) complexes of new tridentate ligands: unexpected high yield of sensitized 1O2[J]. Inorganic Chemistry, 2009, 48(1): 375-385.
[16] ROQUE III J A, COLE H D, BARRETT P C, et al. Intraligand excited states turn a ruthenium oligothiophene complex into a light-triggered Ubertoxin with anticancer effects in extreme hypoxia[J]. Journal of the American Chemical Society, 2022, 144(18): 8317-8336.
[17] TANG M C, LI L K, LAI S L, et al. Design strategy towards horizontally oriented luminescent tetradentate-ligand-containing gold(III) systems[J]. Angewandte Chemie, 2020, 132(47): 21209-21217.
[18] LINCOLN R, KOHLER L, MONRO S, et al. Exploitation of long-lived 3IL excited states for metal–organic photodynamic therapy: verification in a metastatic melanoma model[J]. Journal of the American Chemical Society, 2013, 135(45): 17161-17175.
[19] KOIKE T, AKITA M. Visible-light radical reaction designed by Ru and Ir-based photoredox catalysis[J]. Inorganic Chemistry Frontiers, 2014, 1(8): 562-576.
[20] PRIER C K, RANKIC D A, MACMILLAN D W C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis[J]. Chemical Reviews, 2013, 113(7): 5322-5363.
[21] BELL J D, MURPHY J A. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents[J]. Chemical Society Reviews, 2021, 50(17): 9540-9685.
[22] ARIAS-ROTONDO D M, MCCUSKER J K. The photophysics of photoredox catalysis: a roadmap for catalyst design[J]. Chemical Society Reviews, 2016, 45(21): 5803-5820.
[23] GLASER F, WENGER O S. Recent progress in the development of transition-metal based photoredox catalysts[J]. Coordination Chemistry Reviews, 2020, 405: 213129.
[24] LI K, WAN Q, YANG C, et al. Air-stable blue phosphorescent tetradentate platinum(II) complexes as strong photo-reductant[J]. Angewandte Chemie, 2018, 130(43): 14325-14329.
[25] CABRERA-AFONSO M J, LU Z P, KELLY C B, et al. Engaging sulfinate salts via Ni/photoredox dual catalysis enables facile Csp2–SO2R coupling[J]. Chemical Science, 2018, 9(12): 3186-3191.
[26] YANG Q, ZHANG L, YE C, et al. Visible-light-promoted asymmetric cross-dehydrogenative coupling of tertiary amines to ketones by synergistic multiple catalysis[J]. Angewandte Chemie International Edition, 2017, 56(13): 3694-3698.
[27] RÖSSLER S L, JELIER B J, TRIPET P F, et al. Pyridyl radical cation for C-H amination of arenes[J]. Angewandte Chemie International Edition, 2019, 58(2): 526-531.
[28] RUFFONI A, JULIÁ F, SVEJSTRUP T D, et al. Practical and regioselective amination of arenes using alkyl amines[J]. Nature Chemistry, 2019, 11(5): 426-433
[29] JUNG H, KEUM H, KWEON J, et al. Tuning triplet energy transfer of hydroxamates as the nitrene precursor for intramolecular C(sp3)–H amidation[J]. Journal of the American Chemical Society, 2020, 142(12): 5811-5818.
[30] MAHMOOD Z, HE J, CAI S, et al. Tuning the photocatalytic performance of ruthenium(II) polypyridine complexes via ligand modification for visible-light-induced phosphorylation of tertiary aliphatic amines[J]. Chemistry-A European Journal, 2023, 29(1): e202202677.
[31] LEE S K, KONDO M, OKAMURA M, et al. Function-integrated Ru catalyst for photochemical CO2 reduction[J]. Journal of the American Chemical Society, 2018, 140(49): 16899-16903.
[32] HAN G, LI G, HUANG J, et al. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis[J]. Nature Communications, 2022, 13(1): 2288.
[33] ZHAO X, LIU J, FAN J, et al. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application[J]. Chemical Society Reviews, 2021, 50(6): 4185-4219.
[34] PHAM T C, NGUYEN V N, CHOI Y, et al. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy[J]. Chemical Reviews, 2021, 121(21): 13454-13619.
[35] PAPROCKA R, WIESE-SZADKOWSKA M, JANCIAUSKIENE S, et al. Latest developments in metal complexes as anticancer agents[J]. Coordination Chemistry Reviews, 2022, 452: 214307.
[36] MONRO S, COLON K L, YIN H, et al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433[J]. Chemical Reviews, 2018, 119(2): 797-828.
[37] ROQUE III J A, COLE H D, BARRETT P C, et al. Intraligand excited states turn a ruthenium oligothiophene complex into a light-triggered ubertoxin with anticancer effects in extreme hypoxia[J]. Journal of the American Chemical Society, 2022, 144(18): 8317-8336.
[38] QIAO L, LIU J, HAN Y, et al. Rational design of a lysosome-targeting and near-infrared absorbing Ru(II)–BODIPY conjugate for photodynamic therapy[J]. Chemical Communications, 2021, 57(14): 1790-1793.
[39] PAUL S, SAHOO S, SAHOO S, et al. Bichromophoric BODIPY and biotin tagged terpyridyl ruthenium(ii) complexes for cellular imaging and photodynamic therapy[J]. European Journal of Inorganic Chemistry, 2022: e202200487.
[40] ZHANG Q, WONG K M C. Photophysical, ion-sensing and biological properties of rhodamine-containing transition metal complexes[J]. Coordination Chemistry Reviews, 2020, 416: 213336.
[41] BÜHLER B, SCHOKOLOWSKI J, BENDEROTH A, et al. Avidity-based bright and photostable light-up aptamers for single-molecule mRNA imaging[J]. Nature Chemical Biology, 2023,19: 478-487.
[42] ZHENG Y, YE Z, ZHANG X, et al. Recruiting rate determines the blinking propensity of rhodamine fluorophores for super-resolution imaging[J]. Journal of the American Chemical Society, 2023, 145(9): 5125-5133.
[43] KOMPA J, BRUINS J, GLOGGER M, et al. Exchangeable HaloTag ligands for super-resolution fluorescence microscopy[J]. Journal of the American Chemical Society, 2023, 145(5): 3075-3083.
[44] GHOSH I, KÖNIG B. Chromoselective photocatalysis: controlled bond activation through light-color regulation of redox potentials[J]. Angewandte Chemie International Edition, 2016, 55(27): 7676-7679.
[45] BRANDL F, BERGWINKL S, ALLACHER C, et al. Consecutive photoinduced electron transfer (conPET): The mechanism of the photocatalyst rhodamine 6G[J]. Chemistry–A European Journal, 2020, 26(35): 7946-7954.
[46] SHIGEMITSU H, TANI Y, TAMEMOTO T, et al. Aggregation-induced photocatalytic activity and efficient photocatalytic hydrogen evolution of amphiphilic rhodamines in water[J]. Chemical Science, 2020, 11(43): 11843-11848.
[47] LIU C, ZHOU L, WEI F, et al. Versatile strategy to generate a rhodamine triplet state as mitochondria-targeting visible-light photosensitizers for efficient photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8797-8806.
[48] ZHOU L, WEI F, XIANG J, et al. Enhancing the ROS generation ability of a rhodamine-decorated iridium(III) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy[J]. Chemical Science, 2020, 11(44): 12212-12220.
[49] SULLIVAN B P, SALMON D J, MEYER T J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium[J]. Inorganic Chemistry, 1978, 17(12): 3334-3341.
[50] WACHTER E, HEIDARY D K, HOWERTON B S, et al. Light-activated ruthenium complexes photobind DNA and are cytotoxic in the photodynamic therapy window[J]. Chemical Communications, 2012, 48(77): 9649-9651.
[51] ARDO S, SUN Y, STANISZEWSKI A, et al. Stark effects after excited-state interfacial electron transfer at sensitized TiO2 nanocrystallites[J]. Journal of the American Chemical Society, 2010, 132(19): 6696-6709.
[52] O’DONNELL R M, SAMPAIO R N, LI G, et al. Photoacidic and photobasic behavior of transition metal compounds with carboxylic acid group(s)[J]. Journal of the American Chemical Society, 2016, 138(11): 3891-3903.
[53] ITO A, KOBAYASHI N, TEKI Y. Low-energy and long-lived emission from polypyridyl ruthenium(II) complexes having a stable-radical substituent[J]. Inorganic Chemistry, 2017, 56(7): 3794-3808.
[54] WEBER J M, RAWLS M T, MACKENZIE V J, et al. High energy and quantum efficiency in photoinduced charge separation[J]. Journal of the American Chemical Society, 2007, 129(2): 313-320.
[55] FAVEREAU L, MAKHAL A, PROVOST D, et al. Tris-bipyridine based dinuclear ruthenium(ii)–osmium(iii) complex dyads grafted onto TiO2 nanoparticles for mimicking the artificial photosynthetic Z-scheme[J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4778-4786.
[56] SHELDRICK G M. A short history of SHELX[J]. Acta Crystallographica Section A: Foundations of Crystallography, 2008, 64(1): 112-122.
[57] REDMOND R W, GAMLIN J N. A compilation of singlet oxygen yields from biologically relevant molecules[J]. Photochemistry and Photobiology, 1999, 70(4): 391-475.
[58] NAM J S, KANG M G, KANG J, et al. Endoplasmic reticulum-localized iridium(III) complexes as efficient photodynamic therapy agents via protein modifications[J]. Journal of the American Chemical Society, 2016, 138(34): 10968-10977.
[59] SETSUKINAI K, URANO Y, KAKINUMA K, et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species* 210[J]. Journal of Biological Chemistry, 2003, 278(5): 3170-3175.
[60] LEE L C C, LO K K W. Luminescent and photofunctional transition metal complexes: From molecular design to diagnostic and therapeutic applications[J]. Journal of the American Chemical Society, 2022, 144(32): 14420-14440.
[61] RYAN R T, STEVENS K C, CALABRO R, et al. Bis-tridentate N-heterocyclic carbene Ru(II) complexes are promising new agents for photodynamic therapy[J]. Inorganic Chemistry, 2020, 59(13): 8882-8892.
[62] LIU B, GAO Y, JABED M A, et al. Lysosome targeting bis-terpyridine ruthenium(II) complexes: photophysical properties and in vitro photodynamic therapy[J]. ACS Applied Bio Materials, 2020, 3(9): 6025-6038.
[63] PAUL S, KUNDU P, KONDAIAH P, et al. BODIPY-ruthenium(II) bis-terpyridine complexes for cellular imaging and type-I/-II photodynamic therapy[J]. Inorganic Chemistry, 2021, 60(21): 16178-16193.
[64] WINKLER J R, NETZEL T L, CREUTZ C, et al. Direct observation of metal-to-ligand charge-transfer (MLCT) excited states of pentaammineruthenium(II) complexes[J]. Journal of the American Chemical Society, 1987, 109(8): 2381-2392.
[65] BROWN D G, SANGUANTRAKUN N, SCHULZE B, et al. Bis(tridentate) ruthenium–terpyridine complexes featuring microsecond excited-state lifetimes[J]. Journal of the American Chemical Society, 2012, 134(30): 12354-12357.
[66] PARADA G A, FREDIN L A, SANTONI M P, et al. Tuning the electronics of bis(tridentate) ruthenium(II) complexes with long-lived excited states: modifications to the ligand skeleton beyond classical electron donor or electron withdrawing group decorations[J]. Inorganic Chemistry, 2013, 52(9): 5128-5137.
[67] RUPP M T, SHEVCHENKO N, HANAN G S, et al. Enhancing the photophysical properties of Ru(II) complexes by specific design of tridentate ligands[J]. Coordination Chemistry Reviews, 2021, 446: 214127.
[68] PAL A K, HANAN G S. Design, synthesis and excited-state properties of mononuclear Ru(II) complexes of tridentate heterocyclic ligands[J]. Chemical Society Reviews, 2014, 43(17): 6184-6197.
[69] HAMMARSTRÖM L, JOHANSSON O. Expanded bite angles in tridentate ligands. Improving the photophysical properties in bistridentate Ru(II) polypyridine complexes[J]. Coordination Chemistry Reviews, 2010, 254(21-22): 2546-2559.
[70] RAUCHFUSS T. Inorganic Syntheses[M]. John Wiley & Sons, 2010.
[71] SULLIVAN B P, CALVERT J M, MEYER T J. Cis-trans isomerism in (trpy)(PPh3)RuC12. Comparisons between the chemical and physical properties of a cis-trans isomeric pair[J]. Inorganic Chemistry, 1980, 19(5): 1404-1407.
[72] MAGHACUT K A, WOOD A B, BOYKO W J, et al. Structural, electronic and acid/base properties of [Ru(tpy)(tpyOH)]2+ and [Ru(tpyOH)2]2+(tpy= 2,2':6',2''-terpyridine, tpyOH= 4’-hydroxy-2,2':6',2''-terpyridine)[J]. Polyhedron, 2014, 67: 329-337.
[73] MAESTRI M, ARMAROLI N, BALZANI V, et al. Complexes of the ruthenium(II)-2,2':6',2''-terpyridine family. Effect of electron-accepting and-donating substituents on the photophysical and electrochemical properties[J]. Inorganic Chemistry, 1995, 34(10): 2759-2767.
修改评论