[1]ALLOUHI A, EL FOUIH Y, KOUSKSOU T, et al. Energy consumption and efficiency in buildings: current status and future trends[J]. Journal of Cleaner production, 2015, 109: 118- 130.
[2]DARBY S, et al. The effectiveness of feedback on energy consumption[J]. A Review for DEFRA of the Literature on Metering, Billing and direct Displays, 2006, 486(2006): 26.
[3]PÉREZ-LOMBARD L, ORTIZ J, POUT C. A review on buildings energy consumption information[J]. Energy and buildings, 2008, 40(3): 394-398.
[4]TRIVEDI A, BOVORNKEERATIROJ P, BREDA J, et al. Phone-based ambient temperature sensing using opportunistic crowdsensing and machine learning[J]. Sustainable Computing: Informatics and Systems, 2021, 29: 100479.
[5]CHEN S, WANG J, ZHANG L, et al. When internet of things meets e-health: an indoor temperature monitoring and control approach[J]. IEEE Internet of Things Magazine, 2021, 4(3): 12-16.
[6]CHEN S, ZHANG L, TANG Y, et al. Indoor temperature monitoring using wireless sensor networks: a SMAC application in smart cities[J]. Sustainable Cities and Society, 2020, 61: 102333.
[7]THAM S, THOMPSON R, LANDEG O, et al. Indoor temperature and health: a global systematic review[J]. Public Health, 2020, 179: 9-17.
[8]TRIVEDI A, BOVORNKEERATIROJ P, BREDA J, et al. Phone-based ambient temperature sensing using opportunistic crowdsensing and machine learning[J]. Sustainable Computing: Informatics and Systems, 2021, 29: 100479.
[9]SONG K, LIU X, GAO T. Potential application of using smartphone sensor for estimating air temperature: experimental study[J]. IEEE Internet of Things Journal, 2021, 9(16): 14300- 14306.
[10]DROSTE A, PAPE J J, OVEREEM A, et al. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(9): 1853-1866.
[11]OVEREEM A, R. ROBINSON J, LEIJNSE H, et al. Crowdsourcing urban air temperatures from smartphone battery temperatures[J]. Geophysical Research Letters, 2013, 40(15): 4081-4085.
[12]BREDA J, TRIVEDI A, WIJESUNDARA C, et al. Hot or not: Leveraging mobile devices for ubiquitous temperature sensing[C]//Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. 2019: 41-50.
[13]DICKINSON J L, ZUCKERBERG B, BONTER D N. Citizen science as an ecological research tool: challenges and benefits[J]. Annual review of ecology, evolution, and systematics, 2010, 41: 149-172.
[14]ZHANG H, CHEN J, YAN J, et al. Urban power load profiles under ageing transition integrated with future EVs charging[J]. Advances in Applied Energy, 2021, 1: 100007.
[15]ZHANG H, YAN J, YU Q, et al. 1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown[J]. Applied Energy, 2021, 283: 116341.
[16]SUI Y, ZHANG H, SHANG W, et al. Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future[J]. Applied Energy, 2020, 280: 115966.
[17]ZHANG H, SONG X, XIA T, et al. Battery electric vehicles in Japan: Human mobile behavior based adoption potential analysis and policy target response[J]. Applied Energy, 2018, 220: 527-535.
[18]CHEN J, LI W, ZHANG H, et al. Mining urban sustainable performance: GPS data-based spatio-temporal analysis on on-road braking emission[J]. Journal of Cleaner Production, 2020, 270: 122489.
[19]JAIN N, SRIVASTAVA V. Data mining techniques: a survey paper[J]. IJRET: International Journal of Research in Engineering and Technology, 2013, 2(11): 2319-1163.
[20]XINTONG G, HONGZHI W, SONG Y, et al. Brief survey of crowdsourcing for data mining [J]. Expert Systems with Applications, 2014, 41(17): 7987-7994.
[21]GAO H, BARBIER G, GOOLSBY R. Harnessing the crowdsourcing power of social media for disaster relief[J]. IEEE intelligent systems, 2011, 26(3): 10-14.
[22]MARKOWSKY G. Crowdsourcing, big data and homeland security[C]//2013 IEEE international conference on technologies for homeland security (HST). IEEE, 2013: 772-778.
[23]ACKERMAN S. Data for the Boston marathon investigation will be crowdsourced[J]. Wired Magazine, 2013, 13.
[24]LIBERT B, SPECTOR J, TAPSCOTT D. We are smarter than me: How to unleash the power of crowds in your business[M]. Pearson Prentice Hall, 2007.
[25]BRABHAM D C, SANCHEZ T W, BARTHOLOMEW K. Crowdsourcing public participation in transit planning: preliminary results from the next stop design case[C]//TRB 89th Annual Meeting Compendium. Citeseer, 2010.
[26]KOLLER D, FRIEDMAN N. Probabilistic graphical models: principles and techniques[M]. MIT press, 2009.
[27]RASMUSSEN C, WILLIAMS C. Gaussian processes for machine learning.,(MIT press: Cambridge, MA)[Z]. 2006.
[28]AYDIN B, YILMAZ Y S Y Y S, LI Y, et al. Crowdsourcing for multiple-choice question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 28. 2014: 2946-2953.
[29]WHITEHILL J, WU T F, BERGSMA J, et al. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise[J]. Advances in neural information processing systems, 2009, 22.
[30]MA F, LI Y, LI Q, et al. Faitcrowd: Fine grained truth discovery for crowdsourced data aggregation[C]//Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. 2015: 745-754.
[31]FAN J, LI G, OOI B C, et al. icrowd: An adaptive crowdsourcing framework[C]//Proceedings of the 2015 ACM SIGMOD international conference on management of data. 2015: 1015-1030.
[32]DEMARTINI G, DIFALLAH D E, CUDRÉ-MAUROUX P. Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking[C]//Proceedings of the 21st international conference on World Wide Web. 2012: 469-478.
[33]KARGER D, OH S, SHAH D. Iterative learning for reliable crowdsourcing systems[J]. Advances in neural information processing systems, 2011, 24.
[34]LIU Q, PENG J, IHLER A T. Variational inference for crowdsourcing[J]. Advances in neural information processing systems, 2012, 25.
[35]AYDIN B, YILMAZ Y S Y Y S, LI Y, et al. Crowdsourcing for multiple-choice question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 28. 2014: 2946-2953.
[36]DAWID A P, SKENE A M. Maximum likelihood estimation of observer error-rates using the EM algorithm[J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1979, 28(1): 20-28.
[37]RAYKAR V C, YU S, ZHAO L H, et al. Learning from crowds.[J]. Journal of machine learning research, 2010, 11(4).
[38]KIM H C, GHAHRAMANI Z. Bayesian classifier combination[C]//Artificial Intelligence and Statistics. PMLR, 2012: 619-627.
[39]VENANZI M, GUIVER J, KAZAI G, et al. Community-based bayesian aggregation models for crowdsourcing[C]//Proceedings of the 23rd international conference on World wide web. 2014: 155-164.
[40]WELINDER P, BRANSON S, PERONA P, et al. The multidimensional wisdom of crowds[J]. Advances in neural information processing systems, 2010, 23.
[41]LI Q, LI Y, GAO J, et al. A confidence-aware approach for truth discovery on long-tail data[J]. Proceedings of the VLDB Endowment, 2014, 8(4): 425-436.
[42]JOGLEKAR M, GARCIA-MOLINA H, PARAMESWARAN A. Evaluating the crowd with confidence[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013: 686-694.
[43]ZHOU D, BASU S, MAO Y, et al. Learning from the wisdom of crowds by minimax entropy [J]. Advances in neural information processing systems, 2012, 25.
[44]ZHENG Y, LI G, CHENG R. Docs: a domain-aware crowdsourcing system using knowledge bases[J]. Proceedings of the VLDB Endowment, 2016, 10(4): 361-372.
[45]ZHAO Z, WEI F, ZHOU M, et al. Crowd-Selection Query Processing in Crowdsourcing Databases: A Task-Driven Approach.[C]//EDBT. 2015: 397-408.
[46]BERNSTEIN M S, TEEVAN J, DUMAIS S, et al. Direct answers for search queries in the long tail[C]//Proceedings of the SIGCHI conference on human factors in computing systems. 2012: 237-246.
[47]LE J, EDMONDS A, HESTER V, et al. Ensuring quality in crowdsourced search relevance evaluation: The effects of training question distribution[C]//SIGIR 2010 workshop on crowdsourcing for search evaluation: volume 2126. 2010: 22-32.
[48]LI Q, LI Y, GAO J, et al. A confidence-aware approach for truth discovery on long-tail data[J]. Proceedings of the VLDB Endowment, 2014, 8(4): 425-436.
[49]DEMARTINI G, DIFALLAH D E, CUDRÉ-MAUROUX P. Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking[C]//Proceedings of the 21st international conference on World Wide Web. 2012: 469-478.
[50]CUDRÉ-MAUROUX P, ABERER K, FEHER A. Probabilistic message passing in peer data management systems[C]//22nd International Conference on Data Engineering (ICDE’06). IEEE, 2006: 41-41.
[51]DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the royal statistical society: series B (methodological), 1977, 39(1): 1-22.
[52]WHITEHILL J, WU T F, BERGSMA J, et al. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise[J]. Advances in neural information processing systems, 2009, 22.
[53]KARGER D, OH S, SHAH D. Iterative learning for reliable crowdsourcing systems[J]. Advances in neural information processing systems, 2011, 24.
[54]LIU Q, PENG J, IHLER A T. Variational inference for crowdsourcing[J]. Advances in neural information processing systems, 2012, 25.
[55]DAWID A P, SKENE A M. Maximum likelihood estimation of observer error-rates using the EM algorithm[J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1979, 28(1): 20-28.
[56]LI D, REN Z, KANOULAS E. CrowdGP: A Gaussian process model for inferring relevance from crowd annotations[C]//Proceedings of the Web Conference 2021. 2021: 1821-1832.
[57]MORALES-ÁLVAREZ P, RUIZ P, SANTOS-RODRÍGUEZ R, et al. Scalable and efficient learning from crowds with Gaussian processes[J]. Information Fusion, 2019, 52: 110-127.
[58]RODRIGUES F, PEREIRA F, RIBEIRO B. Gaussian process classification and active learning with multiple annotators[C]//International conference on machine learning. PMLR, 2014: 433- 441.
[59]RUIZ P, MORALES-ÁLVAREZ P, MOLINA R, et al. Learning from crowds with variational Gaussian processes[J]. Pattern Recognition, 2019, 88: 298-311.
[60]GROOT P, BIRLUTIU A, HESKES T. Learning from multiple annotators with Gaussian processes[C]//Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part II 21. Springer, 2011: 159-164.
[61]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[62]ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[A]. 2014.
[63]CHOROWSKI J K, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[J]. Advances in neural information processing systems, 2015, 28.
[64]SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations [A]. 2018.
[65]CHEN Y, DAI X, LIU M, et al. Dynamic convolution: Attention over convolution kernels[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11030-11039.
[66]DAI W, YANG Q, XUE G R, et al. Boosting for Transfer Learning[C/OL]//ICML ’07: Proceedings of the 24th International Conference on Machine Learning. New York, NY, USA: Association for Computing Machinery, 2007: 193–200. https://doi.org/10.1145/1273496.1273521.
[67]PAN S J, TSANG I W, KWOK J T, et al. Domain Adaptation via Transfer Component Analysis [J/OL]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. DOI: 10.1109/TNN.20 10.2091281.
[68]SMOLA A J, GRETTON A, BORGWARDT K. Maximum mean discrepancy[C]//13th international conference, ICONIP. 2006: 3-6.
[69]MURPHY R A, MONDRAGÓN E, MURPHY V A. Rule learning by rats[J]. Science, 2008, 319(5871): 1849-1851.
[70]CARUANA R. Multitask learning[M]. Springer, 1998.
[71]WIESE J, SAPONAS T S, BRUSH A B. Phoneprioception: enabling mobile phones to infer where they are kept[C]//Proceedings of the SIGCHI conference on human factors in computing systems. 2013: 2157-2166.
[72]YANG J, MUNGUIA-TAPIA E, GIBBS S. Efficient in-pocket detection with mobile phones [C]//Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. 2013: 31-34.
[73]WINTER E. The shapley value[J]. Handbook of game theory with economic applications, 2002, 3: 2025-2054.
[74]ZHENG Y, LI G, LI Y, et al. Truth inference in crowdsourcing: Is the problem solved?[J]. Proceedings of the VLDB Endowment, 2017, 10(5): 541-552.
修改评论