中文版 | English
题名

THE FUNCTIONAL STUDY OF PROTEIN INTRINSIC DISORDER REGIONS IN CRISPR MEDIATED GENE TRANSCRIPTIONAL REGULATION

其他题名
蛋白内在无序区在 CRISPR 介导的基因转 录调控中的功能作用
姓名
姓名拼音
SHI Xinyao
学号
12032181
学位类型
硕士
学位专业
071007 遗传学
学科门类/专业学位类别
07 理学
导师
崔欢欢
导师单位
系统生物学系
论文答辩日期
2023-05-15
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

CRISPR mediated transcription regulation system is based on an RNA-guided inactive Cas9 (dCas9) acting as a programmable transcription regulator via fusing effector domains. However, inefficiencies in target gene activation or repression have limited its potential applications. Recent studies have shown that transcription factors (TFs) contain intrinsic disorder regions (IDRs) in their activation domains, and the multivalent interactions between IDRs play an important role in transcription activation. Nevertheless, the causal association between IDRs and transcription regulation remains unclear. Here, we combined IDR with CRISPR mediated transcription regulation system to further improve its efficiency and tried to uncover the association between IDRs and transcription regulation. By fusing IDR with CRISPR activation system dCas9- VP64, we demonstrated that dCas9-VP64-IDR functioned as an enhanced dCas9 activator with the improved activation efficiency being attributed to the multivalent interaction between IDRs. However, not all IDRs can exceptionally amplify the activation signal. Moreover, when we fused IDR with the CRISPR repression system dCas9-KRAB, we observed almost no alterations of repression efficiency on endogenous genes. Further living cell images analysis indicated that the activation efficiency and the capacity to form phase separation are not necessarily correlated, suggesting that the improvement of transcription efficiency is independent of phase separation. Taken together, our findings reveal that IDR-mediated multivalent interactions can enhance gene activation, and that our dCas9-AD-IDR can substantially improve the efficiency of the current CRISPR activation system, but not for CRISPR mediated gene repression, and we partly uncover the relationship between IDRs and transcription regulation. These results together may contribute to the studies on the relationship between phase separation and transcriptional regulation.

 

关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ROEDER R G, RUTTER W J. Multiple Forms of DNA-dependent RNA Polymerasein Eukaryotic Organisms[J]. Nature, 1969, 224(5216): 234-237.
[2] MATTICK J S, MAKUNIN I V. Non-coding RNA[J]. Hum Mol Genet, 2006, 15 Spec No 1: R17-29.
[3] LANDRY J R, MAGER D L, WILHELM B T. Complex controls: the role of alternative promoters in mammalian genomes[J]. Trends Genet, 2003, 19(11): 640- 648.
[4] SPITZ F, FURLONG E E. Transcription factors: from enhancer binding todevelopmental control[J]. Nat Rev Genet, 2012, 13(9): 613-626.
[5] DENG W, LEE J, WANG H, et al. Controlling long-range genomic interactions at anative locus by targeted tethering of a looping factor[J]. Cell, 2012, 149(6): 1233- 1244.
[6] SPLINTER E, DE LAAT W. The complex transcription regulatory landscape of ourgenome: control in three dimensions[J]. Embo j, 2011, 30(21): 4345-4355.
[7] PANG B, VAN WEERD J H, HAMOEN F L, et al. Identification of non-codingsilencer elements and their regulation of gene expression[J]. Nature ReviewsMolecular Cell Biology, 2022: 1-13.
[8] SAWADA S, SCARBOROUGH J D, KILLEEN N, et al. A lineage-specifictranscriptional silencer regulates CD4 gene expression during T lymphocytedevelopment[J]. Cell, 1994, 77(6): 917-929.
[9] DYNAN W S, TJIAN R. The promoter-specific transcription factor Sp1 binds toupstream sequences in the SV40 early promoter[J]. Cell, 1983, 35(1): 79-87.
[10] ALLEN B L, TAATJES D J. The Mediator complex: a central integrator oftranscription[J]. Nat Rev Mol Cell Biol, 2015, 16(3): 155-166.
[11] KORNBERG R D. Mediator and the mechanism of transcriptional activation[J]. Trends Biochem Sci, 2005, 30(5): 235-239.
[12] WHYTE W A, ORLANDO D A, HNISZ D, et al. Master transcription factors andmediator establish super-enhancers at key cell identity genes[J]. Cell, 2013, 153(2):307-319.
[13] WEINTRAUB A S, LI C H, ZAMUDIO A V, et al. YY1 Is a Structural Regulator ofEnhancer-Promoter Loops[J]. Cell, 2017, 171(7): 1573-1588.e1528.
[14] KAGEY M H, NEWMAN J J, BILODEAU S, et al. Mediator and cohesin connectgene expression and chromatin architecture[J]. Nature, 2010, 467(7314): 430-435.
[15] LAMBERT S A, JOLMA A, CAMPITELLI L F, et al. The Human TranscriptionFactors[J]. Cell, 2018, 172(4): 650-665.
[16] FUDA N J, ARDEHALI M B, LIS J T. Defining mechanisms that regulate RNApolymerase II transcription in vivo[J]. Nature, 2009, 461(7261): 186-192.
[17] CRAMER P. Organization and regulation of gene transcription[J]. Nature, 2019, 573(7772): 45-54.
[18] FOUQUEAU T, WERNER F. The architecture of transcription elongation[J]. Science, 2017, 357(6354): 871-872.
[19] PROUDFOOT N J. Transcriptional termination in mammals: Stopping the RNApolymerase II juggernaut[J]. Science, 2016, 352(6291): aad9926.
[20] TSANG B, PRITIŠANAC I, SCHERER S W, et al. Phase Separation as a MissingMechanism for Interpretation of Disease Mutations[J]. Cell, 2020, 183(7): 1742- 1756.
[21] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granulesare liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732.
[22] HUBSTENBERGER A, COUREL M, BÉNARD M, et al. P-Body PurificationReveals the Condensation of Repressed mRNA Regulons[J]. Mol Cell, 2017, 68(1):144-157.e145.
[23] FERIC M, VAIDYA N, HARMON T S, et al. Coexisting Liquid Phases UnderlieNucleolar Subcompartments[J]. Cell, 2016, 165(7): 1686-1697.
[24] BOEYNAEMS S, ALBERTI S, FAWZI N L, et al. Protein Phase Separation: A NewPhase in Cell Biology[J]. Trends Cell Biol, 2018, 28(6): 420-435.
[25] WU H, FUXREITER M. The Structure and Dynamics of Higher-Order Assemblies:Amyloids, Signalosomes, and Granules[J]. Cell, 2016, 165(5): 1055-1066.
[26] HYMAN A A, WEBER C A, JÜLICHER F. Liquid-liquid phase separation inbiology[J]. Annu Rev Cell Dev Biol, 2014, 30: 39-58.
[27] LI P, BANJADE S, CHENG H C, et al. Phase transitions in the assembly ofmultivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340.
[28] KIM T H, TSANG B, VERNON R M, et al. Phospho-dependent phase separation ofFMRP and CAPRIN1 recapitulates regulation of translation and deadenylation[J]. Science, 2019, 365(6455): 825-829.
[29] BOIJA A, KLEIN I A, SABARI B R, et al. Transcription Factors Activate Genesthrough the Phase-Separation Capacity of Their Activation Domains[J]. Cell, 2018, 175(7): 1842-1855.e1816.
[30] WANG L, HU M, ZUO M Q, et al. Rett syndrome-causing mutations compromiseMeCP2-mediated liquid-liquid phase separation of chromatin[J]. Cell Res, 2020, 30(5): 393-407. 81
[31] BUCKLEY M S, LIS J T. Imaging RNA Polymerase II transcription sites in livingcells[J]. Curr Opin Genet Dev, 2014, 25: 126-130.
[32] CHONG S, DUGAST-DARZACQ C, LIU Z, et al. Imaging dynamic and selectivelow-complexity domain interactions that control gene transcription[J]. Science, 2018, 361(6400)
[33] HNISZ D, SHRINIVAS K, YOUNG R A, et al. A Phase Separation Model forTranscriptional Control[J]. Cell, 2017, 169(1): 13-23.
[34] KWON I, KATO M, XIANG S, et al. Phosphorylation-regulated binding of RNApolymerase II to fibrous polymers of low-complexity domains[J]. Cell, 2013, 155(5):1049-1060.
[35] SCHNEIDER N, WIELAND F G, KONG D, et al. Liquid-liquid phase separation oflight-inducible transcription factors increases transcription activation in mammaliancells and mice[J]. Sci Adv, 2021, 7(1)
[36] TROJANOWSKI J, FRANK L, RADEMACHER A, et al. Transcription activation isenhanced by multivalent interactions independent of phase separation[J]. Mol Cell, 2022, 82(10): 1878-1893.e1810.
[37] CHONG S, GRAHAM T G W, DUGAST-DARZACQ C, et al. Tuning levels of low- complexity domain interactions to modulate endogenous oncogenic transcription[J]. Mol Cell, 2022, 82(11): 2084-2097.e2085.
[38] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquiredresistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[39] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guidedDNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
[40] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineeringvia Cas9[J]. Science, 2013, 339(6121): 823-826.
[41] CONG L, RAN F A, COX D, et al. Multiplex genome engineering usingCRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[42] LIU G, LIN Q, JIN S, et al. The CRISPR-Cas toolbox and gene editingtechnologies[J]. Mol Cell, 2022, 82(2): 333-347.
[43] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modularRNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442- 451.
[44] ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotideRNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411(6836): 494-498.
[45] CHAVEZ A, SCHEIMAN J, VORA S, et al. Highly efficient Cas9-mediatedtranscriptional programming[J]. Nat Methods, 2015, 12(4): 326-328. 82
[46] TANENBAUM M E, GILBERT L A, QI L S, et al. A protein-tagging system forsignal amplification in gene expression and fluorescence imaging[J]. Cell, 2014, 159(3): 635-646.
[47] KONERMANN S, BRIGHAM M D, TREVINO A E, et al. Genome-scaletranscriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588.
[48] HILTON I B, D'IPPOLITO A M, VOCKLEY C M, et al. Epigenome editing by aCRISPR-Cas9-based acetyltransferase activates genes from promoters andenhancers[J]. Nat Biotechnol, 2015, 33(5): 510-517.
[49] LIU X S, WU H, JI X, et al. Editing DNA Methylation in the MammalianGenome[J]. Cell, 2016, 167(1): 233-247.e217.
[50] LIU S J, HORLBECK M A, CHO S W, et al. CRISPRi-based genome-scaleidentification of functional long noncoding RNA loci in human cells[J]. Science, 2017, 355(6320)
[51] YEO N C, CHAVEZ A, LANCE-BYRNE A, et al. An enhanced CRISPR repressorfor targeted mammalian gene regulation[J]. Nat Methods, 2018, 15(8): 611-616.
[52] ALERASOOL N, SEGAL D, LEE H, et al. An efficient KRAB domain for CRISPRiapplications in human cells[J]. Nature Methods, 2020, 17(11): 1093-1096.
[53] GOSSEN M, FREUNDLIEB S, BENDER G, et al. Transcriptional activation bytetracyclines in mammalian cells[J]. Science, 1995, 268(5218): 1766-1769.
[54] SHIMOBAYASHI S F, RONCERAY P, SANDERS D W, et al. Nucleationlandscape of biomolecular condensates[J]. Nature, 2021, 599(7885): 503-506.
[55] WEI M T, CHANG Y C, SHIMOBAYASHI S F, et al. Nucleated transcriptionalcondensates amplify gene expression[J]. Nat Cell Biol, 2020, 22(10): 1187-1196.
[56] DORMANN D. FG-nucleoporins caught in the act of liquid-liquid phaseseparation[J]. J Cell Biol, 2020, 219(1)
[57] FU Y, ZHUANG X. m(6)A-binding YTHDF proteins promote stress granuleformation[J]. Nat Chem Biol, 2020, 16(9): 955-963.
[58] GAO Y, PEI G, LI D, et al. Multivalent m(6)A motifs promote phase separation ofYTHDF proteins[J]. Cell Res, 2019, 29(9): 767-769.
[59] LU H, YU D, HANSEN A S, et al. Phase-separation mechanism for C-terminalhyperphosphorylation of RNA polymerase II[J]. Nature, 2018, 558(7709): 318-323.
[60] LIANG M, JIN G, XIE X, et al. Oligomerized liprin-α promotes phase separation ofELKS for compartmentalization of presynaptic active zone proteins[J]. Cell Rep, 2021, 34(12): 108901.
[61] WANG L, KANG J, LIM L, et al. TDP-43 NTD can be induced while CTD issignificantly enhanced by ssDNA to undergo liquid-liquid phase separation[J]. Biochem Biophys Res Commun, 2018, 499(2): 189-195. 83
[62] XIANG S, KATO M, WU L C, et al. The LC Domain of hnRNPA2 Adopts SimilarConformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei[J]. Cell, 2015, 163(4): 829-839.
[63] AMBADIPUDI S, BIERNAT J, RIEDEL D, et al. Liquid-liquid phase separation ofthe microtubule-binding repeats of the Alzheimer-related protein Tau[J]. NatCommun, 2017, 8(1): 275.
[64] TANG B L. The Potential of Targeting Brain Pathology with Ascl1/Mash1[J]. Cells, 2017, 6(3)
[65] TAPSCOTT S J, DAVIS R L, THAYER M J, et al. MyoD1: a nuclearphosphoprotein requiring a Myc homology region to convert fibroblasts tomyoblasts[J]. Science, 1988, 242(4877): 405-411.
[66] AREND W P, MALYAK M, GUTHRIDGE C J, et al. Interleukin-1 receptorantagonist: role in biology[J]. Annu Rev Immunol, 1998, 16: 27-55.
[67] DENG W, RUPON J W, KRIVEGA I, et al. Reactivation of developmentallysilenced globin genes by forced chromatin looping[J]. Cell, 2014, 158(4): 849-860.
[68] KONG S, BOHL D, LI C, et al. Transcription of the HS2 enhancer toward a cis linked gene is independent of the orientation, position, and distance of the enhancerrelative to the gene[J]. Mol Cell Biol, 1997, 17(7): 3955-3965.
[69] OHTSUKA T, SAKAMOTO M, GUILLEMOT F, et al. Roles of the basic helix loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developingbrain[J]. J Biol Chem, 2001, 276(32): 30467-30474.
[70] FACKENTHAL J D, OLOPADE O I. Breast cancer risk associated with BRCA1 andBRCA2 in diverse populations[J]. Nat Rev Cancer, 2007, 7(12): 937-948.
[71] OU S H, WU F, HARRICH D, et al. Cloning and characterization of a novel cellularprotein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNAsequence motifs[J]. J Virol, 1995, 69(6): 3584-3596.

所在学位评定分委会
生物学
国内图书分类号
Q754
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544745
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
Shi XY. THE FUNCTIONAL STUDY OF PROTEIN INTRINSIC DISORDER REGIONS IN CRISPR MEDIATED GENE TRANSCRIPTIONAL REGULATION[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032181-史心瑶-生物系.pdf(2973KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史心瑶]的文章
百度学术
百度学术中相似的文章
[史心瑶]的文章
必应学术
必应学术中相似的文章
[史心瑶]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。