[1] ROEDER R G, RUTTER W J. Multiple Forms of DNA-dependent RNA Polymerasein Eukaryotic Organisms[J]. Nature, 1969, 224(5216): 234-237.
[2] MATTICK J S, MAKUNIN I V. Non-coding RNA[J]. Hum Mol Genet, 2006, 15 Spec No 1: R17-29.
[3] LANDRY J R, MAGER D L, WILHELM B T. Complex controls: the role of alternative promoters in mammalian genomes[J]. Trends Genet, 2003, 19(11): 640- 648.
[4] SPITZ F, FURLONG E E. Transcription factors: from enhancer binding todevelopmental control[J]. Nat Rev Genet, 2012, 13(9): 613-626.
[5] DENG W, LEE J, WANG H, et al. Controlling long-range genomic interactions at anative locus by targeted tethering of a looping factor[J]. Cell, 2012, 149(6): 1233- 1244.
[6] SPLINTER E, DE LAAT W. The complex transcription regulatory landscape of ourgenome: control in three dimensions[J]. Embo j, 2011, 30(21): 4345-4355.
[7] PANG B, VAN WEERD J H, HAMOEN F L, et al. Identification of non-codingsilencer elements and their regulation of gene expression[J]. Nature ReviewsMolecular Cell Biology, 2022: 1-13.
[8] SAWADA S, SCARBOROUGH J D, KILLEEN N, et al. A lineage-specifictranscriptional silencer regulates CD4 gene expression during T lymphocytedevelopment[J]. Cell, 1994, 77(6): 917-929.
[9] DYNAN W S, TJIAN R. The promoter-specific transcription factor Sp1 binds toupstream sequences in the SV40 early promoter[J]. Cell, 1983, 35(1): 79-87.
[10] ALLEN B L, TAATJES D J. The Mediator complex: a central integrator oftranscription[J]. Nat Rev Mol Cell Biol, 2015, 16(3): 155-166.
[11] KORNBERG R D. Mediator and the mechanism of transcriptional activation[J]. Trends Biochem Sci, 2005, 30(5): 235-239.
[12] WHYTE W A, ORLANDO D A, HNISZ D, et al. Master transcription factors andmediator establish super-enhancers at key cell identity genes[J]. Cell, 2013, 153(2):307-319.
[13] WEINTRAUB A S, LI C H, ZAMUDIO A V, et al. YY1 Is a Structural Regulator ofEnhancer-Promoter Loops[J]. Cell, 2017, 171(7): 1573-1588.e1528.
[14] KAGEY M H, NEWMAN J J, BILODEAU S, et al. Mediator and cohesin connectgene expression and chromatin architecture[J]. Nature, 2010, 467(7314): 430-435.
[15] LAMBERT S A, JOLMA A, CAMPITELLI L F, et al. The Human TranscriptionFactors[J]. Cell, 2018, 172(4): 650-665.
[16] FUDA N J, ARDEHALI M B, LIS J T. Defining mechanisms that regulate RNApolymerase II transcription in vivo[J]. Nature, 2009, 461(7261): 186-192.
[17] CRAMER P. Organization and regulation of gene transcription[J]. Nature, 2019, 573(7772): 45-54.
[18] FOUQUEAU T, WERNER F. The architecture of transcription elongation[J]. Science, 2017, 357(6354): 871-872.
[19] PROUDFOOT N J. Transcriptional termination in mammals: Stopping the RNApolymerase II juggernaut[J]. Science, 2016, 352(6291): aad9926.
[20] TSANG B, PRITIŠANAC I, SCHERER S W, et al. Phase Separation as a MissingMechanism for Interpretation of Disease Mutations[J]. Cell, 2020, 183(7): 1742- 1756.
[21] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granulesare liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732.
[22] HUBSTENBERGER A, COUREL M, BÉNARD M, et al. P-Body PurificationReveals the Condensation of Repressed mRNA Regulons[J]. Mol Cell, 2017, 68(1):144-157.e145.
[23] FERIC M, VAIDYA N, HARMON T S, et al. Coexisting Liquid Phases UnderlieNucleolar Subcompartments[J]. Cell, 2016, 165(7): 1686-1697.
[24] BOEYNAEMS S, ALBERTI S, FAWZI N L, et al. Protein Phase Separation: A NewPhase in Cell Biology[J]. Trends Cell Biol, 2018, 28(6): 420-435.
[25] WU H, FUXREITER M. The Structure and Dynamics of Higher-Order Assemblies:Amyloids, Signalosomes, and Granules[J]. Cell, 2016, 165(5): 1055-1066.
[26] HYMAN A A, WEBER C A, JÜLICHER F. Liquid-liquid phase separation inbiology[J]. Annu Rev Cell Dev Biol, 2014, 30: 39-58.
[27] LI P, BANJADE S, CHENG H C, et al. Phase transitions in the assembly ofmultivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340.
[28] KIM T H, TSANG B, VERNON R M, et al. Phospho-dependent phase separation ofFMRP and CAPRIN1 recapitulates regulation of translation and deadenylation[J]. Science, 2019, 365(6455): 825-829.
[29] BOIJA A, KLEIN I A, SABARI B R, et al. Transcription Factors Activate Genesthrough the Phase-Separation Capacity of Their Activation Domains[J]. Cell, 2018, 175(7): 1842-1855.e1816.
[30] WANG L, HU M, ZUO M Q, et al. Rett syndrome-causing mutations compromiseMeCP2-mediated liquid-liquid phase separation of chromatin[J]. Cell Res, 2020, 30(5): 393-407. 81
[31] BUCKLEY M S, LIS J T. Imaging RNA Polymerase II transcription sites in livingcells[J]. Curr Opin Genet Dev, 2014, 25: 126-130.
[32] CHONG S, DUGAST-DARZACQ C, LIU Z, et al. Imaging dynamic and selectivelow-complexity domain interactions that control gene transcription[J]. Science, 2018, 361(6400)
[33] HNISZ D, SHRINIVAS K, YOUNG R A, et al. A Phase Separation Model forTranscriptional Control[J]. Cell, 2017, 169(1): 13-23.
[34] KWON I, KATO M, XIANG S, et al. Phosphorylation-regulated binding of RNApolymerase II to fibrous polymers of low-complexity domains[J]. Cell, 2013, 155(5):1049-1060.
[35] SCHNEIDER N, WIELAND F G, KONG D, et al. Liquid-liquid phase separation oflight-inducible transcription factors increases transcription activation in mammaliancells and mice[J]. Sci Adv, 2021, 7(1)
[36] TROJANOWSKI J, FRANK L, RADEMACHER A, et al. Transcription activation isenhanced by multivalent interactions independent of phase separation[J]. Mol Cell, 2022, 82(10): 1878-1893.e1810.
[37] CHONG S, GRAHAM T G W, DUGAST-DARZACQ C, et al. Tuning levels of low- complexity domain interactions to modulate endogenous oncogenic transcription[J]. Mol Cell, 2022, 82(11): 2084-2097.e2085.
[38] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquiredresistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[39] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guidedDNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
[40] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineeringvia Cas9[J]. Science, 2013, 339(6121): 823-826.
[41] CONG L, RAN F A, COX D, et al. Multiplex genome engineering usingCRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[42] LIU G, LIN Q, JIN S, et al. The CRISPR-Cas toolbox and gene editingtechnologies[J]. Mol Cell, 2022, 82(2): 333-347.
[43] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modularRNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442- 451.
[44] ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotideRNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411(6836): 494-498.
[45] CHAVEZ A, SCHEIMAN J, VORA S, et al. Highly efficient Cas9-mediatedtranscriptional programming[J]. Nat Methods, 2015, 12(4): 326-328. 82
[46] TANENBAUM M E, GILBERT L A, QI L S, et al. A protein-tagging system forsignal amplification in gene expression and fluorescence imaging[J]. Cell, 2014, 159(3): 635-646.
[47] KONERMANN S, BRIGHAM M D, TREVINO A E, et al. Genome-scaletranscriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588.
[48] HILTON I B, D'IPPOLITO A M, VOCKLEY C M, et al. Epigenome editing by aCRISPR-Cas9-based acetyltransferase activates genes from promoters andenhancers[J]. Nat Biotechnol, 2015, 33(5): 510-517.
[49] LIU X S, WU H, JI X, et al. Editing DNA Methylation in the MammalianGenome[J]. Cell, 2016, 167(1): 233-247.e217.
[50] LIU S J, HORLBECK M A, CHO S W, et al. CRISPRi-based genome-scaleidentification of functional long noncoding RNA loci in human cells[J]. Science, 2017, 355(6320)
[51] YEO N C, CHAVEZ A, LANCE-BYRNE A, et al. An enhanced CRISPR repressorfor targeted mammalian gene regulation[J]. Nat Methods, 2018, 15(8): 611-616.
[52] ALERASOOL N, SEGAL D, LEE H, et al. An efficient KRAB domain for CRISPRiapplications in human cells[J]. Nature Methods, 2020, 17(11): 1093-1096.
[53] GOSSEN M, FREUNDLIEB S, BENDER G, et al. Transcriptional activation bytetracyclines in mammalian cells[J]. Science, 1995, 268(5218): 1766-1769.
[54] SHIMOBAYASHI S F, RONCERAY P, SANDERS D W, et al. Nucleationlandscape of biomolecular condensates[J]. Nature, 2021, 599(7885): 503-506.
[55] WEI M T, CHANG Y C, SHIMOBAYASHI S F, et al. Nucleated transcriptionalcondensates amplify gene expression[J]. Nat Cell Biol, 2020, 22(10): 1187-1196.
[56] DORMANN D. FG-nucleoporins caught in the act of liquid-liquid phaseseparation[J]. J Cell Biol, 2020, 219(1)
[57] FU Y, ZHUANG X. m(6)A-binding YTHDF proteins promote stress granuleformation[J]. Nat Chem Biol, 2020, 16(9): 955-963.
[58] GAO Y, PEI G, LI D, et al. Multivalent m(6)A motifs promote phase separation ofYTHDF proteins[J]. Cell Res, 2019, 29(9): 767-769.
[59] LU H, YU D, HANSEN A S, et al. Phase-separation mechanism for C-terminalhyperphosphorylation of RNA polymerase II[J]. Nature, 2018, 558(7709): 318-323.
[60] LIANG M, JIN G, XIE X, et al. Oligomerized liprin-α promotes phase separation ofELKS for compartmentalization of presynaptic active zone proteins[J]. Cell Rep, 2021, 34(12): 108901.
[61] WANG L, KANG J, LIM L, et al. TDP-43 NTD can be induced while CTD issignificantly enhanced by ssDNA to undergo liquid-liquid phase separation[J]. Biochem Biophys Res Commun, 2018, 499(2): 189-195. 83
[62] XIANG S, KATO M, WU L C, et al. The LC Domain of hnRNPA2 Adopts SimilarConformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei[J]. Cell, 2015, 163(4): 829-839.
[63] AMBADIPUDI S, BIERNAT J, RIEDEL D, et al. Liquid-liquid phase separation ofthe microtubule-binding repeats of the Alzheimer-related protein Tau[J]. NatCommun, 2017, 8(1): 275.
[64] TANG B L. The Potential of Targeting Brain Pathology with Ascl1/Mash1[J]. Cells, 2017, 6(3)
[65] TAPSCOTT S J, DAVIS R L, THAYER M J, et al. MyoD1: a nuclearphosphoprotein requiring a Myc homology region to convert fibroblasts tomyoblasts[J]. Science, 1988, 242(4877): 405-411.
[66] AREND W P, MALYAK M, GUTHRIDGE C J, et al. Interleukin-1 receptorantagonist: role in biology[J]. Annu Rev Immunol, 1998, 16: 27-55.
[67] DENG W, RUPON J W, KRIVEGA I, et al. Reactivation of developmentallysilenced globin genes by forced chromatin looping[J]. Cell, 2014, 158(4): 849-860.
[68] KONG S, BOHL D, LI C, et al. Transcription of the HS2 enhancer toward a cis linked gene is independent of the orientation, position, and distance of the enhancerrelative to the gene[J]. Mol Cell Biol, 1997, 17(7): 3955-3965.
[69] OHTSUKA T, SAKAMOTO M, GUILLEMOT F, et al. Roles of the basic helix loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developingbrain[J]. J Biol Chem, 2001, 276(32): 30467-30474.
[70] FACKENTHAL J D, OLOPADE O I. Breast cancer risk associated with BRCA1 andBRCA2 in diverse populations[J]. Nat Rev Cancer, 2007, 7(12): 937-948.
[71] OU S H, WU F, HARRICH D, et al. Cloning and characterization of a novel cellularprotein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNAsequence motifs[J]. J Virol, 1995, 69(6): 3584-3596.
修改评论