[1] XIONG F, CHEN S, MA Z, et al. Approximate model and algorithms for precast supply chainscheduling problem with time-dependent transportation times[J/OL]. International Journal ofProduction Research, 2023, 61(7): 2057-2085. DOI: 10.1080/00207543.2022.2057254.
[2] PEI J, PARDALOS P M, LIU X, et al. Coordination of production and transportation in supplychain scheduling[J]. Journal of Industrial and Management Optimization, 2015, 11(2): 399-419.
[3] ZHENG S, LIU J, WU D. Research on uncertain integrated production planning and scheduling with risk management based on improved collaborative optimization[J/OL]. ConcurrentEngineering, 0, 0(0): 1063293X221138774. DOI: 10.1177/1063293X221138774.
[4] WRIGHT S, NOCEDAL J, et al. Numerical optimization[J]. Springer Science, 1999, 35(67-68):7.
[5] 陈国良, 王煦法, 庄镇泉, 等. 遗传算法及其应用[M]. 北京: 人民邮电出版社, 1996.
[6] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-international conference on neural networks: volume 4. IEEE, 1995: 1942-1948.
[7] DORIGO M, MANIEZZO V, COLORNI A. Ant system: Optimization by a colony of cooperating agents[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),1996, 26(1): 29-41. DOI: 10.1109/3477.484436.
[8] 陈少淼, 陈瑞, 李仁发, 等. 面向复杂约束优化问题的进化算法综述[J/OL]. 软件学报, 2023(565-581). DOI: 10.13328/j.cnki.jos.006711.
[9] DE JONG K. Evolutionary computation: A unified approach[C]//Proceedings of the Geneticand Evolutionary Computation Conference Companion. 2017: 373-388.
[10] SONODA T, NAKATA M. Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multiobjective problems[J/OL]. IEEE Transactions on Evolutionary Computation, 2022, 26(6): 1581-1595. DOI: 10.1109/TEVC.2022.3159000.
[11] LIAO Z, GONG W, WANG L. Memetic niching-based evolutionary algorithms for solvingnonlinear equation system[J/OL]. Expert Systems with Applications, 2020, 149: 113261. DOI:10.1016/j.eswa.2020.113261.
[12] RAHIMI I, GANDOMI A H, CHEN F, et al. A review on constraint handling techniquesfor population-based algorithms: From single-objective to multi-objective optimization[J].Archives of Computational Methods in Engineering, 2023, 30(3): 2181-2209.
[13] STORN R, PRICE K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[14] HANSEN N, OSTERMEIER A. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation[C/OL]//Proceedings of IEEE InternationalConference on Evolutionary Computation. Nagoya, Japan: IEEE, 1996: 312-317. DOI:10.1109/ICEC.1996.542381.
[15] WANG B C, LI H X, LI J P, et al. Composite differential evolution for constrained evolutionaryoptimization[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1482-1495. DOI: 10.1109/TSMC.2018.2807785.
[16] BEYER H G, SENDHOFF B. Simplify your covariance matrix adaptation evolution strategy[J/OL]. IEEE Transactions on Evolutionary Computation, 2017, 21(5): 746-759. DOI: 10.1109/TEVC.2017.2680320.
[17] ARNOLD D V, HANSEN N. A (1+1)-CMA-ES for constrained optimisation[C/OL]//GECCO’12: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation.New York, NY, USA: Association for Computing Machinery, 2012: 297–304. DOI: 10.1145/2330163.2330207.
[18] SPETTEL P, BEYER H G. Matrix adaptation evolution strategies for optimization under nonlinear equality constraints[J/OL]. Swarm and Evolutionary Computation, 2020, 54: 100653.DOI: 10.1016/j.swevo.2020.100653.
[19] JOINES J A, HOUCK C R, et al. On the use of non-stationary penalty functions to solvenonlinear constrained optimization problems with GA’s.[C]//International Conference on Evolutionary Computation. 1994: 579-584.
[20] BEN HADJ-ALOUANE A, BEAN J C. A genetic algorithm for the multiple-choice integerprogram[J]. Operations Research, 1997, 45(1): 92-101.
[21] BARBOSA H J, LEMONGE A C, BERNARDINO H S. A critical review of adaptive penaltytechniques in evolutionary computation[J]. Evolutionary constrained optimization, 2015: 1-27.
[22] LU K D, ZENG G Q, ZHOU W. Adaptive constrained population extremal optimisation-basedrobust proportional-integral-derivation frequency control method for an islanded microgrid[J].IET Cyber-Systems and Robotics, 2021, 3(3): 210-227.
[23] DE MELO V V, IACCA G. A modified covariance matrix adaptation evolution strategy withadaptive penalty function and restart for constrained optimization[J]. Expert Systems with Applications, 2014, 41(16): 7077-7094.
[24] DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methodsin Applied Mechanics and Engineering, 2000, 186(2-4): 311-338.
[25] RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on evolutionary computation, 2000, 4(3): 284-294.
[26] TAKAHAMA T, SAKAI S. Constrained optimization by the 𝜀 constrained differential evolutionwith an archive and gradient-based mutation[C]//IEEE Congress on Evolutionary Computation.IEEE, 2010: 1-9.
[27] ZHANG C, QIN A K, SHEN W, et al. 𝜖-constrained differential evolution using an adaptive 𝜖-level control method[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,2020: 1-17. DOI: 10.1109/TSMC.2020.3010120.
[28] GUOL J, CHENG T, FAN Z, et al. LSHADE with s-shape constraint-handling technique inpush and pull search for constrained optimization Pproblems[C]//2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020: 1-8.
[29] JIAO D, YANG P, FU L, et al. Optimal energy-delay scheduling for energy-harvesting WSNswith interference channel via negatively correlated search[J]. IEEE Internet of Things Journal,2019, 7(3): 1690-1703.
[30] WANG Y, CAI Z. A dynamic hybrid framework for constrained evolutionary optimization[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 42(1): 203-217.
[31] WANG B C, LI H X, ZHANG Q, et al. Decomposition-based multiobjective optimization forconstrained evolutionary optimization[J]. IEEE Transactions on systems, man, and cybernetics:systems, 2018, 51(1): 574-587.
[32] WOLPERT D, MACREADY W. No free lunch theorems for optimization[J/OL]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. DOI: 10.1109/4235.585893.
[33] WU G, WEN X, WANG L, et al. A voting-mechanism-based ensemble framework for constrainthandling Ttchniques[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(4): 646-660.
[34] WANG Y, LI J P, XUE X, et al. Utilizing the correlation between constraints and objective function for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(1): 29-43.
[35] TIAN Y, ZHANG T, XIAO J, et al. A coevolutionary framework for constrained multiobjectiveOoptimization problems[J/OL]. IEEE Transactions on Evolutionary Computation, 2021, 25(1):102-116. DOI: 10.1109/TEVC.2020.3004012.
[36] TANG K, YANG P, YAO X. Negatively correlated search[J/OL]. IEEE Journal on SelectedAreas in Communications, 2016, 34(3): 542-550. DOI: 10.1109/JSAC.2016.2525458.
[37] JIAO D, YANG P, FU L, et al. Optimal energy-delay scheduling for energy-harvesting WSNsWith interference channel via negatively correlated search[J/OL]. IEEE Internet of Things Journal, 2020, 7(3): 1690-1703. DOI: 10.1109/JIOT.2019.2954604.
[38] LI G, QIAN C, JIANG C, et al. Optimization based layer-wise magnitude-based pruning forDNN compression[C/OL]//Proceedings of the Twenty-Seventh International Joint Conferenceon Artificial Intelligence. Stockholm, Sweden: International Joint Conferences on ArtificialIntelligence Organization, 2018: 2383-2389. DOI: 10.24963/ijcai.2018/330.
[39] YANG P, YANG Q, TANG K, et al. Parallel exploration via negatively correlated search[J/OL].Frontiers of Computer Science, 2021, 15(5): 155333. DOI: 10.1007/s11704-020-0431-0.
[40] KUMAR A, DAS S, MISRA A K, et al. A 𝑣-constrained matrix adaptation evolution strategy with Broyden-based mutation for constrained optimization[J/OL]. IEEE Transactions onCybernetics, 2022, 52(6): 4784-4796. DOI: 10.1109/TCYB.2020.3042853.
[41] KAILATH T. The divergence and Bhattacharyya distance measures in signal selection[J]. IEEEtransactions on communication technology, 1967, 15(1): 52-60.
[42] RECHENBERG I. Evolutionsstrategie[J]. Optimierung technischer Systeme nach Prinzipienderbiologischen Evolution, 1973.
[43] ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J/OL]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. DOI: 10.1109/TEVC.2007.892759.
[44] KUMAR A, WU G, ALI M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J/OL]. Swarm and Evolutionary Computation, 2020, 56: 100693. DOI: 10.1016/j.swevo.2020.100693.
[45] TRIVEDI A, SRINIVASAN D, BISWAS N. An improved unified differential evolution algorithm for constrained optimization problems[C]//Proceedings of 2018 IEEE congress on evolutionary computation. IEEE, 2018: 1-10.
[46] TRIVEDI A, SANYAL K, VERMA P, et al. A unified differential evolution algorithm forconstrained optimization problems[C/OL]//2017 IEEE Congress on Evolutionary Computation(CEC). 2017: 1231-1238. DOI: 10.1109/CEC.2017.7969446.
[47] HELLWIG M, BEYER H G. A matrix adaptation Eevolution strategy for constrained realparameter optimization[C/OL]//2018 IEEE Congress on Evolutionary Computation (CEC).2018: 1-8. DOI: 10.1109/CEC.2018.8477950.
[48] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J/OL]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI: 10.1109/5.726791.
[49] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J/OL]. Communications of the ACM, 2017, 60(6): 84–90. DOI:10.1145/3065386.
[50] LECUN Y, DENKER J, SOLLA S. Optimal brain damage[J]. Advances in Neural InformationProcessing Systems, 1989, 2.
[51] RASTEGARI M, ORDONEZ V, REDMON J, et al. XNOR-Net: ImageNet classification usingbinary convolutional neural networks[C]//LEIBE B, MATAS J, SEBE N, et al. Computer Vision– ECCV 2016. Cham: Springer International Publishing, 2016: 525-542.
[52] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[A]. 2015.arXiv: 1503.02531.
[53] CHENG Y, WANG D, ZHOU P, et al. A survey of model compression and acceleration for deepneural networks[A]. 2020. arXiv: 1710.09282.
[54] ANWAR S, HWANG K, SUNG W. Structured pruning of deep convolutional neural networks[J/OL]. ACM Journal on Emerging Technologies in Computing Systems, 2017, 13(3). DOI:10.1145/3005348.
[55] HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural network[C]//CORTES C, LAWRENCE N, LEE D, et al. Advances in Neural InformationProcessing Systems: volume 28. Curran Associates, Inc., 2015.
[56] GUO Y, YAO A, CHEN Y. Dynamic network surgery for efficient DNNs[C]//LEE D,SUGIYAMA M, LUXBURG U, et al. Advances in Neural Information Processing Systems:volume 29. Curran Associates, Inc., 2016.
[57] ULLRICH K, MEEDS E, WELLING M. Soft weight-sharing for neural network compression[A]. 2017. arXiv: 1702.04008.
[58] HE Y, LIN J, LIU Z, et al. AMC: AutoML for model compression and acceleration on mobiledevices[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018.
[59] LIN M, JI R, ZHANG Y, et al. Channel pruning via automatic structure search[A]. 2020. arXiv:2001.08565.
[60] LIU Z, MU H, ZHANG X, et al. MetaPruning: Meta learning for automatic neural networkchannel pruning[A]. 2019. arXiv: 1903.10258.
修改评论