[1] MATHAI V, LOHSE D, SUN C. Bubbly and buoyant particle–laden turbulent flows[J]. Annual Review of Condensed Matter Physics, 2020, 11: 529559.
[2] SHAW R A. Particleturbulence interactions in atmospheric clouds[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 183227.
[3] MARTIN D, NOKES R. A fluiddynamical study of crystal settling in convecting magmas[J]. Journal of Petrology, 1989, 30(6): 14711500.
[4] MEAD K S, DENNY M W. The effects of hydrodynamic shear stress on fertilization and earlydevelopment of the purple sea urchin Strongylocentrotus purpuratus[J]. The Biological Bulletin,1995, 188(1): 4656.
[5] BOEHM M T, AYLOR D E, SHIELDS E J. Maize pollen dispersal under convective conditions [J]. Journal of Applied Meteorology and Climatology, 2008, 47(1): 291307.
[6] BROWN J K, HOVMØLLER M S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease[J]. Science, 2002, 297(5581): 537541.
[7] SCHWAIGER H F, DENLINGER R P, MASTIN L G. Ash3d: A finitevolume, conservative numerical model for ash transport and tephra deposition[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4).
[8] OUELLETTE N T, O’MALLEY P, GOLLUB J P. Transport of finitesized particles in chaotic flow[J]. Physical Review Letters, 2008, 101(17): 174504.
[9] TOSCHI F, BODENSCHATZ E. Lagrangian properties of particles in turbulence[J]. Annual Review of Fluid Mechanics, 2009, 41: 375404.
[10] GUHA A. Transport and deposition of particles in turbulent and laminar flow[J]. Annual Review of Fluid Mechanics, 2008, 40: 311341.
[11] DAVIS R E. Lagrangian ocean studies[J]. Annual Review of Fluid Mechanics, 1991, 23(1):4364.
[12] GOULD W J. From swallow floats to Argo—The development of neutrally buoyant floats[J].Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(34): 529543.
[13] WONG A P, WIJFFELS S E, RISER S C, et al. Argo data 1999–2019: Two million temperature salinity profiles and subsurface velocity observations from a global array of profiling floats[J].Frontiers in Marine Science, 2020, 7: 700.
[14] AHLERS G, GROSSMANN S, LOHSE D. Heat transfer and large scale dynamics in turbulentRayleighBénard convection[J]. Reviews of Modern Physics, 2009, 81(2): 503.
[15] XIA K Q. Current trends and future directions in turbulent thermal convection[J]. Theoreticaland Applied Mechanics Letters, 2013, 3(5): 052001.
[16] CHILLÀ F, SCHUMACHER J. New perspectives in turbulent RayleighBénard convection[J].The European Physical Journal E, 2012, 35: 125.
[17] BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in RayleighBénard con vection[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 709778.
[18] LOHSE D, XIA K Q. Smallscale properties of turbulent RayleighBénard convection[J]. An nual Review of Fluid Mechanics, 2010, 42: 335364.
[19] BÉNARD H. Les tourbillons cellulaires dans une nappe liquide[J]. Revue Gen. Sci. Pure Appl.,1900, 11: 12611271.
[20] RAYLEIGH L. LIX. On convection currents in a horizontal layer of fluid, when the higher tem perature is on the under side[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1916, 32(192): 529546.
[21] OBERBECK A. Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen[J]. Annalen der Physik, 1879, 243(6): 271292.
[22] BOUSSINESQ J. Théorie analytique de la chaleur: mise en harmonie avec la thermodynamiqueet avec la théorie mécanique de la lumière: volume 2[M]. GauthierVillars, 1903.
[23] CASTAING B, GUNARATNE G, HESLOT F, et al. Scaling of hard thermal turbulence in RayleighBénard convection[J]. Journal of Fluid Mechanics, 1989, 204: 130.
[24] ZHOU Q, SUN C, XIA K Q. Morphological evolution of thermal plumes in turbulent Rayleigh Bénard convection[J]. Physical Review Letters, 2007, 98(7): 074501.
[25] SHANG X D, QIU X L, TONG P, et al. Measured local heat transport in turbulent Rayleigh Bénard convection[J]. Physical Review Letters, 2003, 90(7): 074501.
[26] XI H D, LAM S, XIA K Q. From laminar plumes to organized flows: the onset of largescale circulation in turbulent thermal convection[J]. Journal of Fluid Mechanics, 2004, 503: 4756.
[27] LI X M, HE J D, TIAN Y, et al. Effects of Prandtl number in quasitwodimensional Rayleigh–Bénard convection[J]. Journal of Fluid Mechanics, 2021, 915: A60.
[28] HE J C, FANG M W, GAO Z Y, et al. Effects of Prandtl number in twodimensional turbulent convection[J]. Chinese Physics B, 2021, 30(9): 094701.
[29] ZHANG J, CHILDRESS S, LIBCHABER A. NonBoussinesq effect: Thermal convection with broken symmetry[J]. Physics of Fluids, 1997, 9(4): 10341042.
[30] CIONI S, CILIBERTO S, SOMMERIA J. Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number[J]. Journal of Fluid Mechanics,1997, 335: 111140.
[31] LAVEZZO V, CLERCX H, TOSCHI F. Role of thermal plumes on particle dispersion in a turbulent RayleighBénard cell[C]//Journal of Physics: Conference Series: volume 318. IOPPublishing, 2011: 052011.
[32] BROWN E, AHLERS G. Largescale circulation model for turbulent RayleighBénard convection[J]. Physical Review Letters, 2007, 98(13): 134501.
[33] FUNFSCHILLING D, BROWN E, AHLERS G. Torsional oscillations of the largescale circulation in turbulent Rayleigh–Bénard convection[J]. Journal of Fluid Mechanics, 2008, 607:119139.
[34] XI H D, ZHOU S Q, ZHOU Q, et al. Origin of the temperature oscillation in turbulent thermal convection[J]. Physical Review Letters, 2009, 102(4): 044503.
[35] XI H D, XIA K Q. Cessations and reversals of the largescale circulation in turbulent thermal convection[J]. Physical Review E, 2007, 75(6): 066307.
[36] XI H D, ZHOU Q, XIA K Q. Azimuthal motion of the mean wind in turbulent thermal convec tion[J]. Physical Review E, 2006, 73(5): 056312.
[37] WANG Y, LAI P Y, SONG H, et al. Mechanism of largescale flow reversals in turbulent thermal convection[J]. Science Advances, 2018, 4(11): eaat7480.
[38] SUGIYAMA K, NI R, STEVENS R J, et al. Flow reversals in thermally driven turbulence[J].Physical Review Letters, 2010, 105(3): 034503.
[39] CHEN X, HUANG S D, XIA K Q, et al. Emergence of substructures inside the largescale circulation induces transition in flow reversals in turbulent thermal convection[J]. Journal of Fluid Mechanics, 2019, 877: R1.
[40] XIA S N, WAN Z H, LIU S, et al. Flow reversals in Rayleigh–Bénard convection with non-Oberbeck–Boussinesq effects[J]. Journal of Fluid Mechanics, 2016, 798: 628642.
[41] WANG Q, XIA S N, WANG B F, et al. Flow reversals in twodimensional thermal convection in tilted cells[J]. Journal of Fluid Mechanics, 2018, 849: 355372.
[42] XIAO Y, TAO J, MA X, et al. Oscillating convection and reversal flow in connected cavities [J]. Physical Review E, 2018, 98(6): 063109.
[43] XIA Z, SHI Y, CAI Q, et al. Multiple states in turbulent plane Couette flow with spanwise rotation[J]. Journal of Fluid Mechanics, 2018, 837: 477490.
[44] XIE Y C, DING G Y, XIA K Q. Flow topology transition via global bifurcation in thermally driven turbulence[J]. Physical Review Letters, 2018, 120(21): 214501.
[45] ZWIRNER L, TILGNER A, SHISHKINA O. Elliptical instability and multipleroll flow modes of the largescale circulation in confined turbulent RayleighBénard convection[J]. Physical Review Letters, 2020, 125(5): 054502.
[46] LIU S, JIANG L, CHONG K L, et al. From Rayleigh–Bénard convection to porousmedia convection: how porosity affects heat transfer and flow structure[J]. Journal of Fluid Mechanics,2020, 895: A18.
[47] WANG Q, VERZICCO R, LOHSE D, et al. Multiple states in turbulent largeaspectratio ther mal convection: What determines the number of convection rolls?[J]. Physical Review Letters,2020, 125(7): 074501.
[48] MALKUS W V. The heat transport and spectrum of thermal turbulence[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1954, 225(1161):196212.
[49] KRAICHNAN R H. Turbulent thermal convection at arbitrary Prandtl number[J]. The Physics of Fluids, 1962, 5(11): 13741389.
[50] SHRAIMAN B I, SIGGIA E D. Heat transport in highRayleighnumber convection[J]. Phys ical Review A, 1990, 42(6): 3650.
[51] GROSSMANN S, LOHSE D. Scaling in thermal convection: a unifying theory[J]. Journal of Fluid Mechanics, 2000, 407: 2756.
[52] GROSSMANN S, LOHSE D. Thermal convection for large Prandtl numbers[J]. Physical Review Letters, 2001, 86(15): 3316.
[53] GROSSMANN S, LOHSE D. Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection[J]. Physical Review E, 2002, 66(1): 016305.
[54] GROSSMANN S, LOHSE D. Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes[J]. Physics of Fluids, 2004, 16(12): 44624472.
[55] LANDAU L, LIFSHITZ E. Fluid Mechanics, V. 6 of Course of Theoretical Physics, 2nd English edition. Revised[M]. Pergamon Press, OxfordNew YorkBeijingFrankfurtSan PauloSydneyTokyoToronto, 1987.
[56] ZHOU Q, XIA K Q. Measured instantaneous viscous boundary layer in turbulent Rayleigh Bénard convection[J]. Physical Review Letters, 2010, 104(10): 104301.
[57] ZHOU Q, XIA K Q. Thermal boundary layer structure in turbulent Rayleigh–Bénard convection in a rectangular cell[J]. Journal of Fluid Mechanics, 2013, 721: 199224.
[58] HUANG S D, KACZOROWSKI M, NI R, et al. Confinementinduced heattransport enhance ment in turbulent thermal convection[J]. Physical Review Letters, 2013, 111(10): 104501.
[59] SCHINDLER F, ECKERT S, ZÜRNER T, et al. Collapse of coherent large scale flow in strongly turbulent liquid metal convection[J]. Physical Review Letters, 2022, 128(16): 164501.
[60] SUN C, XI H D, XIA K Q. Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5[J]. Physical Review Letters, 2005, 95(7): 074502.
[61] SHEVKAR P P, GUNASEGARANE G, MOHANAN S K, et al. Effect of shear on coherent structures in turbulent convection[J]. Physical Review Fluids, 2019, 4(4): 043502.
[62] ZHANG L, DONG J, XIA K Q. Exploring the plume and shear effects in turbulent Rayleigh–Bénard convection with effective horizontal buoyancy under streamwise and spanwise geomet rical confinements[J]. Journal of Fluid Mechanics, 2022, 940: A37.
[63] SCAGLIARINI A, GYLFASON Á, TOSCHI F. Heatflux scaling in turbulent RayleighBénard convection with an imposed longitudinal wind[J]. Physical Review E, 2014, 89(4): 043012.
[64] SHEN Y, TONG P, XIA K Q. Turbulent convection over rough surfaces[J]. Physical Review Letters, 1996, 76(6): 908.
[65] GOLUSKIN D, DOERING C R. Bounds for convection between rough boundaries[J]. Journal of Fluid Mechanics, 2016, 804: 370386.
[66] ZHANG Y Z, SUN C, BAO Y, et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection[J]. Journal of Fluid Mechanics,2018, 836: R2.
[67] VASILIEV A, SUKHANOVSKII A. Turbulent convection in a cube with mixed thermal bound ary conditions: low Rayleigh number regime[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121290.
[68] WANG B F, ZHOU Q, SUN C. Vibrationinduced boundarylayer destabilization achieves massive heattransport enhancement[J]. Science Advances, 2020, 6(21): eaaz8239.
[69] URBAN P, HANZELKA P, KRÁLIK T, et al. Thermal waves and heat transfer efficiency enhancement in harmonically modulated turbulent thermal convection[J]. Physical Review Letters, 2022, 128(13): 134502.
[70] BALACHANDAR S, EATON J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics, 2010, 42: 111133.
[71] XU H, PUMIR A, BODENSCHATZ E. Lagrangian view of time irreversibility of fluid turbulence[J]. Science China Physics, Mechanics & Astronomy, 2016, 59: 19.
[72] WANG C, YI L, JIANG L, et al. How do the finitesize particles modify the drag in Taylor–Couette turbulent flow[J]. Journal of Fluid Mechanics, 2022, 937: A15.
[73] CALZAVARINI E, VOLK R, BOURGOIN M, et al. Acceleration statistics of finitesized par ticles in turbulent flow: the role of Faxén forces[J]. Journal of Fluid Mechanics, 2009, 630:179189.
[74] BRANDT L, COLETTI F. Particleladen turbulence: progress and perspectives[J]. Annual Review of Fluid Mechanics, 2022, 54: 159189.
[75] BABIANO A, CARTWRIGHT J H, PIRO O, et al. Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems[J]. Physical Review Letters, 2000, 84(25): 5764.
[76] QURESHI N M, BOURGOIN M, BAUDET C, et al. Turbulent transport of material particles:an experimental study of finite size effects[J]. Physical Review Letters, 2007, 99(18): 184502.
[77] VOTH G A, LA PORTA A, CRAWFORD A M, et al. Measurement of particle accelerations in fully developed turbulence[J]. Journal of Fluid Mechanics, 2002, 469: 121160.
[78] VOLK R, CALZAVARINI E, VERHILLE G, et al. Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations[J]. Physica D:Nonlinear Phenomena, 2008, 237(1417): 20842089.
[79] GASTEUIL Y, SHEW W L, GIBERT M, et al. Lagrangian temperature, velocity, and local heat flux measurement in RayleighBénard convection[J]. Physical Review Letters, 2007, 99(23):234302.
[80] SCHUMACHER J. Lagrangian dispersion and heat transport in convective turbulence[J]. Physical Review Letters, 2008, 100(13): 134502.
[81] SCHUMACHER J. Lagrangian studies in convective turbulence[J]. Physical Review E, 2009,79(5): 056301.
[82] XU A, TAO S, SHI L, et al. Transport and deposition of dilute microparticles in turbulent thermal convection[J]. Physics of Fluids, 2020, 32(8): 083301.
[83] LIU S, JIANG L, WANG C, et al. Lagrangian dynamics and heat transfer in porousmedia convection[J]. Journal of Fluid Mechanics, 2021, 917: A32.
[84] TAGHIZADEH E, VALDÉSPARADA F J, WOOD B D. Preasymptotic Taylor dispersion: evolution from the initial condition[J]. Journal of Fluid Mechanics, 2020, 889: A5.
[85] YANG W, ZHANG Y Z, WANG B F, et al. Dynamic coupling between carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial isothermal particles[J]. Journal of Fluid Mechanics, 2022, 930: A24.
[86] TAKEUCHI S, MIYAMORI Y, GU J, et al. Flow reversals in particledispersed natural convection in a twodimensional enclosed square domain[J]. Physical Review Fluids, 2019, 4(8):084304.
[87] JIANG L, CALZAVARINI E, SUN C. Rotation of anisotropic particles in Rayleigh–Bénard turbulence[J]. Journal of Fluid Mechanics, 2020, 901: A8.
[88] SALAZAR J P, DE JONG J, CAO L, et al. Experimental and numerical investigation of inertial particle clustering in isotropic turbulence[J]. Journal of Fluid Mechanics, 2008, 600: 245256.
[89] YEO K, DONG S, CLIMENT E, et al. Modulation of homogeneous turbulence seeded with finite size bubbles or particles[J]. International Journal of Multiphase Flow, 2010, 36(3): 221233.
[90] HU S Y, WANG K Z, JIA L B, et al. Enhanced heat transport in thermal convection with suspensions of rodlike expandable particles[J]. Journal of Fluid Mechanics, 2021, 928: R1.
[91] PATOČKA V, CALZAVARINI E, TOSI N. Settling of inertial particles in turbulent Rayleigh-Bénard convection[J]. Physical Review Fluids, 2020, 5(11): 114304.
[92] ALISEDA A, LASHERAS J. Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow[J]. Physics of Fluids, 2011, 23(9):093301.
[93] WILL J B, KRUG D. Dynamics of freely rising spheres: the effect of moment of inertia[J].Journal of Fluid Mechanics, 2021, 927: A7.
[94] MORDANT N, CRAWFORD A M, BODENSCHATZ E. Experimental Lagrangian accelera tion probability density function measurement[J]. Physica D: Nonlinear Phenomena, 2004, 193(14): 245251.
[95] LIOT O, SEYCHELLES F, ZONTA F, et al. Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection[J]. Journal of Fluid Mechanics, 2016, 794: 655675.
[96] LI X M, HUANG S D, NI R, et al. Lagrangian velocity and acceleration measurements in plumerich regions of turbulent RayleighBénard convection[J]. Physical Review Fluids, 2021,6(5): 053503.
[97] BOURGOIN M, QURESHI N M, BAUDET C, et al. Turbulent transport of finite sized ma terial particles[C]//Journal of Physics: Conference Series: volume 318. IOP Publishing, 2011:012005.
[98] QURESHI N M, ARRIETA U, BAUDET C, et al. Acceleration statistics of inertial particles in turbulent flow[J]. The European Physical Journal B, 2008, 66: 531536.
[99] XIA K Q, SUN C, ZHOU S Q. Particle image velocimetry measurement of the velocity field in turbulent thermal convection[J]. Physical Review E, 2003, 68(6): 066303.
[100] LUCCI F, FERRANTE A, ELGHOBASHI S. Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylorlengthscale size?[J]. Physics of Fluids, 2011, 23(2): 025101.
[101] SHANG X D, TONG P, XIA K Q. Scaling of the local convective heat flux in turbulent RayleighBénard convection[J]. Physical Review Letters, 2008, 100(24): 244503.
[102] SHEN Y, XIA K Q, TONG P. Measured localvelocity fluctuations in turbulent convection[J]. Physical Review Letters, 1995, 75(3): 437.
[103] KACZOROWSKI M, XIA K Q. Turbulent flow in the bulk of Rayleigh–Bénard convection: smallscale properties in a cubic cell[J]. Journal of Fluid Mechanics, 2013, 722: 596617.
[104] FUNFSCHILLING D, BROWN E, NIKOLAENKO A, et al. Heat transport by turbulentRayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger[J/OL].Journal of Fluid Mechanics, 2005, 536: 145–154. DOI: 10.1017/S0022112005005057.
[105] KACZOROWSKI M, CHONG K L, XIA K Q. Turbulent flow in the bulk of Rayleigh–Bé nard convection: aspectratio dependence of the smallscale properties[J/OL]. Journal of Fluid Mechanics, 2014, 747: 73–102. DOI: 10.1017/jfm.2014.154.
[106] HUANG S D, XIA K Q. Effects of geometric confinement in quasi2D turbulent Rayleigh–Bénard convection[J/OL]. Journal of Fluid Mechanics, 2016, 794: 639–654. DOI: 10.1017/jfm.2016.181.
[107] JIANG H, ZHU X, MATHAI V, et al. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces[J]. Physical Review Letters, 2018, 120(4): 044501.
修改评论