中文版 | English
题名

阳离子表面活性剂在锂硫电池阻燃电解液应用研究

其他题名
APPLICATION RESEARCH OF CATIONIC SURFACTANT ADDICTIVE IN THE FLAME-RETARDANT ELECTROLYTES FOR LITHIUM SULFUR BATTERIES
姓名
姓名拼音
LIU Chang
学号
12132011
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
徐洪礼
导师单位
创新创业学院
论文答辩日期
2023-05-19
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

锂硫电池由于高的理论比容量和能量密度受到了人们的广泛关注。但锂负极枝晶问题、硫正极表面钝化问题、电解液易燃问题,以及伴随而来的电池循环寿命、安全性问题,严重制约了锂硫电池的应用。本文针对上述问题,研究了新的阻燃型锂硫电池电解液,并使用四甲基四氟硼酸铵(CNBF)作为电解液添加剂改善电解液性能。研究表明,CNBF在不影响电解液阻燃性能的前提下,提高电解液离子电导率、抑制锂硫电池锂负极枝晶的生长、缓解了硫正极表面钝化,提高了电池循环性能。本文研究内容主要包括: (1)通过合理设计电解液的组分,得到了适配锂负极与硫化聚苯烯腈(SPAN)正极的阻燃型酯类电解液。在该酯类电解液基础上,加入CNBF以提升电解液离子电导率,抑制锂负极枝晶生长。研究表明,加入CNBF后,电解液的离子电导率由原来的10.55提升至12.06 mS/cm,电池循环寿命由原来的20次提升至67次。进一步研究表明CNBF有效抑制锂负极表面锂枝晶的形成,缓解硫正极表面钝化。 (2)为了进一步抑制锂负极枝晶生长,提升电池的循环使用寿命,研究了新型双锂盐-醚酯共混阻燃电解液,并在该电解液中加入CNBF,以提升电池电化学性能。研究表明,与酯类阻燃电解液相比,双锂盐-醚酯共混阻燃电解能够更有效的抑制锂枝晶的生长,提升电池的循环性能。该电解液中加入CNBF,能够进一步抑制锂负极枝晶的生长。使用该电解液的SPAN||Li电池循环寿命提升至105次。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] KAMISAN A I, TUNKU KUDIN T I, KAMISAN A S, et al. Recent advances on graphenebased materials as cathode materials in lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8630-8657.
[2] TAO T, LU S, FAN Y, et al. Anode improvement in rechargeable lithium-sulfur batteries[J].Advanced Materials, 2017, 29(48): 1700542.
[3] FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: status, solutionsand prospects[J]. Advanced Materials, 2017, 29(48): 1606823.
[4] MOON S, JUNG Y H, JUNG W K, et al. Encapsulated monoclinic sulfur for stable cycling ofLi-S rechargeable batteries[J]. Advanced Materials, 2013, 25(45): 6547-6553.
[5] HUANG L, LI J, LIU B, et al. Electrode design for lithium–sulfur batteries: problems andsolutions[J]. Advanced Functional Materials, 2020, 30(22): 1910375.
[6] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode forlithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[7] ZHANG Y, MA C, HE W, et al. MXene and MXene-based materials for lithium-sulfur batteries[J]. Progress in Natural Science: Materials International, 2021, 31(4): 501-513.
[8] ZHANG T, ZHANG L, HOU Y. MXenes: Synthesis strategies and lithium-sulfur battery applications[J]. eScience, 2022, 2(2): 164-182.
[9] GIEBELER L, BALACH J. MXenes in lithium–sulfur batteries: scratching the surface of acomplex 2D material–A minireview[J]. Materials Today Communications, 2021, 27: 102323.
[10] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced byexfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.
[11] LIU M, VISCO S J, DE JONGHE L C. Electrochemical properties of organic disulfide/thiolateredox couples[J]. Journal of the Electrochemical Society, 1989, 136(9): 2570-2575.
[12] BHARGAV A, MA Y, SHASHIKALA K, et al. The unique chemistry of thiuram polysulfides enables energy dense lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(47):25005-25013.
[13] WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode materialfor rRechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13-14): 963-965.
[14] WANG W, CAO Z, ELIA G A, et al. Recognizing the mechanism of sulfurized polyacrylonitrilecathode materials for Li–S batteries and beyond in Al–S batteries[J]. ACS Energy Letters, 2018,3(12): 2899-2907.
[15] LIU T, HU H, DING X, et al. 12 years roadmap of the sulfur cathode for lithium sulfur batteries(2009–2020)[J]. Energy Storage Materials, 2020, 30: 346-366.
[16] CHEN J, LU H, ZHANG X, et al. Electrochemical polymerization of nonflammable electrolyteenabling fast-charging lithium-sulfur battery[J]. Energy Storage Materials, 2022, 50: 387-394.51参考文献
[17] MORI R. Cathode materials for lithium-sulfur battery: a review[J]. Journal of Solid StateElectrochemistry, 2023, 27: 813-839.
[18] LI M, LI X, TUNG V, et al. Protection of lithium anode by a highly porous PVDF membranefor high-performance Li–S battery[J]. ACS Applied Energy Materials, 2020, 3(3): 2510-2515.
[19] MA G, WEN Z, WANG Q, et al. Enhanced cycle performance of a Li–S battery based on aprotected lithium anode[J]. Journal of Materials Chemistry A, 2014, 2(45): 19355-19359.
[20] DEY A. Electrochemical alloying of lithium in organic electrolytes[J]. Journal of The Electrochemical Society, 1971, 118(10): 1547-1549.
[21] SHIN B R, NAM Y J, OH D Y, et al. Comparative study of TiS2/Li-In All-Solid-State lithiumbatteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. ElectrochimicaActa, 2014, 146: 395-402.
[22] KONG L, WANG L, NI Z, et al. Lithium–Magnesium alloy as a stable anode for lithium–sulfurbattery[J]. Advanced Functional Materials, 2019, 29(13): 1808756.
[23] JING W, ZOU K, DAI X, et al. Li-Indium alloy anode for high-performance Li-metal batteries[J]. Journal of Alloys and Compounds, 2022, 924: 166517.
[24] YAN W, YANG J L, XIONG X, et al. Versatile asymmetric separator with dendrite-free alloyanode enables high-performance Li-S batteries[J]. Advanced Science, 2022, 9(25): e2202204.
[25] DORIS S E, WARD A L, FRISCHMANN P D, et al. Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium–sulfur battery membranes cast frompolymers of intrinsic microporosity[J]. Journal of Materials Chemistry A, 2016, 4(43): 16946-16952.
[26] LI C, WARD A L, DORIS S E, et al. Polysulfide-Blocking microporous polymer membranetailored for hybrid li-sulfur flow batteries[J]. Nano Letters, 2015, 15(9): 5724-5729.
[27] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemicalReviews, 2004, 104(10): 4303-4418.
[28] MEISNER Q J, ROJAS T, GLOSSMANN T, et al. Impact of Co-Solvent and LiTFSI concentration on ionic liquid-based electrolytes for Li-S battery[J]. Journal of The ElectrochemicalSociety, 2020, 167(7): 070528.
[29] MA X, FENG D, XIAO Y, et al. Generating lithium fluoride-abundant interphase on layered lithium-rich oxide cathode with lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide[J]. Journal of Power Sources, 2021, 507: 230278.
[30] ZHENG G, XIANG Y, CHEN S, et al. Additives synergy for stable interface formation onrechargeable lithium metal anodes[J]. Energy Storage Materials, 2020, 29: 377-385.
[31] SONG J K, KIM M, PARK S, et al. LiTFSI salt concentration effect to digest lithium polysulfidesfor high-loading sulfur electrodes[J]. Journal of Energy Chemistry, 2023, 78: 574-581.
[32] ZHANG P, JIN H, WANG T, et al. Insight into the effect of lithium-dendrite suppressionby lithium bis(fluorosulfony)imide/1,2-dimethoxyethane electrolytes[J]. Electrochimica Acta,2018, 277: 116-126.
[33] XIAO Y, HAN B, ZENG Y, et al. New lithium salt forms interphases suppressing both Lidendrite and polysulfide shuttling[J]. Advanced Energy Materials, 2020, 10(14): 1903937.52
[34] SHI P, ZHANG L, XIANG H, et al. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22201-22209.
[35] KIM J W, SEONG M J, PARK D W, et al. Anti-corrosive and surface-stabilizing functionalelectrolyte containing LiFSI and LiPO2F2for SiO /NCM811-based batteries[J]. Corrosion Science, 2022, 198: 110117.
[36] ZHENG H, XIANG H, JIANG F, et al. Lithium difluorophosphate‐based Dual‐Salt low concentration electrolytes for lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(30):2001440.
[37] DONG N, YANG G, LUO H, et al. A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cyclingof lithium metal batteries[J]. Journal of Power Sources, 2018, 400: 449-456.
[38] ADEOYE H A, DENT M, WATTS J F, et al. Solubility and dissolution kinetics of sulfur andsulfides in electrolyte solvents for lithium–sulfur and sodium–sulfur batteries[J]. The Journalof Chemical Physics, 2023, 158(6): 064702.
[39] KIM H S, JEONG T G, CHOI N S, et al. The cycling performances of lithium–sulfur batteriesin TEGDME/DOL containing LiNO 3 additive[J]. Ionics, 2013, 19: 1795-1802.
[40] ZHOU J, GUO Y, LIANG C, et al. A new ether-based electrolyte for lithium sulfur batteriesusing a S@pPAN cathode[J]. Chem Commun (Camb), 2018, 54(43): 5478-5481.
[41] ZHENG J, JI G, FAN X, et al. High‐Fluorinated electrolytes for Li–S batteries[J]. AdvancedEnergy Materials, 2019, 9(16): 183774.
[42] DING F, XU W, CHEN X L, et al. Effects of cesium cations in lithium deposition via self-healingelectrostatic shield mechanism[J]. Journal of Physical Chemistry C, 2014, 118(8): 4043-4049.
[43] WANG J, LIN F, JIA H, et al. Towards a safe lithium-sulfur battery with a flame-inhibitingelectrolyte and a sulfur-based composite cathode[J]. Angewandte Chemie International edtion.in English, 2014, 53(38): 10099-10104.
[44] LI X, LI W, CHEN L, et al. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multifunctional flame retardant electrolyte additive for lithium-ion batteries[J]. Journal of PowerSources, 2018, 378: 707-716.
[45] LIAO Y, YUAN L, LIU X, et al. Low-cost fumed silicon dioxide uniform Li+ flux for leanelectrolyte and anode-free Li/S battery[J]. Energy Storage Materials, 2022, 48: 366-374.
[46] DAI H L, XI K, LIU X, et al. Cationic surfactant-based electrolyte additives for uniform lithiumdeposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical Society, 2018, 140(50): 17515-17521.
[47] MA L, ELLIS L, GLAZIER S L, et al. LiPO2F2 as an electrolyte additive inLi[Ni0.5Mn0.3Co0.2]O2/Graphite pouch cells[J]. Journal of The Electrochemical Society, 2018,165(5): A891-A899.
[48] LIU Q Q, MA L, DU C Y, et al. Effects of the LiPO2F2 additive on unwanted lithium platingin lithium-ion cells[J]. Electrochimica Acta, 2018, 263: 237-248.
[49] HAO F, VERMA A, MUKHERJEE P P. Mechanistic insight into dendrite–SEI interactions forlithium metal electrodes[J]. Journal of Materials Chemistry A, 2018, 6(40): 19664-19671.53
[50] WANG S, RAFIZ K, LIU J, et al. Effects of lithium dendrites on thermal runaway and gassingof LiFePO4 batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2342-2351.
[51] ZHANG J, LIU Y, WANG C, et al. An electrochemical-mechanical phase field model for lithiumdendrite[J]. Journal of The Electrochemical Society, 2021, 168(9): 090522.
[52] MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the Li/S battery system[J].Journal of the electrochemical society, 2004, 151(11): A1969-A1976.
[53] LIU J, LU D, ZHENG J, et al. Minimizing polysulfide shuttle effect in lithium-ion sulfur batteries by anode surface passivation[J]. ACS applied materials & interfaces, 2018, 10(26): 21965-21972.
[54] LONGO R C, CAMACHO-FORERO L E, BALBUENA P B. Li2S growth on graphene: impacton the electrochemical performance of Li-S batteries[J]. The Journal of Chemical Physics, 2020,152(1): 014701.
[55] WANG T, HE J, CHENG X B, et al. Strategies toward High-Loading lithium-sulfur batteries[J]. ACS Energy Letters, 2022, 8: 116-150.
[56] LIN F, WANG J, JIA H, et al. Nonflammable electrolyte for rechargeable lithium battery withsulfur based composite cathode materials[J]. Journal of power sources, 2013, 223: 18-22.
[57] JIA H, WANG J, LIN F, et al. TPPi as a flame retardant for rechargeable lithium batteries withsulfur composite cathodes[J]. Chemical Communications, 2014, 50(53): 7011-7013.
[58] YANG H, YIN L, SHI H, et al. Suppressing lithium dendrite formation by slowing its desolvation kinetics[J]. Chemical Communications, 2019, 55(88): 13211-13214.
[59] TANG B, WU H, DU X, et al. Highly safe electrolyte enabled via controllable polysulfiderelease and efficient conversion for advanced lithium–sulfur batteries[J]. Small, 2020, 16(5):1905737.
[60] TAN S J, YUE J, HU X C, et al. Nitriding-interface-regulated lithium plating enables flameretardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie, 2019,131(23): 7884-7889.
[61] LI W, YAO H, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate toprevent lithium dendrite growth[J]. Nature communications, 2015, 6(1): 7436-7444.
[62] XU X, WANG S, WANG H, et al. The suppression of lithium dendrite growth in lithium sulfurbatteries: A review[J]. Journal of Energy Storage, 2017, 13: 387-400.
[63] JANA A, WOO S I, VIKRANT K, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607.
[64] XU K, DING M S, ZHANG S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society,2002, 149(5): A622-A626.
[65] THANGAVEL V, MASTOURI A, GUéRY C, et al. Understanding the reaction steps involving polysulfides in 1 M LiTFSI in TEGDME : DOL using cyclic voltammetry experiments andmodelling[J]. Batteries & Supercaps, 2020, 4(1): 152-162.
[66] PAN H, HAN K S, ENGELHARD M H, et al. Addressing passivation in lithium–sulfur batteryunder lean electrolyte condition[J]. Advanced Functional Materials, 2018, 28(38): 1707234.54参考文献
[67] LIU J, IHUAENYI S, KUPHAL R, et al. A comparison of carbonate-based and ether-basedelectrolyte systems for lithium metal batteries[J]. Journal of The Electrochemical Society, 2023,170: 010535.
[68] LIU Y, XU X, SADD M, et al. Insight into the critical role of exchange current density onelectrodeposition behavior of lithium metal[J]. Advanced Science, 2021, 8(5): 2003301.
[69] DAVOODABADI A, LI J, ZHOU H, et al. Effect of calendering and temperature on electrolytewetting in lithium-ion battery electrodes[J]. Journal of Energy Storage, 2019, 26: 101034.
[70] KIM K, SIEGEL D J. Predicting wettability and the electrochemical window of lithiummetal/solid electrolyte interfaces[J]. ACS applied materials & interfaces, 2019, 11(43): 39940-39950.
[71] CHU H, NOH H, KIM Y J, et al. Achieving three-dimensional lithium sulfide growth in lithiumsulfur batteries using high-donor-number anions[J]. Nature Communications, 2019, 10(1): 188-200.
[72] ZHANG Q F, WANG Y P, SEH Z W, et al. Understanding the anchoring effect of twodimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015, 15(6): 3780-3786.
[73] SHIM J, KO T J, YOO K. Study for an effect of LiNO3 on polysulfide multistep reaction in Li/Sbattery[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 283-291.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544759
专题创新创业学院
推荐引用方式
GB/T 7714
刘畅. 阳离子表面活性剂在锂硫电池阻燃电解液应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132011-刘畅-创新创业学院.p(7564KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘畅]的文章
百度学术
百度学术中相似的文章
[刘畅]的文章
必应学术
必应学术中相似的文章
[刘畅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。