[1] OBERT E. Aerodynamic design of transport aircraft[M]. IOS press, 2009.
[2] WHITCOMB R T. Lift and drag characteristics of a wing with several angles of sweep at highsubsonic speeds[C]//NACA. Ames Aeron. Lab. NACA Conf. on Aerodyn. Probl. of TransonicAirplane Design. 1947.
[3] DURIEZ T, BRUNTON S L, NOACK B R. Machine learning control-taming nonlinear dy namics and turbulence[M]. Springer, 2017.
[4] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling usingdeep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[5] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of fluid mechanics, 2017, 814: 1-4.
[6] BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reductionmethods for parametric dynamical systems[J]. SIAM review, 2015, 57(4): 483-531.
[7] DONAHUE J, ANNE HENDRICKS L, GUADARRAMA S, et al. Long-term recurrent convo lutional networks for visual recognition and description[C]//Proceedings of the IEEE conferenceon computer vision and pattern recognition. 2015: 2625-2634.
[8] ZHANG Y, SUNG W J, MAVRIS D N. Application of convolutional neural network to predictairfoil lift coefficient[C]//2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, andmaterials conference. 2018: 1903.
[9] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recog nition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[10] MIYANAWALA T P, JAIMAN R K. An efficient deep learning technique for the Navier-Stokesequations: Application to unsteady wake flow dynamics[A]. 2017.
[11] YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors forairfoil performance[C]//18th AIAA/ISSMO multidisciplinary analysis and optimization confer ence. 2017: 3660.
[12] HUI X, BAI J, WANG H, et al. Fast pressure distribution prediction of airfoils using deeplearning[J]. Aerospace science and technology, 2020, 105: 105949.
[13] GUO X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery anddata mining. 2016: 481-490.
[14] YE S, ZHANG Z, SONG X, et al. A flow feature detection method for modeling pressuredistribution around a cylinder in non-uniform flows by using a convolutional neural network[J]. Scientific reports, 2020, 10(1): 1-10.
[15] THUEREY N, WEISSENOW K, PRANTL L, et al. Deep learning methods for Reynolds averaged Navier–Stokes simulations of airfoil flows[J]. AIAA journal, 2020, 58(1): 25-36.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for BiomedicalImage Segmentation[A]. 2015. arXiv: 1505.04597.
[17] SEKAR V, JIANG Q, SHU C, et al. Fast flow field prediction over airfoils using deep learningapproach[J]. Physics of fluids, 2019, 31(5): 057103.
[18] BHATNAGAR S, AFSHAR Y, PAN S, et al. Prediction of aerodynamic flow fields usingconvolutional neural networks[J]. Computational mechanics, 2019, 64(2): 525-545.
[19] TONG Z, ZHANG Y, CHEN H. Multi-objective aerodynamic optimization of supercriticalwing with substantial pressure constraints[C]//53rd AIAA aerospace sciences meeting. 2015:0763.
[20] SEKAR V, ZHANG M, SHU C, et al. Inverse design of airfoil using a deep convolutional neuralnetwork[J]. Aiaa Journal, 2019, 57(3): 993-1003.
[21] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[A]. 2014. arXiv: 1406.2661.
[22] YILMAZ E, GERMAN B. Conditional generative adversarial network framework for airfoilinverse design[C]//AIAA aviation 2020 forum. 2020.
[23] MIRZA M, OSINDERO S. Conditional Generative Adversarial Nets[A]. 2014. arXiv:1411.1784.
[24] WANG Y Y, ZHANG B Q, CHEN Y C. Robust airfoil optimization based on improved particleswarm optimization method[J]. Applied mathematics and mechanics, 2011, 32.
[25] KENNEDY J, EBERHART R. Particle swarm optimization[C/OL]//Proceedings of ICNN’95- International Conference on Neural Networks: volume 4. 1995: 1942-1948 vol.4. DOI:10.1109/ICNN.1995.488968.
[26] ZIJING L, XUEJUN L, XINYE C. A new hybrid aerodynamic optimization framework basedon differential evolution and invasive weed optimization[J]. Chinese journal of aeronautics,2018, 31(7).
[27] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global opti mization over continuous spaces[J]. Journal of global optimization, 1997, 11(4): 341.
[28] LIANG J, QIN A, SUGANTHAN P, et al. Comprehensive learning particle swarm optimizerfor global optimization of multimodal functions[J/OL]. IEEE Transactions on EvolutionaryComputation, 2006, 10(3): 281-295. DOI: 10.1109/TEVC.2005.857610.
[29] BOUHLEL M A, HE S, MARTINS J R. Scalable gradient–enhanced artificial neural networksfor airfoil shape design in the subsonic and transonic regimes[J]. Structural and ultidisciplinaryoptimization, 2020, 61.
[30] WU H, LIU X, AN W, et al. A deep learning approach for efficiently and accurately evaluatingthe flow field of supercritical airfoils[J]. Computers & Fluids, 2020, 198: 104393.
[31] JING W, RUNZE L, CHENG H, et al. An inverse design method for supercritical airfoil basedon conditional generative models[J]. Chinese journal of aeronautics, 2022, 35(3): 62-74.
[32] KINGMA D P, WELLING M. Auto-Encoding Variational Bayes[A]. 2022. arXiv: 1312.6114.
[33] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[A]. 2017. arXiv: 1701.07875.
[34] JIN X, CHENG P, CHEN W L, et al. Prediction model of velocity field around circular cylinderover various Reynolds numbers by fusion convolutional neural networks based on pressure onthe cylinder[J]. Physics of Fluids, 2018, 30(4): 047105.
[35] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universalapproximators[J]. Neural networks, 1989, 2(5): 359-366.
[36] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics ofcontrol, signals and systems, 1989, 2(4): 303-314.
[37] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convo lutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
[38] ROSENBLATT F. Principles of neurodynamics. perceptrons and the theory of brain mecha nisms[R]. Cornell Aeronautical Lab Inc Buffalo NY, 1961.
[39] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale imagerecognition[A]. 2014.
[40] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of theIEEE conference on computer vision and pattern recognition. 2015: 1-9.
[41] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[42] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605.
[43] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journalof computational physics, 1981, 43(2): 357-372.
[44] KULFAN B, BUSSOLETTI J. ” Fundamental” parameteric geometry representations for air craft component shapes[C]//11th AIAA/ISSMO multidisciplinary analysis and optimizationconference. 2006.
[45] SOBIECZKY H. Parametric airfoils and wings[J]. Recent development of aerodynamic designmethodologies: inverse design and optimization, 1999.
[46] PIEGL L, TILLER W. The NURBS book[M]. Springer science & Business media, 1996.
[47] CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration usinggenerative adversarial networks[C]//AIAA Scitech 2019 Forum. 2019.
修改评论