[1] CATERINA M, SCHUMACHER M, TOMINAGA M. et al. The capsaicin receptor: A heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389(6653): 816-824.
[2] COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60.
[3] CHEN Y, SUN Y, WEI Y, et al. How far for the electronic skin: from multifunctional material to advanced applications [J]. Advanced Materials Technologies, 2023, 8(8): 2201352.
[4] CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin[J]. Nature Materials, 2016, 15(9): 937-950.
[5] HUANG X, LI X, WU Z, et al. Techniques and materials for high-throughput fabrication and integration of multiparameter flexible skin patches[J]. Advanced Materials Technologies, 2023, 8(4): 2201051.
[6] CHORTOS A, BAO Z. Skin-inspired electronic devices[J]. Materials Today, 2014, 17(7): 321- 331.
[7] WANG S, OH J Y, XU J, et al. Skin-inspired electronics: An emerging paradigm[J]. Accounts of Chemical Research, 2018, 51(5): 1033-1045.
[8] ALMANSOORI M T, LI X, ZHENG L. A brief review on e-skin and its multifunctional sensing applications[J]. Current Smart Materials, 2019, 4(1): 3-14.
[9] WANG C, XIA K, ZHANG M, et al. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection[J]. ACS Applied Materials and Interfaces, 2017, 9(45): 39484-39492.
[10] BAE G Y, HAN J T, LEE G, et al. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity[J]. Advanced Materials, 2018, 30(43): 1803388.
[11] HARADA S, HONDA W, ARIE T, et al. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors[J]. ACS Nano, 2017, 8(4): 3921-3927.
[12] WU L, JI Y, OUYANG B, et al. Self-powered light-temperature dual-parameter sensor using Nb-doped SrTiO3 materials via thermosphototronic effect[J]. Advanced Functional Materials, 2021, 31(17): 2010439.
[13] PYO S, LEE J, BAE K, et al. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications[J]. Advanced Materials, 2021, 33(47): 2005902.
[14] GU Y, ZHANG T, CHEN H, et al. Mini review on flexible and wearable electronics for monitoring human health information[J]. Nanoscale Research Letters, 2019, 14(1): 1-15.
[15] DEMOLDER C, MOLINA A, HAMMOND F L, et al. Recent advances in wearable biosensing gloves and sensory feedback bio systems for enhancing rehabilitation, prostheses, healthcare, and virtual reality[J]. Biosensors and Bioelectronics, 2021, 190: 113443.
[16] QIU Z, WAN Y, ZHOU W, et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[17] OH J, YANG J, KIM J, et al. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications[J]. ACS Nano, 2018, 12(8): 7546-7553.
[18] ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[19] PARK S, KIM H, VOSGUERITCHIAN M, et al. Stretchable energy‐harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes[J]. Advanced Materials, 2014, 26(43): 7324-7332.
[20] GAO W, EMAMINEJAD S, NYEIN H, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
[21] ZHANG F, ZANG Y, HUANG D, et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials[J]. Nature Communications, 2015, 6: 8356.
[22] YOU I, MACKANIC D G, MATSUHISA N, et al. Artificial multimodal receptors based on ion relaxation dynamics[J]. Science, 2020, 370(6519): 961-965.
[23] SUN Q J, LAI Q T, TANG Z, et al. Advanced functional composite materials toward e-skin for health monitoring and artificial intelligence[J]. Advanced Materials Technologies, 2023, 8(5): 2201088.
[24] YANG M, CHENG Y, YUE Y, et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback[J]. Advanced Science, 2022, 9(20): 2200507.
[25] WU Y, LIU Y, ZHOU Y, et al. A skin-inspired tactile sensor for smart prosthetics[J]. Science Robotics, 2018, 3(22): eaat0429.
[26] CHANG T H, TIAN Y, LI C S, et al. Stretchable graphene pressure sensors with shar-pei-like hierarchical wrinkles for collision-aware surgical robotics[J]. ACS Applied Materials and Interfaces, 2019, 11(10): 10226-10236.
[27] LI M, CHEN S, FAN B, et al. Printed flexible strain sensor array for bendable interactive surface [J]. Advanced Functional Materials, 2020, 30(34): 2003214.
[28] WANG C, PAN C, WANG Z. Electronic skin for closed-loop systems[J]. ACS Nano, 2019, 13 (11): 12287-12293.
[29] WANG C, DONG L, PENG D, et al. Tactile sensors for advanced intelligent systems[J]. Advanced Intelligent Systems, 2019, 1(8): 1900090.
[30] HA M, LIM S, KO H. Wearable and flexible sensors for user-interactive health-monitoring devices[J]. Journal of Materials Chemistry B, 2018, 6(24): 4043-4064.
[31] BUNEA A C, DEDIU V, LASZLO E A, et al. E-skin: The dawn of a new era of on-body monitoring systems[J]. Micromachines, 2021, 12(9): 1091.
[32] YAO S, SWETHA P, ZHU Y. Nanomaterial-enabled wearable sensors for healthcare[J]. Advanced Healthcare Materials, 2018, 7(1): 1700889.
[33] ZHAO S, ZHU R. Electronic skin with multifunction sensors based on thermosensation[J]. Advanced Materials, 2017, 29(15): 1606151.
[34] JUNG M, KIM K, KIM B, et al. Paper-based bimodal sensor for electronic skin applications[J]. ACS Applied Materials and Interfaces, 2017, 9(32): 26974-26982.
[35] PARK H, KIM J W, HONG S Y, et al. Microporous polypyrrole-coated graphene foam for high- performance multifunctional sensors and flexible supercapacitors[J]. Advanced Functional Materials, 2018, 28(33): 1707013.
[36] MA Y, ZHANG Y, CAI S, et al. Flexible hybrid electronics for digital healthcare[J]. Advanced Materials, 2020, 32(15): 1902062.
[37] LI W D, KE K, JIA J, et al. Recent advances in multi-responsive flexible sensors towards e-skin: A delicate design for versatile sensing[J]. Small, 2022, 18(7): 2103734.
[38] LI F, SHEN T, WANG C, et al. Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics[J]. Nano-Micro Letters, 2020, 12(1): 106.
[39] HUANG Y, FAN X, CHEN S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 2019, 29 (12): 1808509.
[40] LICHTENWALNER D J, HYDRICK A E, KINGON A I. Flexible thin film temperature and strain sensor array utilizing a novel sensing concept[J]. Sensors and Actuators A-physical, 2007, 135(2): 593-597.
[41] LEE G, CHOI Y W, LEE T, et al. Nature-inspired rollable electronics[J]. NPG Asia Materials, 2019, 11(1): 67.
[42] XIE M, HISANO K, ZHU M, et al. Flexible multifunctional sensors for wearable and robotic applications[J]. Advanced Materials Technologies, 2019, 4(3): 1800626.
[43] ZHOU Z, DU X, LUO J, et al. Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing[J]. Nano Energy, 2021, 84: 105895.
[44] HAN S, JIAO F, KHAN Z U, et al. Thermoelectric polymer aerogels for pressure–temperature sensing applications[J]. Advanced Functional Materials, 2017, 27(44): 1703549.
[45] MA M, ZHANG Z, ZHAO Z, et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism[J]. Nano Energy, 2019, 66: 104105.
[46] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering pressure sensor active layers for improved performance[J]. Advanced Functional Materials, 2020, 30(39): 2003491.
[47] TEE B C K, CHORTOS A, DUNN R R, et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics[J]. Advanced Functional Materials, 2014, 24(34): 5427-5434.
[48] CHEN W, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review[J]. Journal of Materials Science and Technology, 2020, 43: 175-188.
[49] CHANG Y, WANG L, LI R, et al. First decade of interfacial iontronic sensing: From droplet sensors to artificial skins[J]. Advanced Materials, 2021, 33(7): 2003464.
[50] LEI Z, WANG Q, WU P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel[J]. Materials Horizons, 2017, 4(4): 694-700.
[51] QIU Z, WAN Y, ZHOU W, et al. Artificial skin: Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1870264.
[52] PARK J, KIM M, LEE Y, et al. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli[J]. Science Advances, 2015, 1 (9): e1500661.
[53] SONG K, ZHAO R, WANG Z L, et al. Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing[J]. Advanced Materials, 2019, 31(36): 1902831.
[54] CHHETRY A, SHARMA S, YOON H, et al. Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications[J]. Advanced Functional Materials, 2020, 30(31): 1910020.
[55] GONG S, SCHWALB W, WANG Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications, 2014, 5: 3132.
[56] PU J H, ZHA X J, TANG L S, et al. Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics[J]. ACS Applied Materials and Interfaces, 2018, 10(47): 40880-40889.
[57] RUTH S R A, BAO Z. Designing tunable capacitive pressure sensors based on material properties and microstructure geometry[J]. ACS Applied Materials and Interfaces, 2020, 12(52): 58301-58316.
[58] ZHAO J, WANG G, YANG R, et al. Tunable piezoresistivity of nanographene films for strain sensing[J]. ACS Nano, 2015, 9(2): 1622-1629.
[59] WANG Y, YANG L, SHI X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations[J]. Advanced Materials, 2019, 31(29): 1807916.
[60] BOWEN C R, KIM H A, WEAVER P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications[J]. Energy and Environmental Science, 2014, 7 (1): 25-44.
[61] LANG S B, STECKEL F. Study of ultrasensitive pyroelectric thermometer[J]. Review of Scientific Instruments, 1965, 36(12): 1817-1821.
[62] LANG S B. Pyroelectricity: From ancient curiosity to modern imaging tool[J]. Physics Today, 2005, 58(8): 31-36.
[63] YANG R, ZHANG W, TIWARI N, et al. Multimodal sensors with decoupled sensing mechanisms[J]. Advanced Science, 2022, 9(26): 2202470.
[64] SHIN Y E, PARK Y J, GHOSH S K, et al. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization[J]. Advanced Science, 2022, 9(9): 2105423.
[65] JUNG M, KIM K, KIM B, et al. Vertically stacked nanocellulose tactile sensor[J]. Nanoscale, 2017, 9(44): 17212-17219.
[66] H Q, SUN J, LIU H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J]. Nature Communications, 2018, 9(1): 244.
[67] ZHU C, GUO D, YE D, et al. Flexible PZT-integrated, bilateral sensors via transfer-free laser lift-off for multimodal measurements[J]. ACS Applied Materials and Interfaces, 2020, 12(33): 37354-37362.
[68] ZHU P, WANG Y, WANG Y, et al. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for e-skin application[J]. Advanced Energy Materials, 2020, 10(39): 2001945.
[69] QIU Y, TIAN Y, SUN S, et al. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions[J]. Nano Energy, 2020, 78: 105337.
[70] LEE S, REUVENY A, REEDER J, et al. A transparent bending-insensitive pressure sensor[J]. Nature Nanotechnology, 2016, 11(5): 472-478.
[71] JUNG M, KIM K, KIM B, et al. Based bimodal sensor for electronic skin applications[J]. ACS Applied Materials and Interfaces, 2017, 9(32): 26974-26982.
[72] LIU K, ZHOU Y, YUAN F, et al. Self-powered multimodal temperature and force sensor based on a liquid droplet[J]. Angewandte Chemie International Edition, 2016, 55(51): 15864-15868.
[73] WANG X, SONG W Z, YOU M H, et al. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator[J]. ACS Nano, 2018, 12(8): 8588-8596.
[74] MA Z, ZHANG J, LI J, et al. Frequency-enabled decouplable dual-modal flexible pressure and temperature sensor[J]. IEEE Electron Device Letters, 2020, 41(10): 1568-1571.
[75] HAN S, ALVI N U H, GRANLöF L, et al. A multiparameter pressure–temperature–humidity sensor based on mixed ionic–electronic cellulose aerogels[J]. Advanced Science, 2019, 6(8): 1802128.
[76] CHEN Y L, XIE J S, LI A, et al. Recognition of contact force and position of a flexible array-less capacitive tactile sensor[J]. IEEE Sensors Journal, 2021, 22(1): 130-144.
[77] CHEN Z, ZHAO D, MA R, et al. Flexible temperature sensors based on carbon nanomaterials [J]. Journal of Materials Chemistry B, 2021, 9(8): 1941-1964.
[78] JING X, MIH Y, PENG X F, et al. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry[J]. Carbon, 2018, 136: 63-72.
[79] HE Z, YUAN W. Adhesive, stretchable, and transparent organohydrogels for antifreezing, antidrying, and sensitive ionic skins[J]. ACS Applied Materials and Interfaces, 2021, 13(1): 1474-1485.
[80] LI G, DENG Z, CAI M, et al. A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents[J]. npj Flexible Electronics, 2021, 5(1): 23.
[81] Shi L, Zhu T, Gao G, et al. Highly stretchable and transparent ionic conducting elastomers[J]. Nature Communications, 2018, 9(1): 2630.
[82] Zhang P, Chen Y, Guo Z, et al. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes[J]. Advanced Functional Materials, 2020, 30(15): 1909252.
[83] WU T, ZHUANG R, ZHAO R, et al. Understanding the effects of fluorine substitution in lithium salt on photovoltaic properties and stability of perovskite solar cells[J]. ACS Energy Letters, 2021, 6(6): 2218-2228.
修改评论