[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. CA: A cancer journal for clinicians [J].Cancer statistics, 2022, 72(1): 7.
[2] NIGRO J M, BAKER S J, PREISINGER A C, et al. Mutations in the p53 gene occur in diverse human tumour types [J]. Nature, 1989, 342(6250): 705.
[3] (WHO) W H O. Global health estimates 2020: Deaths by cause, age, sex, by country and by region, 2000-2019 [J]. WHO, 2020, Accessed December 11.
[4] THE L. GLOBOCAN 2018: counting the toll of cancer [J]. The Lancet, 2018, 392(10152): 985.
[5] ZHANG Y, LI M, GAO X, et al. Nanotechnology in cancer diagnosis: progress, challenges and opportunities [J]. Journal of Hematology & Oncology, 2019, 12(1): 137.
[6] CHEN Q, KE H, DAI Z, et al. Nanoscale theranostics for physical stimulus-responsive cancer therapies [J]. Biomaterials, 2015, 73: 214.
[7] WEI G, WANG Y, YANG G, et al. Recent progress in nanomedicine for enhanced cancer chemotherapy [J]. Theranostics, 2021, 11(13): 6370.
[8] ARRUEBO M, VILABOA N, SáEZ-GUTIERREZ B, et al. Assessment of the evolution of cancer treatment therapies [J]. Cancers, 2011, 3(3): 3279.
[9] MORTEZAEE K, SALEHI E, MIRTAVOOS-MAHYARI H, et al. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy [J]. Journal of Cellular Physiology, 2019, 234(8): 12537.
[10] ZHAO C Y, CHENG R, YANG Z, et al. Nanotechnology for cancer therapy based on chemotherapy [J]. Molecules, 2018, 23(4): 826.
[11] LEE Y T, TAN Y J, OON C E. Molecular targeted therapy: Treating cancer with specificity [J]. European Journal of Pharmacology, 2018, 834: 188.
[12] ALI E S, SHARKER S M, ISLAM M T, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives [J]. Seminars in Cancer Biology, 2021, 69: 52.
[13] ROSENBLUM D, JOSHI N, TAO W, et al. Progress and challenges towards targeted delivery of cancer therapeutics [J]. Nature Communications, 2018, 9(1): 1410.
[14] VAN DER MEEL R, SULHEIM E, SHI Y, et al. Smart cancer nanomedicine [J]. Nature Nanotechnology, 2019, 14(11): 1007.
[15] CHENG Z, LI M, et al. Nanomaterials for cancer therapy: Current progress and perspectives [J]. Journal of Hematology & Oncology, 2021, 14(1): 85.
[16] MASOOD F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy [J]. Materials Science & Engineering. C, Materials for Biological Applications, 2016, 60: 569.
[17] VIJAYAN V, REDDY K R, SAKTHIVEL S, et al. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies [J]. Colloids and Surfaces B, Biointerfaces, 2013, 111: 150.
[18] SHASTRI V P. Non-degradable biocompatible polymers in medicine: past, present and future [J]. Current Pharmaceutical Biotechnology, 2003, 4(5): 331.
[19] ELSABAHY M, WOOLEY K L. Design of polymeric nanoparticles for biomedical delivery applications [J]. Chemical Society Reviews, 2012, 41(7): 2545.
[20] MARTíN-SALDAñA S, PALAO-SUAY R, AGUILAR M R, et al. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity [J]. Acta Biomaterialia, 2017, 53: 199.
[21] SIEVERS E L, SENTER P D. Antibody-drug conjugates in cancer therapy [J]. Annual Review of Medicine, 2013, 64: 15.
[22] ABEDIN M R, POWERS K, AIARDO R, et al. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells [J]. Scientific Reports, 2021, 11(1): 7347.
[23] GYöRGY B, SZABó T G, PáSZTóI M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles [J]. Cellular and Molecular Life Sciences, 2011, 68(16): 2667.
[24] RAPOSO G, STOORVOGEL W. Extracellular vesicles: exosomes, microvesicles, and friends [J]. The Journal of Cell Biology, 2013, 200(4): 373.
[25] COLOMBO M, RAPOSO G, THéRY C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles [J]. Annual Review of Cell and Developmental Biology, 2014, 30: 255.
[26] BATRAKOVA E V, KIM M S. Using exosomes, naturally-equipped nanocarriers, for drug delivery [J]. Journal of Controlled Release, 2015, 219: 396.
[27] HADLA M, PALAZZOLO S, CORONA G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models [J]. Nanomedicine, 2016, 11(18): 2431.
[28] ALVAREZ-ERVITI L, SEOW Y, YIN H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J]. Nature Biotechnology, 2011, 29(4): 341.
[29] KIM M S, HANEY M J, ZHAO Y, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations [J]. Nanomedicine, 2018, 14(1): 195.
[30] ZHU L, MA J, JIA N, et al. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies [J]. Colloids and Surfaces.B, Biointerfaces, 2009, 68(1): 1.
[31] LIN A Y, YOUNG J K, NIXON A V, et al. Encapsulated Fe3O4 /Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy [J]. Small, 2014, 10(16): 3246.
[32] LIN H, CHEN Y, SHI J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy [J]. Chemical Society Reviews, 2018, 47(6): 1938.
[33] HAN Y, GAO S, ZHANG Y, et al. Metal-based nanocatalyst for combined cancer therapeutics [J]. Bioconjugate Chemistry, 2020, 31(5): 1247.
[34] LIU Y, ZHEN W, WANG Y, et al. One-dimensional Fe2P acts as a fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics [J]. Angewandte Chemie International Edition, 2019, 58(8): 2407.
[35] YANG Z, SUN Z, REN Y, et al. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review) [J]. Molecular Medicine Reports, 2019, 20(1): 5.
[36] ESHAGHI MALEKSHAH R, FAHIMIRAD B, KHALEGHIAN A. Synthesis, characterization, biomedical application, molecular dynamic simulation and molecular docking of schiff base complex of Cu(II) Supported on Fe3O4/SiO2/APTS [J]. International Journal of Nanomedicine, 2020, 15: 2583.
[37] PLOETZ E, ZIMPEL A, CAUDA V, et al. Metal-organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH [J]. Advanced Materials, 2020, 32(19): e1907267.
[38] XIA Y, LI B, ZHANG F, et al. Hydroxyapatite nanoparticles promote mitochondrial-based pyroptosis via activating calcium homeostasis and redox imbalance in vascular smooth muscle cells [J]. Nanotechnology, 2022, 33(27): 275101.
[39] DING B, SHENG J, ZHENG P, et al. Biodegradable Upconversion nanoparticles induce pyroptosis for cancer immunotherapy [J]. Nano Letters, 2021, 21(19): 8281.
[40] GAO Y, ZHANG H, ZHOU N, et al. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma [J]. Nature Biomedical Engineering, 2020, 4(7): 743.
[41] WU L, XIE W, LI Y, et al. Biomimetic nanocarriers guide extracellular ATP homeostasis to remodel energy metabolism for activating innate and adaptive Immunity system [J]. Advanced Science, 2022, 9(17): 2105376.
[42] ZHAO P, WANG M, CHEN M, et al. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy [J]. Biomaterials, 2020, 254: 120142.
[43] YU Z, CAO W, HAN C, et al. Biomimetic metal-organic framework nanoparticles for synergistic combining of SDT-chemotherapy induce pyroptosis in gastric cancer [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 796820
[44] PAWELEK J M, LOW K B, BERMUDES D. Bacteria as tumour-targeting vectors [J]. The Lancet Oncology, 2003, 4(9): 548.
[45] NAUTS H C, SWIFT W E, COLEY B L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research [J]. Cancer Research, 1946, 6: 205.
[46] PAWELEK J M, LOW K B, BERMUDES D. Tumor-targeted Salmonella as a novel anticancer vector [J]. Cancer Research, 1997, 57(20): 4537.
[47] MALMGREN R A, FLANIGAN C C. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration [J]. Cancer Research, 1955, 15(7): 473.
[48] BAST R C, JR., ZBAR B, MACKANESS G B, et al. Antitumor activity of bacterial infection. I. Effect of Listeria monocytogenes on growth of a murine fibrosarcoma [J]. Journal of the National Cancer Institute, 1975, 54(3): 749.
[49] CHANG W W, LEE C H. Salmonella as an innovative therapeutic antitumor agent [J]. International Journal of Molecular Sciences, 2014, 15(8): 14546.
[50] PANTELI J T, FORBES N S. Engineered bacteria detect spatial profiles in glucose concentration within solid tumor cell masses [J]. Biotechnology and bioengineering, 2016, 113(11): 2474.
[51] BONE R C. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome) [J]. JAMA, 1992, 268(24): 3452.
[52] DINARELLO C A, GELFAND J A, WOLFF S M. Anticytokine strategies in the treatment of the systemic inflammatory response syndrome [J]. JAMA, 1993, 269(14): 1829.
[53] MANUEL E R, BLACHE C A, PAQUETTE R, et al. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors [J]. Cancer Research, 2011, 71(12): 4183.
[54] TOSO J F, GILL V J, HWU P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma [J]. Journal of Clinical Oncology, 2002, 20(1): 142.
[55] LOW K B, ITTENSOHN M, LE T, et al. Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo [J]. Nature Biotechnology, 1999, 17(1): 37.
[56] CAO Z, LIU J. Bacteria and bacterial derivatives as drug carriers for cancer therapy [J]. Journal of Controlled Release, 2020, 326: 396.
[57] WU M R, JUSIAK B, LU T K. Engineering advanced cancer therapies with synthetic biology [J]. Nature Reviews Cancer, 2019, 19(4): 187.
[58] LEE B K, YUN Y H, PARK K. Smart nanoparticles for drug delivery: boundaries and opportunities [J]. Chemical Engineering Science, 2015, 125: 158.
[59] YAN X, ZHOU Q, VINCENT M, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy [J]. Science Robotics, 2017, 2(12): eaaq1155.
[60] CHEN F, ZANG Z, CHEN Z, et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy [J]. Biomaterials, 2019, 214: 119226.
[61] CHEN Q W, LIU X H, FAN J X, et al. Self-Mineralized Photothermal Bacteria Hybridizing with Mitochondria-Targeted Metal–Organic Frameworks for Augmenting Photothermal Tumor Therapy [J]. Advanced Functional Materials, 2020, 30(14): 1909806.
[62] SCHüLER D. Formation of magnetosomes in magnetotactic bacteria [J]. Journal of Molecular Microbiology Biotechnology, 1999, 1(1): 79.
[63] FELFOUL O, MOHAMMADI M, TAHERKHANI S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions [J]. Nature Nanotechnology, 2016, 11(11): 941.
[64] WU M, WU W, DUAN Y, et al. Photosensitizer-bacteria biohybrids promote photodynamic cancer cell ablation and intracellular protein delivery [J]. Chemistry of Materials, 2019, 31(18): 7212.
[65] LUO C H, HUANG C T, SU C H, et al. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy [J]. Nano Letters, 2016, 16(6): 3493.
[66] IMBERTI C, ZHANG P, HUANG H, et al. New designs for phototherapeutic transition metal complexes [J]. Angewandte Chemie International Edition, 2020, 59(1): 61.
[67] WINDT W D, AELTERMAN P, VERSTRAETE W. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls [J]. Environmental Microbiology, 2005, 7(3): 314.
[68] WANG X N, NIU M T, FAN J X, et al. Photoelectric bacteria enhance the in situ production of tetrodotoxin for antitumor therapy [J]. Nano Letters, 2021, 21(10): 4270.
[69] NGUYEN V D, HAN J W, CHOI Y J, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium) [J]. Sensors and Actuators B: Chemical, 2016, 224: 217.
[70] TRAORE M A, DAMICO C M, BEHKAM B. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems [J]. Applied Physics Letters, 2014, 105(17): 173702.
[71] GOLDENBERG D M, SHARKEY R M, PAGANELLI G, et al. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy [J]. Journal of Clinical Oncology, 2006, 24(5): 823.
[72] PARK S J, PARK S H, CHO S, et al. New paradigm for tumor theranostic methodology using bacteria-based microrobot [J]. Scientific Reports, 2013, 3(1): 3394.
[73] SAHARI A, TRAORE M A, SCHARF B E, et al. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape [J]. Biomedical Microdevices, 2014, 16(5): 717.
[74] SUH S, JO A, TRAORE M A, et al. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine [J]. Advanced Scienc, 2019, 6(3): 1801309.
[75] LUO Y, XU D, GAO X, et al. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy [J]. Biochemical and Biophysical Research Communications, 2019, 514(4): 1147.
[76] GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018 [J]. Cell Death & Differentiation, 2018, 25(3): 486.
[77] FRIEDLANDER A M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process [J]. Journal of Biological Chemistry, 1986, 261(16): 7123.
[78] D'SOUZA C A, HEITMAN J. Dismantling the cryptococcus coat [J]. Trends in Microbiology, 2001, 9(3): 112.
[79] KERR J F R, WYLLIE A H, CURRIE A R. Apoptosis: A basic biological phenomenon with wideranging implications in tissue kinetics [J]. British Journal of Cancer, 1972, 26(4): 239.
[80] ZHANG Y, CHEN X, GUEYDAN C, et al. Plasma membrane changes during programmed cell deaths [J]. Cell Research, 2018, 28(1): 9.
[81] SHEN H H, YANG Y X, MENG X, et al. NLRP3: A promising therapeutic target for autoimmune diseases [J]. Autoimmunity Reviews, 2018, 17(7): 694.
[82] ZHANG K, LI H Y, LANG J Y, et al. Quantum yield-engineered biocompatible probes illuminate lung tumor based on viscosity confinement-mediated antiaggregation [J]. Advanced Functional Materials, 2019, 29(44): 1905124.
[83] KONG F, FANG C, ZHANG Y, et al. Abundance and metabolism disruptions of intratumoral microbiota by chemical and physical actions unfreeze tumor treatment resistance [J]. Advanced Science, 2022, 9(7): 2105523.
[84] FANG Y, LI H Y, YIN H H, et al. Radiofrequency-sensitive longitudinal relaxation tuning strategy enabling the visualization of radiofrequency ablation intensified by magnetic composite [J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11251.
[85] WU H, LI H, LIU Y, et al. Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy [J]. Bioactive Materials, 2022, 13: 223.
[86] YIN H, FANG L, WANG L, et al. Acute silica exposure triggers pulmonary inflammation through macrophage pyroptosis: An experimental simulation [J]. Frontiers in Immunology, 2022, 13: 874459.
[87] LI J, WANG X, MEI K C, et al. Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes [J]. Nano Today, 2021, 37: 101061.
[88] LU Y, XU S, CHEN H, et al. CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation [J]. Biomaterials, 2016, 90: 27.
[89] JIA D, GONG L, LI Y, et al. {BiW8O30} exerts antitumor effect by triggering pyroptosis and upregulating reactive oxygen species [J]. Angewandte Chemie International Edition, 2021, 60(39): 21449.
[90] KATIFELIS H, NIKOU M-P, MUKHA I, et al. Ag/Au Bimetallic Nanoparticles trigger different cell death pathways and affect damage associated molecular pattern release in human cell lines [J]. Cancers, 2022, 14(6): 1546.
[91] JIANG Y, LI S, ZHANG T, et al. Tetrahedral framework nucleic acids inhibit skin fibrosis via the pyroptosis pathway [J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15069.
[92] WEI Y, ZHU M, LI S, et al. Engineered biomimetic nanoplatform protects the myocardium against ischemia/reperfusion injury by inhibiting pyroptosis [J]. ACS Applied Materials & Interfaces, 2021, 13(29): 33756.
[93] WU D, WANG S, YU G, et al. Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: Prospects for cancer therapy [J]. Angewandte Chemie International Edition, 2021, 60(15): 8018.
[94] RAO Z, ZHU Y, YANG P, et al. Pyroptosis in inflammatory diseases and cancer [J]. Theranostics, 2022, 12(9): 4310.
[95] BROZ P, PELEGRíN P, SHAO F. The gasdermins, a protein family executing cell death and inflammation [J]. Nature Reviews Immunology, 2020, 20(3): 143.
[96] CHEN S, MEI S, LUO Y, et al. Gasdermin family: A promising therapeutic target for stroke [J]. Translational Stroke Research, 2018, 9(6): 555.
[97] YANG J, LIU Z, WANG C, et al. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor [J]. Proceedings of the National Academy of Sciences, 2018, 115(26): 6792.
[98] KUANG S, ZHENG J, YANG H, et al. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis [J]. Proceedings of the National Academy of Sciences, 2017, 114(40): 10642.
[99]LIU Z, WANG C, YANG J, et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization [J]. Immunity, 2019, 51(1): 43.
[100]DING J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family [J]. Nature, 2016, 535(7610): 111.
[101]XIA X, WANG X, CHENG Z, et al. The role of pyroptosis in cancer: pro-cancer or pro-“host”? [J]. Cell Death & Disease, 2019, 10(9): 650.
[102]LISTON A, MASTERS S L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation [J]. Nature Reviews Immunology, 2017, 17(3): 208.
[103]AMARANTE-MENDES G P, ADJEMIAN S, BRANCO L M, et al. Pattern recognition receptors and the host cell death molecular machinery [J]. Frontiers in Immunology, 2018, 9: 2379.
[104]LAMKANFI M. Emerging inflammasome effector mechanisms [J]. Nature Reviews Immunology, 2011, 11(3): 213.
[105]AACHOUI Y, SAGULENKO V, MIAO E A, et al. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection [J]. Current Opinion in Microbiology, 2013, 16(3): 319.
[106]SBORGI L, RüHL S, MULVIHILL E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death [J]. The EMBO Journal, 2016, 35(16): 1766.
[107]SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660.
[108]LIU X, ZHANG Z, RUAN J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores [J]. Nature, 2016, 535(7610): 153.
[109]SHI J, ZHAO Y, WANG Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS [J]. Nature, 2014, 514(7521): 187.
[110]RüHL S, BROZ P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux [J]. European Journal of Immunology, 2015, 45(10): 2927.
[111]SHI J, GAO W, SHAO F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death [J]. Trends in Biochemical Sciences, 2017, 42(4): 245.
[112]WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin [J]. Nature, 2017, 547(7661): 99.
[113]ROGERS C, FERNANDES-ALNEMRI T, MAYES L, et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death [J]. Nature Communications, 2017, 8(1): 14128.
[114]HOU J, ZHAO R, XIA W, et al. Author Correction: PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis [J]. Nature Cell Biology, 2020, 22(11): 1396.
[115]LIU Y, FANG Y, CHEN X, et al. Gasdermin-E mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome [J]. Science Immunology, 2020, 5(43): eaax7969.
[116]ZHANG Z, ZHANG Y, XIA S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity [J]. Nature, 2020, 579(7799): 415.
[117]ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells [J]. Science, 2020, 368(6494): eaaz7548.
[118]ZHANG Y, FANG C, ZHANG W, et al. Emerging pyroptosis-engineered nanobiotechnologies regulate cancers and inflammatory diseases: A double-edged sword [J]. Matter, 2022, 5(11): 3740.
[119]LUO T, WANG D, LIU L, et al. Switching reactive oxygen species into reactive nitrogen species by photocleaved O2-released nanoplatforms favors hypoxic tumor repression [J]. Advanced Science, 2021, 8(19): 2101065.
[120]ZHAO S, YU X, QIAN Y, et al. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics [J]. Theranostics, 2020, 10(14): 6278.
[121]REISETTER A C, STEBOUNOVA L V, BALTRUSAITIS J, et al. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles [J]. Journal of Biological Chemistry, 2011, 286(24): 21844.
[122]YIN Y, JIANG X, SUN L, et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma [J]. Nano Today, 2021, 36: 101009.
[123]CHEN M, LIAO H, BU Z, et al. Pyroptosis activation by photodynamic-boosted nanocatalytic medicine favors malignancy recession [J]. Chemical Engineering Journal, 2022, 441: 136030.
[124]KATIFELIS H, LYBEROPOULOU A, MUKHA I, et al. Ag/Au bimetallic nanoparticles induce apoptosis in human cancer cell lines via P53, CASPASE-3 and BAX/BCL-2 pathways [J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(sup3): 389.
[125]JIANG W, YIN L, CHEN H, et al. NaCl nanoparticles as a cancer therapeutic [J]. Advanced Materials, 2019, 31(46): e1904058.
[126]LEE D, HA J, KANG M, et al. Strategies of perturbing ion homeostasis for cancer therapy [J]. Advanced Therapeutics, 2022, 5(2): 2100189.
[127]CAO C, LIU Q, SHI M, et al. Lanthanide-doped nanoparticles with upconversion and downshifting near-infrared luminescence for bioimaging [J]. Inorganic Chemistry, 2019, 58(14): 9351.
[128]ESCUDERO A, BECERRO A I, CARRILLO-CARRIóN C, et al. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications [J]. Nanophotonics, 2017, 6(5): 881.
[129]WU M X, YANG Y W. Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy [J]. Advanced Materials, 2017, 29(23): 1606134.
[130]HOGG S J, BEAVIS P A, DAWSON M A, et al. Targeting the epigenetic regulation of antitumour immunity [J]. Nature Reviews Drug Discovery, 2020, 19(11): 776.
[131]LI X, ZHANG Y, CHEN M, et al. Increased IFNγ+ T cells are responsible for the clinical responses of low-dose DNA-demethylating agent decitabine antitumor therapy [J]. Clinical Cancer Research, 2017, 23(20): 6031.
[132]FAN J X, DENG R H, WANG H, et al. Epigenetics-based tumor cells pyroptosis for enhancing the immunological effect of chemotherapeutic nanocarriers [J]. Nano Letters, 2019, 19(11): 8049.
[133]VOLCHUK A, YE A, CHI L, et al. Indirect regulation of HMGB1 release by gasdermin D [J]. Nature Communications, 2020, 11(1): 4561.
[134]YANG H, WANG H, CHAVAN S S, et al. High Mobility Group Box Protein 1 (HMGB1): the prototypical endogenous danger molecule [J]. Molecular Medicine, 2015, 21(1): S6.
[135]YANG H, HREGGVIDSDOTTIR H S, PALMBLAD K, et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release [J]. Proceedings of the National Academy of Sciences, 2010, 107(26): 11942.
[136]WANG Q, WANG Y, DING J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis [J]. Nature, 2020, 579(7799): 421.
[137]HAN H S, CHOI K Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications [J]. Biomedicines, 2021, 9(3): 305.
[138]LIU Z, XIE Z, LI W, et al. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges [J]. Journal of Nanobiotechnology, 2021, 19(1): 160.
[139]WU M, LIU X, CHEN H, et al. Activation of Pyroptosis by Membrane-Anchoring AIE Photosensitizer Design: New Prospect for Photodynamic Cancer Cell Ablation [J]. Angewandte Chemie International Edition, 2021, 60(16): 9093.
[140]QIAN X, ZHENG Y, CHEN Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation [J]. Advanced Materials, 2016, 28(37): 8097.
[141]DINARELLO C A. Overview of the IL-1 family in innate inflammation and acquired immunity [J]. Immunological Reviews, 2018, 281(1): 8.
[142]JOOSTEN L A B, NETEA M G, DINARELLO C A. Interleukin-1β in innate inflammation, autophagy and immunity [J]. Seminars in Immunology, 2013, 25(6): 416.
[143]WILSON N J, BONIFACE K, CHAN J R, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells [J]. Nature Immunology, 2007, 8(9): 950.
[144]KURSUNEL M A, ESENDAGLI G. The untold story of IFN-γ in cancer biology [J]. Cytokine & Growth Factor Reviews, 2016, 31: 73.
[145]MANTOVANI A, DINARELLO C A, MOLGORA M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity [J]. Immunity, 2019, 50(4): 778.
[146]WILHELM S, TAVARES A J, DAI Q, et al. Analysis of nanoparticle delivery to tumours [J]. Nature Reviews Materials, 2016, 1(5): 16014.
[147]HELDIN C H, RUBIN K, PIETRAS K, et al. High interstitial fluid pressure - an obstacle in cancer therapy [J]. Nature Reviews Cancer, 2004, 4(10): 806.
[148]KHAWAR I A, KIM J H, KUH H J. Improving drug delivery to solid tumors: Priming the tumor microenvironment [J]. Journal of Controlled Release, 2015, 201: 78.
[149]SONNENBORN U. Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties [J]. FEMS Microbiology Letters, 2016, 363(19): fnw212.
[150]KRUIS W, FRIČ P, POKROTNIEKS J, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine [J]. Gut, 2004, 53(11): 1617.
[151]HENKER J, LAASS M, BLOKHIN B M, et al. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers [J]. European Journal of Pediatrics, 2007, 166(4): 311.
[152]SVEINBJøRNSSON B, CAMILIO K A, HAUG B E, et al. LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment [J]. Future Medicinal Chemistry, 2017, 9(12): 1339.
[153]ZHOU H, FORVEILLE S, SAUVAT A, et al. The oncolytic peptide LTX-315 triggers immunogenic cell death [J]. Cell Death & Disease, 2016, 7(3): e2134.
[154]HAUG B E, CAMILIO K A, ELIASSEN L T, et al. Discovery of a 9-mer cationic peptide (LTX-315) as a potential first in class oncolytic peptide [J]. Journal of Medicinal Chemistry, 2016, 59(7): 2918.
[155]GU W, AN J, MENG H, et al. CD44-specific A6 short peptide boosts targetability and anticancer efficacy of polymersomal epirubicin to orthotopic human multiple myeloma [J]. Advanced Materials, 2019, 31(46): 1904742.
[156]JIANG Y, ZHANG J, MENG F, et al. Apolipoprotein E peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency targeted protein therapy for glioblastoma [J]. ACS Nano, 2018, 12(11): 11070.
[157]ZOU Y, ZHENG M, YANG W, et al. Virus-mimicking chimaeric polymersomes boost targeted cancer siRNA therapy in vivo [J]. Advanced Materials, 2017, 29(42): 1703285.
[158]IWATA H, MATSUDA S, MITSUHASHI K, et al. A novel surgical glue composed of gelatin and N-hydroxysuccinimide activated poly(L-glutamic acid): Part 1. Synthesis of activated poly(L-glutamic acid) and its gelation with gelatin [J]. Biomaterials, 1998, 19(20): 1869.
[159]GUPTA J, SAFDARI H A, HOQUE M. Nanoparticle mediated cancer immunotherapy [J]. Seminars in Cancer Biology, 2021, 69: 307.
[160]HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646.
[161]SUK J S, XU Q, KIM N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery [J]. Advanced Drug Delivery Reviews, 2016, 99(Pt A): 28.
[162]CABRAL H, MATSUMOTO Y, MIZUNO K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size [J]. Nature Nanotechnology, 2011, 6(12): 815.
[163]DREHER M R, LIU W, MICHELICH C R, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers [J]. Journal of the National Cancer Institute, 2006, 98(5): 335.
[164]YU W, LIU R, ZHOU Y, et al. Size-tunable strategies for a tumor targeted drug delivery system [J]. ACS Central Science, 2020, 6(2): 100.
[165]JIN Y, WU Z, WU C, et al. Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity [J]. Journal of Controlled Release, 2020, 320: 142.
[166]GIORGIO M, TRINEI M, MIGLIACCIO E, et al. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? [J]. Nature Reviews Molecular Cell Biology, 2007, 8(9): 722.
[167]TAO W, HE Z. ROS-responsive drug delivery systems for biomedical applications [J]. Asian Journal of Pharmaceutical Sciences, 2018, 13(2): 101.
[168]LALLANA E, TIRELLI N. Oxidation-responsive polymers: Which groups to use, How to make them, What to expect from them (Biomedical Applications) [J]. Macromolecular Chemistry and Physics, 2013, 214(2): 143.
[169]HOSSEINIDOUST Z, MOSTAGHACI B, YASA O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery [J]. Advanced Drug Delivery Reviews, 2016, 106(Pt A): 27.
修改评论