[1] MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26: 369-395.
[2] GUNANTARA N. A review of multi-objective optimization: Methods and its applications[J].Cogent Engineering, 2018, 5(1): 1502242.
[3] KONAK A, COIT D W, SMITH A E. Multi-objective optimization using genetic algorithms:A tutorial[J]. Reliability Engineering & System Safety, 2006, 91(9): 992-1007.
[4] DEB K, DEB K. Multi-objective optimization[M]//Search Methodologies: Introductory Tutorialsin Optimization and Decision Support Techniques. Springer, 2013: 403-449.
[5] DUAN Z, SUN H, WU C, et al. Multi-objective optimization of the aircraft environment controlsystem based on component-level parameter decomposition[J]. Energy, 2022, 245: 123330.
[6] PRATS X, PUIG V, QUEVEDO J. A multi-objective optimization strategy for designing aircraftnoise abatement procedures. Case study at Girona airport[J]. Transportation Research Part D:Transport and Environment, 2011, 16(1): 31-41.
[7] CAI Y, RAJARAM D, MAVRIS D N. Multi-mission multi-objective optimization in commercialaircraft conceptual design[C]//AIAA Aviation 2019 Forum. 2019: 3577.
[8] HUANG H Z. Fuzzy multi-objective optimization decision-making of reliability of series system[J]. Microelectronics Reliability, 1997, 37(3): 447-449.
[9] MENG K, LOU P, PENG X, et al. Multi-objective optimization decision-making of quality dependentproduct recovery for sustainability[J]. International Journal of Production Economics,2017, 188: 72-85.
[10] RIDHA H M, GOMES C, HIZAM H, et al. Multi-objective optimization and multi-criteriadecision-making methods for optimal design of standalone photovoltaic system: A comprehensivereview[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110202.
[11] NGATCHOU P, ZAREI A, EL-SHARKAWI A. Pareto multi objective optimization[C]//Proceedings of the 13th International Conference on, Intelligent Systems Application to PowerSystems. IEEE, 2005: 84-91.
[12] BRANKE J, DEB K, DIEROLF H, et al. Finding knees in multi-objective optimization[C]//Parallel Problem Solving from Nature-PPSN VIII: 8th International Conference, Birmingham,UK, September 18-22, 2004. Proceedings 8. Springer, 2004: 722-731.
[13] WANG G G, SHAN S. An efficient pareto set identification approach for multi-objective optimizationon black-box functions[C]//International Design Engineering Technical Conferencesand Computers and Information in Engineering Conference: volume 46946. 2004: 279-291.
[14] JIN Y. Multi-objective machine learning: volume 16[M]. Springer Science & Business Media,2006.
[15] ZHANG J, HUANG Y, WANG Y, et al. Multi-objective optimization of concrete mixture proportionsusing machine learning and metaheuristic algorithms[J]. Construction and BuildingMaterials, 2020, 253: 119208.
[16] ZOU F, YEN G G, TANG L, et al. A reinforcement learning approach for dynamic multiobjectiveoptimization[J]. Information Sciences, 2021, 546: 815-834.
[17] WIEGAND S, IGEL C, HANDMANN U. Evolutionary multi-objective optimisation of neuralnetworks for face detection[J]. International Journal of Computational Intelligence and Applications,2004, 4(03): 237-253.
[18] BRAUERS W K. Optimization methods for a stakeholder society: a revolution in economicthinking by multi-objective optimization: volume 73[M]. Springer Science & Business Media,2003.
[19] SINDHYA K, MIETTINEN K, DEB K. A hybrid framework for evolutionary multi-objectiveoptimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 17(4): 495-511.
[20] HERABAT P, TANGPHAISANKUN A. Multi-objective optimization model using constraintbasedgenetic algorithms for Thailand pavement management[J]. Journal of the Eastern AsiaSociety for Transportation Studies, 2005, 6: 1137-1152.
[21] MEI B, BARNOON P, TOGHRAIE D, et al. Energy, exergy, environmental and economic analyzes(4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112021.
[22] KHARRICH M, MOHAMMED O H, ALSHAMMARI N, et al. Multi-objective optimizationand the effect of the economic factors on the design of the microgrid hybrid system[J]. SustainableCities and Society, 2021, 65: 102646.
[23] HIROYASU T, MIKI M, KAMIURA J, et al. Multi-objective optimization of diesel engineemissions and fuel economy using genetic algorithms and phenomenological model[J]. SAEpaper, 2002, 78.
[24] MAYER M J, SZILÁGYI A, GRÓF G. Environmental and economic multi-objective optimizationof a household level hybrid renewable energy system by genetic algorithm[J]. AppliedEnergy, 2020, 269: 115058.
[25] HAMDY M, HASAN A, SIREN K. Applying a multi-objective optimization approach for designof low-emission cost-effective dwellings[J]. Building and Environment, 2011, 46(1): 109-123.
[26] HORI K, KIM J, KAWASE R, et al. Local energy system design support using a renewableenergy mix multi-objective optimization model and a co-creative optimization process[J]. RenewableEnergy, 2020, 156: 1278-1291.
[27] ALEXANDROPOULOS S A N, ARIDAS C K, KOTSIANTIS S B, et al. Multi-objective evolutionaryoptimization algorithms for machine learning: A recent survey[J]. Approximation andOptimization: Algorithms, Complexity and Applications, 2019: 35-55.
[28] DEB K, GOEL T. A hybrid multi-objective evolutionary approach to engineering shape design[C]//Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2001Zurich, Switzerland, March 7–9, 2001 Proceedings 1. Springer, 2001: 385-399.
[29] DEB K, GUPTA H. Searching for robust Pareto-optimal solutions in multi-objective optimization[C]//Evolutionary Multi-Criterion Optimization: Third International Conference, EMO2005, Guanajuato, Mexico, March 9-11, 2005. Proceedings 3. Springer, 2005: 150-164.
[30] MA H, WEI H, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimizationwith complex constraints[J]. Information Sciences, 2021, 560: 68-91.
[31] 林武. 面向复杂多目标优化问题的进化算法研究[D]. 深圳大学, 2020.
[32] 马小姝, 李宇龙, 严浪, 等. 传统多目标优化方法和多目标遗传算法的比较综述[J]. 电气传动自动化, 2010, 32(3): 48-50.
[33] 朱庆灵. 面向进化多目标优化的进化操作与算法的研究[D]. 深圳大学, 2016.
[34] SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the first International Conference on Genetic Algorithms and their Applications,1985. Lawrence Erlbaum Associates. Inc., Publishers, 1985.
[35] LI H, ONG Y S, GONG M, et al. Evolutionary multitasking sparse reconstruction: Frameworkand case study[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(5): 733-747.
[36] ZHANG Y, GONG D W, CHENG J. Multi-objective particle swarm optimization approachfor cost-based feature selection in classification[J]. IEEE/ACM Transactions on ComputationalBiology and Bioinformatics, 2015, 14(1): 64-75.
[37] LI J Q, PAN Q K, LIANG Y C. An effective hybrid tabu search algorithm for multi-objectiveflexible job-shop scheduling problems[J]. Computers & Industrial Engineering, 2010, 59(4):647-662.
[38] ZHAO X, GAO X S, HU Z C. Evolutionary programming based on non-uniform mutation[J].Applied Mathematics and Computation, 2007, 192(1): 1-11.
[39] 陈璐. 基于问题转化和多任务的大规模高维多目标优化[D]. 西安电子科技大学, 2021.
[40] 田野. 基于进化算法的复杂多目标优化问题求解[D]. 安徽大学, 2018.
[41] 李良昊. 复杂多目标优化问题的演化算法研究[D]. 华中科技大学, 2019.
[42] 刘红平, 黎福海. 面向多目标优化问题的自适应差分进化算法[J]. 计算机应用与软件,2015, 32(12): 249-252.
[43] ZHANG W J, XIE X F. DEPSO: hybrid particle swarm with differential evolution operator[C]//SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Manand Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483):volume 4. IEEE, 2003: 3816-3821.
[44] TANABE R, ISHIBUCHI H. Review and analysis of three components of the differential evolutionmutation operator in MOEA/D-DE[J]. Applied Soft Computing, 2019, 23(23): 12843-12857.
[45] KNOWLES J D, CORNE D W. Approximating the nondominated front using the Paretoarchived evolution strategy[J]. Evolutionary computation, 2000, 8(2): 149-172.
[46] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionaryalgorithm[J]. TIK-Report, 2001, 103.
[47] ZOLPAKAR N A, LODHI S S, PATHAK S, et al. Application of multi-objective genetic algorithm(MOGA) optimization in machining processes[J]. Optimization of Manufacturing Processes,2020: 185-199.
[48] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[49] ZITZLER E, KÜNZLI S. Indicator-based selection in multiobjective search[C]//InternationalConference on Parallel Problem Solving from Nature. Springer, 2004: 832-842.
[50] BEUME N, NAUJOKS B, EMMERICH M. SMS-EMOA: Multiobjective selection based ondominated hypervolume[J]. European Journal of Operational Research, 2007, 181(3): 1653-1669.
[51] BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2011, 19(1): 45-76.
[52] ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[53] MISHRA V, SINGH V. Vector evaluated genetic algorithm-based distributed query plan generationin distributed database[C]//Proceedings of the International Conference on Recent Cognizancein Wireless Communication & Image Processing: ICRCWIP-2014. Springer, 2016:325-337.
[54] MASHWANI W K, SALHI A. A decomposition-based hybrid multiobjective evolutionary algorithmwith dynamic resource allocation[J]. Applied Soft Computing, 2012, 12(9): 2765-2780.
[55] LI K, DEB K, ZHANG Q, et al. An evolutionary many-objective optimization algorithm basedon dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014,19(5): 694-716.
[56] SHARMA S, KUMAR V. A Comprehensive Review on Multi-objective Optimization Techniques:Past, Present and Future[J]. Archives of Computational Methods in Engineering, 2022,29(7): 5605-5633.
[57] YUAN Y, XU H, WANG B, et al. Balancing convergence and diversity in decomposition-basedmany-objective optimizers[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(2):180-198.
[58] HERNANDEZ-DIAZ A G, SANTANA-QUINTERO L V, COELLO COELLO C A, et al.Pareto-adaptive 𝜀-dominance[J]. Evolutionary Computation, 2007, 15(4): 493-517.
[59] IKEDA K, KITA H, KOBAYASHI S. Failure of Pareto-based MOEAs: Does non-dominatedreally mean near to optimal?[C]//IEEE Conference on Evolutionary Computation (CEC): volume2. IEEE, 2001: 957-962.
[60] FARINA M, AMATO P. A fuzzy definition of” optimality” for many-criteria optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2004, 34(3): 315-326.
[61] KÖPPEN M, VICENTE-GARCIA R, NICKOLAY B. Fuzzy-pareto-dominance and its applicationin evolutionary multi-objective optimization[C]//International Conference on EvolutionaryMulti-Criterion Optimization. Springer, 2005: 399-412.
[62] LI F, CHENG R, LIU J, et al. A two-stage R2 indicator based evolutionary algorithm for manyobjectiveoptimization[J]. Applied Soft Computing, 2018, 67: 245-260.
[63] LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/Dand NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2008, 13(2): 284-302.
[64] ZHANG S X, ZHENG L M, LIU L, et al. Decomposition-based multi-objective evolutionaryalgorithm with mating neighborhood sizes and reproduction operators adaptation[J]. AppliedSoft Computing, 2017, 21(21): 6381-6392.
[65] LIU H L, GU F, ZHANG Q. Decomposition of a multiobjective optimization problem into anumber of simple multiobjective subproblems[J]. IEEE Transactions on Evolutionary Computation,2013, 18(3): 450-455.
[66] DEB K, SINDHYA K, OKABE T. Self-adaptive simulated binary crossover for real-parameteroptimization[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation.2007: 1187-1194.
[67] YUAN Y, XU H, WANG B, et al. A new dominance relation-based evolutionary algorithm formany-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(1):16-37.
[68] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjectiveoptimizers: An analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003,7(2): 117-132.
[69] ZHANG Q, ZHOU A, JIN Y. RM-MEDA: A regularity model-based multiobjective estimationof distribution algorithm[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1):41-63.
[70] FLORIAN A. An efficient sampling scheme: updated latin hypercube sampling[J]. ProbabilisticEngineering Mechanics, 1992, 7(2): 123-130.
[71] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study andthe strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271.
[72] ISHIBUCHI H, IMADA R, MASUYAMA N, et al. Dynamic specification of a reference pointfor hypervolume calculation in SMS-EMOA[C]//IEEE Conference on Evolutionary Computation(CEC). IEEE, 2018: 1-8.
[73] ISHIBUCHI H, MATSUMOTO T, MASUYAMA N, et al. Effects of dominance resistant solutionson the performance of evolutionary multi-objective and many-objective algorithms[C]//Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). Springer,2020: 507-515.
[74] ISHIBUCHI H, DOI K, NOJIMA Y. Reference point specification in MOEA/D for multiobjectiveand many-objective problems[C]//2016 IEEE International Conference on Systems,Man, and Cybernetics (SMC). IEEE, 2016: 004015-004020.
[75] WANG Z, ONG Y S, ISHIBUCHI H. On scalable multiobjective test problems with hardlydominated boundaries[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 217-231.
[76] LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolutionarymultiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
[77] GIAGKIOZIS I, PURSHOUSE R C, FLEMING P J. Generalized decomposition[C]//International Conference on Evolutionary Multi-Criterion Optimization (EMO). Springer,2013: 428-442.
[78] PANG L M, ISHIBUCHI H, SHANG K. NSGA-II with simple modification works well on awide variety of many-objective problems[J]. IEEE Access, 2020, 8: 190240-190250.
[79] WANG Z, DENG J, ZHANG Q, et al. On the Parameter Setting of the Penalty-Based BoundaryIntersection Method in MOEA/D.[C]//International Conference on Evolutionary Multi-Criterion Optimization (EMO). 2021: 413-423.
[80] LI L, CHEN H, LI J, et al. Preference-based evolutionary many-objective optimization for agilesatellite mission planning[J]. IEEE Access, 2018, 6: 40963-40978.
[81] ZHANG Y, FINKELSTEIN A, HARMAN M. Search based requirements optimisation: Existingwork and challenges[C]//International Working Conference on Requirements Engineering:Foundation for Software Quality. Springer, 2008: 88-94.
[82] DEB K, AGRAWAL R B, et al. Simulated binary crossover for continuous search space[J].Complex Systems, 1995, 9(2): 115-148.
[83] LIU H L, CHEN L, DEB K, et al. Investigating the effect of imbalance between convergenceand diversity in evolutionary multiobjective algorithms[J]. IEEE Transactions on EvolutionaryComputation, 2016, 21(3): 408-425.
[84] WANG Z, ONG Y S, SUN J, et al. A generator for multiobjective test problems with difficultto-approximate Pareto front boundaries[J]. IEEE Transactions on Evolutionary Computation,2018, 23(4): 556-571.
[85] FUKUMOTO H, OYAMA A. Coverage Enhancement of MOEA/D-M2M for Problems withDifficult-to-Approximate Pareto Front Boundaries[C]//2019 IEEE Congress on EvolutionaryComputation (CEC). IEEE, 2019: 1734-1741.
[86] CHEN L, LIU H L, LU C, et al. A novel evolutionary multi-objective algorithm based on smetric selection and m2m population decomposition[C]//Proceedings of the 18th Asia PacificSymposium on Intelligent and Evolutionary Systems-Volume 2. Springer, 2015: 441-452.
[87] WOLPERT D, MACREADY W. No free lunch theorems for optimization[J/OL]. IEEE Transactionson Evolutionary Computation, 1997, 1(1): 67-82. DOI: 10.1109/4235.585893.
[88] IMAN R L, CONOVER W. Small sample sensitivity analysis techniques for computer models.with an application to risk assessment[J]. Communications in Statistics-theory and Methods,1980, 9(17): 1749-1842.
[89] DEB K, MOHAN M, MISHRA S. Towards a quick computation of well-spread Pareto-optimalsolutions[C]//International Conference on Evolutionary Multi-Criterion Optimization (EMO).Springer, 2003: 222-236.
[90] LIU Y, ZHU N, LI M. Solving many-objective optimization problems by a Pareto-based evolutionaryalgorithm with preprocessing and a penalty mechanism[J]. IEEE Transactions onCybernetics, 2020.
[91] WANG Z, LI Q, YANG Q, et al. The dilemma between eliminating dominance-resistant solutionsand preserving boundary solutions of extremely convex Pareto fronts[J]. Complex &Intelligent Systems, 2021: 1-10.
[92] LAM F, LONGNECKER M. A modified Wilcoxon rank sum test for paired data[J]. Biometrika,1983, 70(2): 510-513.
[93] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: A MATLAB platform for evolutionary multiobjectiveoptimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
[94] TANABE R, ISHIBUCHI H. An easy-to-use real-world multi-objective optimization problemsuite[J]. Applied Soft Computing, 2020, 89: 106078.
[95] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-pointbasednondominated sorting approach, part I: solving problems with box constraints[J]. IEEETransactions on Evolutionary Computation, 2013, 18(4): 577-601.
[96] GU L, YANG R, THO C H, et al. Optimisation and robustness for crashworthiness of sideimpact[J]. International Journal of Vehicle Design, 2001, 26(4): 348-360.
[97] DEB K, GUPTA S, DAUM D, et al. Reliability-based optimization using evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 1054-1074.
修改评论