[1] PARK H J, FRISTON K. Structural and Functional Brain Networks: From Connections toCognition[J]. Science, 2013, 342(6158): 1238411.
[2] KRIEGESKORTE N, DOUGLAS P K. Cognitive Computational Neuroscience[J]. NatureNeuroscience, 2018, 21(9): 1148-1160.
[3] YEH C H, JONES D K, LIANG X, et al. Mapping Structural Connectivity Using DiffusionMRI : Challenges and Opportunities[J]. Journal of Magnetic Resonance Imaging, 2021, 53(6):1666-1682.
[4] van den Heuvel M P, HULSHOFF POL H E. Exploring the Brain Network: A Review onResting-State fMRI Functional Connectivity[J]. European Neuropsychopharmacology, 2010,20(8): 519-534.
[5] SCHIPPERS M B, ROEBROECK A, RENKEN R, et al. Mapping the Information Flow fromOne Brain to Another during Gestural Communication[J]. Proceedings of the National Academyof Sciences, 2010, 107(20): 9388-9393.
[6] PEARL J. Causality[M]. Cambridge University Press, 2009.
[7] OZDEMIR R A, TADAYON E, BOUCHER P, et al. Individualized Perturbation of the HumanConnectome Reveals Reproducible Biomarkers of Network Dynamics Relevant to Cognition[J].Proceedings of the National Academy of Sciences, 2020, 117(14): 8115-8125.
[8] KELLER C J, HONEY C J, MÉGEVAND P, et al. Mapping Human Brain Networks withCortico-Cortical Evoked Potentials[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369(1653): 20130528.
[9] BAUER A Q, KRAFT A W, BAXTER G A, et al. Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting StateFunctional Connectivity in the Mouse[J]. Cerebral Cortex, 2018, 28(1): 370-386.
[10] NARDONE R, HÖLLER Y, TEZZON F, et al. Neurostimulation in Alzheimer’s Disease: FromBasic Research to Clinical Applications[J]. Neurological Sciences, 2015, 36(5): 689-700.
[11] BARBORICA A, OANE I, DONOS C, et al. Imaging the Effective Networks Associated withCortical Function through Intracranial High-frequency Stimulation[J]. Human Brain Mapping,2022, 43(5): 1657-1675.
[12] MATSUMOTO R, NAIR D R, LAPRESTO E, et al. Functional Connectivity in Human CorticalMotor System: A Cortico-Cortical Evoked Potential Study[J]. Brain, 2006, 130(1): 181-197.
[13] LOGOTHETIS N K, AUGATH M, MURAYAMA Y, et al. The Effects of Electrical Microstimulation on Cortical Signal Propagation[J]. Nature Neuroscience, 2010, 13(10): 1283-1291.
[14] FRISTON K J, KAHAN J, BISWAL B, et al. A DCM for Resting State fMRI[J]. NeuroImage,2014, 94: 396-407.
[15] BARNETT L, SETH A K. The MVGC Multivariate Granger Causality Toolbox: A New Approach to Granger-Causal Inference[J]. Journal of Neuroscience Methods, 2014, 223: 50-68.
[16] LI S, XIAO Y, ZHOU D, et al. Causal Inference in Nonlinear Systems: Granger Causality versusTime-Delayed Mutual Information[J]. Physical Review E, 2018: 9.
[17] ROSSINI P, DI IORIO R, BENTIVOGLIO M, et al. Methods for Analysis of Brain Connectivity:An IFCN-Sponsored Review[J]. Clinical Neurophysiology, 2019, 130(10): 1833-1858.
[18] BASSETT D S, SPORNS O. Network Neuroscience[J]. Nature Neuroscience, 2017, 20(3):353-364.
[19] SUÁREZ L E, MARKELLO R D, BETZEL R F, et al. Linking Structure and Function inMacroscale Brain Networks[J]. Trends in Cognitive Sciences, 2020, 24(4): 302-315.
[20] WINDING M, PEDIGO B D, BARNES C L, et al. The Connectome of an Insect Brain[J].Science, 2023.
[21] YE L, ALLEN W E, THOMPSON K R, et al. Wiring and Molecular Features of PrefrontalEnsembles Representing Distinct Experiences[J]. Cell, 2016, 165(7): 1776-1788.
[22] COOK S J, JARRELL T A, BRITTIN C A, et al. Whole-Animal Connectomes of BothCaenorhabditis Elegans Sexes[J]. Nature, 2019, 571(7763): 63-71.
[23] Ercsey-Ravasz M. A Predictive Network Model of Cerebral Cortical Connectivity Based on aDistance Rule[J]. Neuron, 2013: 14.
[24] LEE W C A, BONIN V, REED M, et al. Anatomy and Function of an Excitatory Network inthe Visual Cortex[J]. Nature, 2016, 532(7599): 370-374.
[25] OH S W, HARRIS J A, NG L, et al. A Mesoscale Connectome of the Mouse Brain[J]. Nature,2014: 21.
[26] BUCKNER R L. Opportunities and Limitations of Intrinsic Functional Connectivity MRI[J].Nature Neuroscience, 2013, 16(7): 6.
[27] MESHULAM L, GAUTHIER J L, BRODY C D, et al. Coarse–Graining and Hints of Scalingin a Population of 1000+ Neurons: arXiv:1812.11904[M]. arXiv, 2018.
[28] ROSENBAUM R, SMITH M A, KOHN A, et al. The Spatial Structure of Correlated NeuronalVariability[J]. Nature Neuroscience, 2017, 20(1): 107-114.
[29] BOLT T, NOMI J S, BZDOK D, et al. A Parsimonious Description of Global Functional BrainOrganization in Three Spatiotemporal Patterns[J]. Nature Neuroscience, 2022, 25(8): 1093-1103.
[30] KIM S, MOON H S, VO T T, et al. Whole-Brain Mapping of Effective Connectivity by fMRIwith Cortex-Wide Patterned Optogenetics[J]. Neuron, 2023: S0896627323001708.
[31] van den Heuvel M P, SPORNS O. Rich-Club Organization of the Human Connectome[J]. Journal of Neuroscience, 2011, 31(44): 15775-15786.
[32] THOMAS YEO B T, KRIENEN F M, SEPULCRE J, et al. The Organization of the HumanCerebral Cortex Estimated by Intrinsic Functional Connectivity[J]. Journal of Neurophysiology,2011, 106(3): 1125-1165.
[33] MARGULIES D S, GHOSH S S, GOULAS A, et al. Situating the Default-Mode Networkalong a Principal Gradient of Macroscale Cortical Organization[J]. Proceedings of the NationalAcademy of Sciences, 2016, 113(44): 12574-12579.
[34] BREAKSPEAR M. Dynamic Models of Large-Scale Brain Activity[J]. Nature Neuroscience,2017, 20(3): 340-352.
[35] URAI A E, DOIRON B, LEIFER A M, et al. Large-Scale Neural Recordings Call for NewInsights to Link Brain and Behavior[J]. Nature Neuroscience, 2022, 25(1): 11-19.
[36] CHAUDHURI R, KNOBLAUCH K, GARIEL M A, et al. A Large-Scale Circuit Mechanismfor Hierarchical Dynamical Processing in the Primate Cortex[J]. Neuron, 2015, 88(2): 419-431.
[37] SANZ PERL Y, PALLAVICINI C, PÉREZ IPIÑA I, et al. Perturbations in Dynamical Modelsof Whole-Brain Activity Dissociate between the Level and Stability of Consciousness[J]. PLOSComputational Biology, 2021, 17(7): e1009139.
[38] SHINE J M, BREAKSPEAR M, BELL P T, et al. Human Cognition Involves the DynamicIntegration of Neural Activity and Neuromodulatory Systems[J]. Nature Neuroscience, 2019,22(2): 289-296.
[39] DECO G, Ponce-Alvarez A, HAGMANN P, et al. How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics[J]. Journal of Neuroscience, 2014, 34(23): 7886-7898.
[40] DECO G, Ponce-Alvarez A, MANTINI D, et al. Resting-State Functional Connectivity Emergesfrom Structurally and Dynamically Shaped Slow Linear Fluctuations[J]. Journal of Neuroscience, 2013, 33(27): 11239-11252.
[41] Sanz-Leon P, KNOCK S A, SPIEGLER A, et al. Mathematical Framework for Large-ScaleBrain Network Modeling in The Virtual Brain[J]. NeuroImage, 2015, 111: 385-430.
[42] WANG X J. Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition[J]. Annual Review of Neuroscience, 2022, 45(1): 533-560.
[43] IZHIKEVICH E M. Computational Neuroscience: Dynamical Systems in Neuroscience: TheGeometry of Excitability and Bursting[M]. Cambridge, Mass: MIT Press, 2007.
[44] WILSON H R, COWAN J D. Excitatory and Inhibitory Interactions in Localized Populationsof Model Neurons[J]. Biophysical Journal, 1972, 12(1): 1-24.
[45] GERSTNER W, KISTLER W M, NAUD R, et al. Neuronal Dynamics: From Single Neuronsto Networks and Models of Cognition[M]. First ed. Cambridge University Press, 2014.
[46] MORRELL M C, SEDERBERG A J, NEMENMAN I. Latent Dynamical Variables ProduceSignatures of Spatiotemporal Criticality in Large Biological Systems[J]. Physical Review Letters, 2021, 126(11): 118302.
[47] NOZARI E, BERTOLERO M A, STISO J, et al. Is the Brain Macroscopically Linear? A SystemIdentification of Resting State Dynamics: arXiv:2012.12351[M]. arXiv, 2021.
[48] DECO G, JIRSA V K, MCINTOSH A R. Emerging Concepts for the Dynamical Organizationof Resting-State Activity in the Brain[J]. Nature Reviews Neuroscience, 2011, 12(1): 43-56.
[49] LUNDERVOLD A S, LUNDERVOLD A. An Overview of Deep Learning in Medical ImagingFocusing on MRI[J]. Zeitschrift für Medizinische Physik, 2019, 29(2): 102-127.
[50] KIPF T, FETAYA E, WANG K C, et al. Neural Relational Inference for Interacting Systems[C]//Proceedings of the 35th International Conference on Machine Learning. PMLR, 2018:2688-2697.
[51] TIMME M, CASADIEGO J. Revealing Networks from Dynamics: An Introduction[A]. 2014.arxiv: 1408.2963.
[52] PANDARINATH C, O’SHEA D J, COLLINS J, et al. Inferring Single-Trial Neural PopulationDynamics Using Sequential Auto-Encoders[J]. Nature Methods, 2018, 15(10): 805-815.
[53] YAN Y, DAHMANI L, REN J, et al. Reconstructing Lost BOLD Signal in Individual Participants Using Deep Machine Learning[J]. Nature Communications, 2020, 11(1): 5046.
[54] LIANG Z, LUO Z, LIU K, et al. Online Learning Koopman Operator for Closed-Loop ElectricalNeurostimulation in Epilepsy[J]. IEEE Journal of Biomedical and Health Informatics, 2022: 1-12.
[55] SAXE A, NELLI S, SUMMERFIELD C. If Deep Learning Is the Answer, What Is the Question?[J]. Nature Reviews Neuroscience, 2021, 22(1): 55-67.
[56] YANG G R, WANG X J. Artificial Neural Networks for Neuroscientists: A Primer[J]. Neuron,2020, 107(6): 1048-1070.
[57] SEJNOWSKI T J. The Unreasonable Effectiveness of Deep Learning in Artificial Intelligence[J]. Proceedings of the National Academy of Sciences, 2020, 117(48): 30033-30038.
[58] Pérez-Enciso, Zingaretti. A Guide for Using Deep Learning for Complex Trait Genomic Prediction[J]. Genes, 2019, 10(7): 553.
[59] SCHUESSLER F, MASTROGIUSEPPE F, DUBREUIL A, et al. The Interplay between Randomness and Structure during Learning in RNNs[J]. 2020: 11.
[60] VALENTE A, OSTOJIC S, PILLOW J W. Probing the Relationship Between Latent LinearDynamical Systems and Low-Rank Recurrent Neural Network Models[J]. Neural Computation,2022, 34(9): 1871-1892.
[61] HERBERT E, OSTOJIC S. The Impact of Sparsity in Low-Rank Recurrent Neural Networks[J]. PLOS Computational Biology, 2022, 18(8): e1010426.
[62] PEARL J, MACKENZIE D. The Book of Why: The New Science of Cause and Effect[M].Basic books, 2018.
[63] MATSUI T, TAMURA K, KOYANO K W, et al. Direct Comparison of Spontaneous FunctionalConnectivity and Effective Connectivity Measured by Intracortical Microstimulation: An fMRIStudy in Macaque Monkeys[J]. Cerebral Cortex, 2011, 21(10): 2348-2356.
[64] KELLER C J, BICKEL S, ENTZ L, et al. Intrinsic Functional Architecture Predicts ElectricallyEvoked Responses in the Human Brain[J]. Proceedings of the National Academy of Sciences,2011, 108(25): 10308-10313.
[65] SADEH S, CLOPATH C. Patterned Perturbation of Inhibition Can Reveal the Dynamical Structure of Neural Processing[J]. eLife, 2020, 9: e52757.
[66] CHETTIH S N, HARVEY C D. Single-Neuron Perturbations Reveal Feature-Specific Competition in V1[J]. Nature, 2019, 567(7748): 334-340.
[67] LEPPERØD M E, STÖBER T, HAFTING T, et al. Inferring Causal Connectivity from PairwiseRecordings and Optogenetics[J]. Neuroscience, 2018.
[68] PALMIGIANO A, FUMAROLA F, MOSSING D P, et al. Structure and Variability of Optogenetic Responses Identify the Operating Regime of Cortex[J]. Neuroscience, 2020.
[69] PAPADOPOULOS L, LYNN C W, BATTAGLIA D, et al. Relations between Large-Scale BrainConnectivity and Effects of Regional Stimulation Depend on Collective Dynamical State[J].PLOS Computational Biology, 2020, 16(9): e1008144.
[70] STEPANIANTS G, BRUNTON B W, KUTZ J N. Inferring Causal Networks of DynamicalSystems through Transient Dynamics and Perturbation[J]. Physical Review E, 2020: 13.
[71] LOTFOLLAHI M, SUSMELJ A K, DE DONNO C, et al. Learning Interpretable CellularResponses to Complex Perturbations in High-Throughput Screens[J]. Bioinformatics, 2021.
[72] DONG M, WANG B, WEI J, et al. Causal Identification of Single-Cell Experimental Perturbation Effects with CINEMA-OT[J]. Bioinformatics, 2022.
[73] YU H, WELCH J D. PerturbNet Predicts Single-Cell Responses to Unseen Chemical and Genetic Perturbations[J]. Bioinformatics, 2022.
[74] ROOHANI Y, HUANG K, LESKOVEC J. GEARS: Predicting Transcriptional Outcomes ofNovel Multi-Gene Perturbations[J]. Bioinformatics, 2022.
[75] FAKHAR K, HILGETAG C C. Systematic Perturbation of an Artificial Neural Network: AStep towards Quantifying Causal Contributions in the Brain[J]. PLOS Computational Biology,2022, 18(6): e1010250.
[76] INECIK K, UHLMANN A, LOTFOLLAHI M, et al. MultiCPA: Multimodal CompositionalPerturbation Autoencoder[J]. Systems Biology, 2022.
[77] FONG R, PATRICK M, VEDALDI A. Understanding Deep Networks via Extremal Perturbations and Smooth Masks[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, Korea (South): IEEE, 2019: 2950-2958.
[78] YI S, LIN S, LI Y, et al. Functional Variomics and Network Perturbation: Connecting Genotypeto Phenotype in Cancer[J]. Nature Reviews Genetics, 2017, 18(7): 395-410.
[79] WOO J H, SHIMONI Y, YANG W S, et al. Elucidating Compound Mechanism of Action byNetwork Perturbation Analysis[J]. Cell, 2015, 162(2): 441-451.
[80] BESTMANN S, RUFF C C, BLANKENBURG F, et al. Mapping Causal Interregional Influences with Concurrent TMS–fMRI[J]. Experimental Brain Research, 2008, 191(4): 383-402.
[81] Mizutani-Tiebel Y, TIK M, CHANG K Y, et al. Concurrent TMS-fMRI: Technical Challenges,Developments, and Overview of Previous Studies[J]. Frontiers in Psychiatry, 2022, 13: 825205.
[82] LUSCH B, MAIA P D, KUTZ J N. Inferring Connectivity in Networked Dynamical Systems:Challenges Using Granger Causality[J]. Physical Review E, 2016, 94(3): 032220.
[83] STEIN R R, MARKS D S, SANDER C. Inferring Pairwise Interactions from Biological DataUsing Maximum-Entropy Probability Models[J]. PLOS Computational Biology, 2015, 11(7):e1004182.
[84] MOHAMMADI M, ATASHIN A A, TAMBURRI D A. From 𝓁 1 Subgradient to Projection: ACompact Neural Network for 𝓁 1 -Regularized Logistic Regression[J]. Neurocomputing, 2023,526: 30-38.
[85] DAS A, FIETE I R. Systematic Errors in Connectivity Inferred from Activity in Strongly Recurrent Networks[J]. Nature Neuroscience, 2020, 23(10): 1286-1296.
[86] BARACK D L, MILLER E K, MOORE C I, et al. A Call for More Clarity around Causality inNeuroscience[J]. Trends in Neurosciences, 2022, 45(9): 654-655.
[87] SUGIHARA G, MAY R, YE H, et al. Detecting Causality in Complex Ecosystems[J]. Science,2012, 338(6106): 496-500.
[88] PENNY W D, FRISTON K J, ASHBURNER J T, et al. Statistical Parametric Mapping: TheAnalysis of Functional Brain Images[M]. Elsevier, 2011.
[89] MCLNTOSH A R, Gonzalez-Lima F. Structural Equation Modeling and Its Application toNetwork Analysis in Functional Brain Imaging[J]. Human Brain Mapping, 1994, 2(1-2): 2-22.
[90] ROEBROECK A, FORMISANO E, GOEBEL R. Mapping Directed Influence over the BrainUsing Granger Causality and fMRI[J]. NeuroImage, 2005, 25(1): 230-242.
[91] DHAMALA M, RANGARAJAN G, DING M. Analyzing Information Flow in Brain Networkswith Nonparametric Granger Causality[J]. NeuroImage, 2008, 41(2): 354-362.
[92] SMITH S M, MILLER K L, Salimi-Khorshidi G, et al. Network Modelling Methods for FMRI[J]. NeuroImage, 2011, 54(2): 875-891.
[93] MARRELEC G, KRAINIK A, DUFFAU H, et al. Partial Correlation for Functional BrainInteractivity Investigation in Functional MRI[J]. NeuroImage, 2006, 32(1): 228-237.
[94] SCHREIBER T. Measuring Information Transfer[J]. Physical Review Letters, 2000, 85(2):461-464.
[95] MCKEOWN M J, MAKEIG S, BROWN G G, et al. Analysis of fMRI Data by Blind Separationinto Independent Spatial Components[J]. Human Brain Mapping, 1998, 6(3): 160-188.
[96] BULLMORE E, SPORNS O. The Economy of Brain Network Organization[J]. Nature ReviewsNeuroscience, 2012, 13(5): 336-349.
[97] BASSETT D S, BULLMORE E T. Small-World Brain Networks Revisited[J]. The Neuroscientist, 2017, 23(5): 499-516.
[98] WATTS D J, STROGATZ S H. Collective Dynamics of‘Small-World’ Networks[J]. Nature,1998.
[99] SPORNS O, ZWI J D. The Small World of the Cerebral Cortex[J]. Neuroinformatics, 2004, 2(2): 145-162.
[100] BASSETT D S, BULLMORE E. Small-World Brain Networks[J]. The Neuroscientist, 2006,12(6): 512-523.
[101] van den Heuvel M P, SPORNS O. Network Hubs in the Human Brain[J]. Trends in CognitiveSciences, 2013, 17(12): 683-696.
[102] BUCKNER R L, SEPULCRE J, TALUKDAR T, et al. Cortical Hubs Revealed by IntrinsicFunctional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Disease[J]. The Journal of Neuroscience, 2009, 29(6): 1860-1873.
[103] BULLMORE E, SPORNS O. Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems[J]. Nature Reviews Neuroscience, 2009, 10(3): 186-198.
[104] JOHNSON M H. Functional Brain Development in Humans[J]. Nature Reviews Neuroscience,2001, 2(7): 475-483.86
[105] HUTTENLOCHER P R, DABHOLKAR A S. Regional Differences in Synaptogenesis in Human Cerebral Cortex[J]. The Journal of Comparative Neurology, 1997, 387(2): 167-178.
[106] TAU G Z, PETERSON B S. Normal Development of Brain Circuits[J]. Neuropsychopharmacology, 2010, 35(1): 147-168.
[107] FAIR D A, DOSENBACH N U F, CHURCH J A, et al. Development of Distinct ControlNetworks through Segregation and Integration[J]. Proceedings of the National Academy ofSciences, 2007, 104(33): 13507-13512.
[108] GAO W, ZHU H, GIOVANELLO K S, et al. Evidence on the Emergence of the Brain’s DefaultNetwork from 2-Week-Old to 2-Year-Old Healthy Pediatric Subjects[J]. Proceedings of theNational Academy of Sciences, 2009, 106(16): 6790-6795.
[109] CASEY B, GIEDD J N, THOMAS K M. Structural and Functional Brain Development and ItsRelation to Cognitive Development[J]. Biological Psychology, 2000, 54(1-3): 241-257.
[110] MARS R B, NEUBERT F X, NOONAN M P, et al. On the Relationship between the “DefaultMode Network” and the “Social Brain”[J]. Frontiers in Human Neuroscience, 2012, 6.
[111] ANTONELLO P C, VARLEY T F, BEGGS J, et al. Self-Organization of in Vitro NeuronalAssemblies Drives to Complex Network Topology[J]. eLife, 2022, 11: e74921.
[112] LOOMBA S, STRAEHLE J, GANGADHARAN V, et al. Connectomic Comparison of Mouseand Human Cortex[J]. Science, 2022, 377(6602): eabo0924.
[113] WITVLIET D, MULCAHY B, MITCHELL J K, et al. Connectomes across Development Reveal Principles of Brain Maturation[J]. Nature, 2021, 596(7871): 257-261.
[114] WILLIAMS L Z J, FITZGIBBON S P, BOZEK J, et al. Structural and Functional Asymmetryof the Neonatal Cerebral Cortex[J]. Neuroscience, 2021.
[115] FRISTON K J. Functional and Effective Connectivity: A Review[J]. Brain Connectivity, 2011,1(1): 13-36.
[116] PENNY W, STEPHAN K, MECHELLI A, et al. Comparing Dynamic Causal Models[J]. NeuroImage, 2004, 22(3): 1157-1172.
[117] LOGOTHETIS N K. What We Can Do and What We Cannot Do with fMRI[J]. Nature, 2008,453(7197): 869-878.
[118] MURPHY K, BIRN R M, BANDETTINI P A. Resting-State fMRI Confounds and Cleanup[J].NeuroImage, 2013, 80: 349-359.
[119] LUO Z, LIANG Z, XU C, et al. Mapping the Whole-Brain Effective Connectome withExcitatory-Inhibitory Causal Relationship: arXiv:2301.00148[M]. arXiv, 2023.
[120] VAN ESSEN D C, SMITH S M, BARCH D M, et al. The WU-Minn Human ConnectomeProject: An Overview[J]. NeuroImage, 2013, 80: 62-79.
[121] SCANGOS K W, MAKHOUL G S, SUGRUE L P, et al. State-Dependent Responses to Intracranial Brain Stimulation in a Patient with Depression[J]. Nature Medicine, 2021, 27(2):229-231.
[122] MASTROGIUSEPPE F, OSTOJIC S. Linking Connectivity, Dynamics, and Computations inLow-Rank Recurrent Neural Networks[J]. Neuron, 2018, 99(3): 609-623.e29.87
[123] BEIRAN M, DUBREUIL A, VALENTE A, et al. Shaping Dynamics With Multiple Populationsin Low-Rank Recurrent Networks[J]. Neural Computation, 2021, 33(6): 1572-1615.
[124] SCHUECKER J, GOEDEKE S, HELIAS M. Optimal Sequence Memory in Driven RandomNetworks[J]. Physical Review X, 2018, 8(4).
[125] SHENOY K V, KAO J C. Measurement, Manipulation and Modeling of Brain-Wide NeuralPopulation Dynamics[J]. Nature Communications, 2021, 12(1): 633.
[126] KADMON J, SOMPOLINSKY H. Transition to Chaos in Random Neuronal Networks[J]. Physical Review X, 2015, 5(4): 041030.
[127] MANTE V, SUSSILLO D, SHENOY K V, et al. Context-Dependent Computation by RecurrentDynamics in Prefrontal Cortex[J]. Nature, 2013, 503(7474): 78-84.
[128] Sanchez-Romero R, RAMSEY J D, ZHANG K, et al. Estimating Feedforward and FeedbackEffective Connections from fMRI Time Series: Assessments of Statistical Methods[J]. NetworkNeuroscience, 2019, 3(2): 274-306.
[129] SINGH M F, BRAVER T S, COLE M W, et al. Estimation and Validation of IndividualizedDynamic Brain Models with Resting State fMRI[J]. NeuroImage, 2020, 221: 117046.
[130] WOODWARD J. Causation and Manipulability[M]//ZALTA E N. The Stanford Encyclopediaof Philosophy. Winter 2016 ed. Metaphysics Research Lab, Stanford University, 2016.
[131] Ud-Dean S M M, GUNAWAN R. Optimal Design of Gene Knockout Experiments for GeneRegulatory Network Inference[J]. Bioinformatics, 2016, 32(6): 875-883.
[132] NEYSHABUR B, LI Z, BHOJANAPALLI S. THE ROLE OF OVER-PARAMETRIZATIONIN GENERALIZATION OF NEURAL NETWORKS[J]. 2019.
[133] ZHANG C, BENGIO S, HARDT M, et al. Understanding Deep Learning (Still) Requires Rethinking Generalization[J]. Communications of the ACM, 2021, 64(3): 107-115.
[134] KOPPE G, TOUTOUNJI H, KIRSCH P, et al. Identifying Nonlinear Dynamical Systems viaGenerative Recurrent Neural Networks with Applications to fMRI[J]. PLOS ComputationalBiology, 2019, 15(8): e1007263.
[135] SCHUEPBACH W, RAU J, KNUDSEN K, et al. Neurostimulation for Parkinson’s Disease withEarly Motor Complications[J]. New England Journal of Medicine, 2013, 368(7): 610-622.
[136] SCANGOS K W, KHAMBHATI A N, DALY P M, et al. Closed-Loop Neuromodulation in anIndividual with Treatment-Resistant Depression[J]. Nature Medicine, 2021, 27(10): 1696-1700.
[137] Azeredo da Silveira R, RIEKE F. The Geometry of Information Coding in Correlated NeuralPopulations[J]. Annual Review of Neuroscience, 2021, 44(1): 403-424.
[138] PANZERI S, MORONI M, SAFAAI H, et al. The Structures and Functions of Correlations inNeural Population Codes[J]. Nature Reviews Neuroscience, 2022, 23(9): 551-567.
[139] KUMAR A, ROTTER S, AERTSEN A. Spiking Activity Propagation in Neuronal Networks:Reconciling Different Perspectives on Neural Coding[J]. Nature Reviews Neuroscience, 2010,11(9): 615-627.
[140] SCHNEIDMAN E, BERRY M J, SEGEV R, et al. Weak Pairwise Correlations Imply StronglyCorrelated Network States in a Neural Population[J]. Nature, 2006, 440(7087): 1007-1012.88
[141] MUELLER S, WANG D, FOX M D, et al. Individual Variability in Functional ConnectivityArchitecture of the Human Brain[J]. Neuron, 2013, 77(3): 586-595.
[142] FELLEMAN D J, VAN ESSEN D C. Distributed Hierarchical Processing in the Primate Cerebral Cortex[J]. Cerebral Cortex, 1991, 1(1): 1-47.
[143] HAHN G, Ponce-Alvarez A, DECO G, et al. Portraits of Communication in Neuronal Networks[J]. Nature Reviews Neuroscience, 2019, 20(2): 117-127.
[144] GRAZIANO M S A, GUTERSTAM A, BIO B J, et al. Toward a Standard Model of Consciousness: Reconciling the Attention Schema, Global Workspace, Higher-Order Thought, andIllusionist Theories[J]. Cognitive Neuropsychology, 2020, 37(3-4): 155-172.
[145] XU J, YIN X, GE H, et al. Heritability of the Effective Connectivity in the Resting-State DefaultMode Network[J]. Cerebral Cortex, 2017, 27(12): 5626-5634.
[146] BUCKNER R L, DINICOLA L M. The Brain’s Default Network: Updated Anatomy, Physiology and Evolving Insights[J]. Nature Reviews Neuroscience, 2019, 20(10): 593-608.
[147] RAICHLE M E. The Brain’s Default Mode Network[J]. Annual Review of Neuroscience, 2015,38(1): 433-447.
[148] EUSTON D R, GRUBER A J, MCNAUGHTON B L. The Role of Medial Prefrontal Cortex inMemory and Decision Making[J]. Neuron, 2012, 76(6): 1057-1070.
[149] MÜLLER N, DRESLER M, JANZEN G, et al. Medial Prefrontal Decoupling from the DefaultMode Network Benefits Memory[J]. NeuroImage, 2020, 210: 116543.
[150] PHILLIPS M L, ROBINSON H A, Pozzo-Miller L. Ventral Hippocampal Projections to theMedial Prefrontal Cortex Regulate Social Memory[J]. eLife, 2019, 8: e44182.
[151] JIN J, MAREN S. Prefrontal-Hippocampal Interactions in Memory and Emotion[J]. Frontiersin Systems Neuroscience, 2015, 9.
[152] SUKENIK N, VINOGRADOV O, WEINREB E, et al. Neuronal Circuits Overcome Imbalancein Excitation and Inhibition by Adjusting Connection Numbers[J]. Proceedings of the NationalAcademy of Sciences, 2021, 118(12): e2018459118.
[153] AVERMANN M, TOMM C, MATEO C, et al. Microcircuits of Excitatory and Inhibitory Neurons in Layer 2/3 of Mouse Barrel Cortex[J]. Journal of Neurophysiology, 2012, 107(11): 3116-3134.
[154] BARRAL J, D REYES A. Synaptic Scaling Rule Preserves Excitatory–Inhibitory Balance andSalient Neuronal Network Dynamics[J]. Nature Neuroscience, 2016, 19(12): 1690-1696.
[155] DENÈVE S, MACHENS C K. Efficient Codes and Balanced Networks[J]. Nature Neuroscience,2016, 19(3): 375-382.
[156] RUBIN D B, VAN HOOSER S D, MILLER K D. The Stabilized Supralinear Network: AUnifying Circuit Motif Underlying Multi-Input Integration in Sensory Cortex[J]. Neuron, 2015,85(2): 402-417.
[157] HERTÄG L, CLOPATH C. Prediction-Error Neurons in Circuits with Multiple Neuron Types:Formation, Refinement, and Functional Implications[J]. Proceedings of the National Academyof Sciences, 2022, 119(13): e2115699119.
[158] BAKER C, ZHU V, ROSENBAUM R. Nonlinear Stimulus Representations in Neural Circuitswith Approximate Excitatory-Inhibitory Balance[J]. PLOS Computational Biology, 2020, 16(9): e1008192.
[159] KADMON J, TIMCHECK J, GANGULI S. Predictive Coding in Balanced Neural Networkswith Noise, Chaos and Delays[J]. 34th Conference on Neural Information Processing Systems,2020: 12.
[160] AHMADIAN Y, MILLER K D. What Is the Dynamical Regime of Cerebral Cortex?[J]. Neuron,2021, 109(21): 3373-3391.
[161] CHINI M, PFEFFER T, Hanganu-Opatz I. An Increase of Inhibition Drives the DevelopmentalDecorrelation of Neural Activity[J]. eLife, 2022, 11: e78811.
[162] ISAACSON J S, SCANZIANI M. How Inhibition Shapes Cortical Activity[J]. Neuron, 2011,72(2): 231-243.
[163] POORT J, WILMES K A, BLOT A, et al. Learning and Attention Increase Visual ResponseSelectivity through Distinct Mechanisms[J]. Neuron, 2022, 110(4): 686-697.e6.
[164] GALLINARO J V, CLOPATH C. Memories in a Network with Excitatory and Inhibitory Plasticity Are Encoded in the Spiking Irregularity[J]. PLOS Computational Biology, 2021, 17(11):e1009593.
[165] HAIDER B, MCCORMICK D A. Rapid Neocortical Dynamics: Cellular and Network Mechanisms[J]. Neuron, 2009, 62(2): 171-189.
[166] MONGILLO G, RUMPEL S, LOEWENSTEIN Y. Inhibitory Connectivity Defines the Realmof Excitatory Plasticity[J]. Nature Neuroscience, 2018, 21(10): 1463-1470.
[167] OZEKI H, FINN I M, SCHAFFER E S, et al. Inhibitory Stabilization of the Cortical NetworkUnderlies Visual Surround Suppression[J]. Neuron, 2009, 62(4): 578-592.
[168] SANZENI A, AKITAKE B, GOLDBACH H C, et al. Inhibition Stabilization Is a WidespreadProperty of Cortical Networks[J]. eLife, 2020, 9: e54875.
[169] SADEH S, CLOPATH C. Excitatory-Inhibitory Balance Modulates the Formation and Dynamics of Neuronal Assemblies in Cortical Networks[J]. Science Advances, 2021: 17.
[170] CARDIN J A. Inhibitory Interneurons Regulate Temporal Precision and Correlations in CorticalCircuits[J]. Trends in Neurosciences, 2018, 41(10): 689-700.
[171] ROBINSON E C, JBABDI S, GLASSER M F, et al. MSM: A New Flexible Framework forMultimodal Surface Matching[J]. NeuroImage, 2014, 100: 414-426.
[172] GLASSER M F, COALSON T S, ROBINSON E C, et al. A Multi-Modal Parcellation of HumanCerebral Cortex[J]. Nature, 2016, 536(7615): 171-178.
[173] Tzourio-Mazoyer N, LANDEAU B, PAPATHANASSIOU D, et al. Automated AnatomicalLabeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRISingle-Subject Brain[J]. NeuroImage, 2002, 15(1): 273-289.
[174] GLASSER M F, SOTIROPOULOS S N, WILSON J A, et al. The Minimal PreprocessingPipelines for the Human Connectome Project[J]. NeuroImage, 2013, 80: 105-124.
[175] ABRAHAM A, PEDREGOSA F, EICKENBERG M, et al. Machine Learning for Neuroimagingwith Scikit-Learn[J]. Frontiers in Neuroinformatics, 2014, 8.
[176] DEMIRTAŞ M, BURT J B, HELMER M, et al. Hierarchical Heterogeneity across HumanCortex Shapes Large-Scale Neural Dynamics[J]. Neuron, 2019, 101(6): 1181-1194.e13.
[177] VAROQUAUX G, GRAMFORT A, PEDREGOSA F, et al. Multi-Subject Dictionary Learningto Segment an Atlas of Brain Spontaneous Activity[C]//SZÉKELY G, HAHN H K. LectureNotes in Computer Science: Information Processing in Medical Imaging. Berlin, Heidelberg:Springer, 2011: 562-573.
[178] MARKOV N T, Ercsey-Ravasz M M, RIBEIRO GOMES A R, et al. A Weighted and DirectedInterareal Connectivity Matrix for Macaque Cerebral Cortex[J]. Cerebral Cortex, 2014, 24(1):17-36.
[179] MURRAY J D, BERNACCHIA A, FREEDMAN D J, et al. A Hierarchy of Intrinsic Timescalesacross Primate Cortex[J]. Nature Neuroscience, 2014, 17(12): 1661-1663.
[180] CHRISTOFF K, IRVING Z C, FOX K C R, et al. Mind-Wandering as Spontaneous Thought:A Dynamic Framework[J]. Nature Reviews Neuroscience, 2016, 17(11): 718-731.
[181] MASHOUR G A, ROELFSEMA P, CHANGEUX J P, et al. Conscious Processing and theGlobal Neuronal Workspace Hypothesis[J]. Neuron, 2020, 105(5): 776-798.
[182] BARGMANN C I, MARDER E. From the Connectome to Brain Function[J]. Nature Methods,2013, 10(6): 483-490.
[183] SEMEDO J D, JASPER A I, ZANDVAKILI A, et al. Feedforward and Feedback Interactionsbetween Visual Cortical Areas Use Different Population Activity Patterns[J]. Nature Communications, 2022, 13(1): 1099.
[184] MEJIAS J F, MURRAY J D, KENNEDY H, et al. Feedforward and Feedback FrequencyDependent Interactions in a Large-Scale Laminar Network of the Primate Cortex[J]. ScienceAdvances, 2016.
[185] MITZENMACHER M. A Brief History of Generative Models for Power Law and LognormalDistributions[J]. Internet Mathematics, 2004, 1(2): 226-251.
[186] SADEH S, CLOPATH C. Inhibitory Stabilization and Cortical Computation[J]. Nature ReviewsNeuroscience, 2021, 22(1): 21-37.
[187] CHANES L, BARRETT L F. Redefining the Role of Limbic Areas in Cortical Processing[J].Trends in Cognitive Sciences, 2016, 20(2): 96-106.
[188] HUNTENBURG J M, BAZIN P L, MARGULIES D S. Large-Scale Gradients in Human Cortical Organization[J]. Trends in Cognitive Sciences, 2018, 22(1): 21-31.
[189] WOLFF A, BERBERIAN N, GOLESORKHI M, et al. Intrinsic Neural Timescales: TemporalIntegration and Segregation[J]. Trends in Cognitive Sciences, 2022, 26(2): 159-173.
[190] KIM R, SEJNOWSKI T J. Strong Inhibitory Signaling Underlies Stable Temporal Dynamics andWorking Memory in Spiking Neural Networks[J]. Nature Neuroscience, 2021, 24(1): 129-139.
[191] RUNYAN C A, PIASINI E, PANZERI S, et al. Distinct Timescales of Population Coding acrossCortex[J]. Nature, 2017, 548(7665): 92-96.
[192] HONEY C J, THESEN T, DONNER T H, et al. Slow Cortical Dynamics and the Accumulationof Information over Long Timescales[J]. Neuron, 2012, 76(2): 423-434.
[193] GAO R, van den Brink R L, PFEFFER T, et al. Neuronal Timescales Are Functionally Dynamicand Shaped by Cortical Microarchitecture[J]. eLife, 2020, 9: e61277.
[194] FALLON J, WARD P G D, PARKES L, et al. Timescales of Spontaneous fMRI FluctuationsRelate to Structural Connectivity in the Brain[J]. Network Neuroscience, 2020, 4(3): 788-806.
[195] WANG X J. Macroscopic Gradients of Synaptic Excitation and Inhibition in the Neocortex[J].Nature Reviews Neuroscience, 2020, 21(3): 169-178.
[196] ALMGREN H, Van de Steen F, KÜHN S, et al. Variability and Reliability of Effective Connectivity within the Core Default Mode Network: A Multi-Site Longitudinal Spectral DCM Study[J]. NeuroImage, 2018, 183: 757-768.
[197] COLE M W. Intrinsic and Task-Evoked Network Architectures of the Human Brain[J]. 2014:19.
[198] HEARNE L. Activity Flow Underlying Abnormalities in Brain Activations and Cognition inSchizophrenia[J]. Science Advances, 2021: 14.
[199] HU Y, JI S, JIN Y, et al. Local Structure Can Identify and Quantify Influential Global Spreadersin Large Scale Social Networks[J]. Proceedings of the National Academy of Sciences, 2018,115(29): 7468-7472.
[200] MEUNIER D, LAMBIOTTE R, BULLMORE E T. Modular and Hierarchically Modular Organization of Brain Networks[J]. Frontiers in Neuroscience, 2010, 4.
[201] KAISER M, HILGETAG C C. Spatial Growth of Real-World Networks[J]. Physical Review E,2004, 69(3): 036103.
[202] CHKLOVSKII D B, SCHIKORSKI T, STEVENS C F. Wiring Optimization in Cortical Circuits[J]. Neuron, 2002, 34(3): 341-347.
[203] SPORNS O, BETZEL R F. Modular Brain Networks[J]. Annual Review of Psychology, 2016,67(1): 613-640.
[204] EGUÍLUZ V M, CHIALVO D R, CECCHI G A, et al. Scale-Free Brain Functional Networks[J]. Physical Review Letters, 2005, 94(1): 018102.
[205] BUZSÁKI G, MIZUSEKI K. The Log-Dynamic Brain: How Skewed Distributions AffectNetwork Operations[J]. Nature Reviews Neuroscience, 2014, 15(4): 264-278.
[206] DECO G, SANZ PERL Y, VUUST P, et al. Rare Long-Range Cortical Connections EnhanceHuman Information Processing[J]. Current Biology, 2021, 31(20): 4436-4448.e5.
[207] BYSTRON I, BLAKEMORE C, RAKIC P. Development of the Human Cerebral Cortex: Boulder Committee Revisited[J]. Nature Reviews Neuroscience, 2008, 9(2): 110-122.
[208] DEHAY C, KENNEDY H. Evolution of the Human Brain[J]. Science, 2020, 369(6503): 506-507.
[209] PREUSS T M, WISE S P. Evolution of Prefrontal Cortex[J]. Neuropsychopharmacology, 2022,47(1): 3-19.
[210] VANDERHAEGHEN P, POLLEUX F. Developmental Mechanisms Underlying the Evolutionof Human Cortical Circuits[J]. Nature Reviews Neuroscience, 2023, 24(4): 213-232.
[211] PETANJEK Z, JUDAŠ M, ŠIMIĆ G, et al. Extraordinary Neoteny of Synaptic Spines in theHuman Prefrontal Cortex[J]. Proceedings of the National Academy of Sciences, 2011, 108(32):13281-13286.
[212] HENSCH T K. Critical period regulation[J]. Annual Review of Neuroscience, 2004, 27(1):549-579.
[213] KUHL P K. Early Language Acquisition: Cracking the Speech Code[J]. Nature Reviews Neu roscience, 2004, 5(11): 831-843.
[214] FITZGIBBON S P, HARRISON S J, JENKINSON M, et al. The Developing Human Connec tome Project (dHCP) Automated Resting-State Functional Processing Framework for NewbornInfants[J]. NeuroImage, 2020, 223: 117303.
[215] LUO L, O’LEARY D D. AXON RETRACTION AND DEGENERATION IN DEVELOP MENT AND DISEASE[J]. Annual Review of Neuroscience, 2005, 28(1): 127-156.
[216] DOUGLAS R J, MARTIN K A. NEURONAL CIRCUITS OF THE NEOCORTEX[J]. AnnualReview of Neuroscience, 2004, 27(1): 419-451.
[217] VOGELS T P, SPREKELER H, ZENKE F, et al. Inhibitory Plasticity Balances Excitation andInhibition in Sensory Pathways and Memory Networks[J]. Science, 2011, 334(6062): 1569-1573.
[218] SABERI M, KHOSROWABADI R, KHATIBI A, et al. Topological Impact of Negative Linkson the Stability of Resting-State Brain Network[J]. Scientific Reports, 2021, 11(1): 2176.
[219] RUBINOV M, SPORNS O. Complex Network Measures of Brain Connectivity: Uses andInterpretations[J]. NeuroImage, 2010, 52(3): 1059-1069.
[220] SHAO Y, OSTOJIC S. Relating Local Connectivity and Global Dynamics in RecurrentExcitatory-Inhibitory Networks[J]. Neuroscience, 2022.
[221] BAO X, HU Q, JI P, et al. Impact of Basic Network Motifs on the Collective Response toPerturbations[J]. Nature Communications, 2022, 13(1): 5301.
[222] HU Y, BRUNTON S L, CAIN N, et al. Feedback through Graph Motifs Relates Structure andFunction in Complex Networks[J]. Physical Review E, 2018, 98(6): 062312.
[223] DECO G, TONONI G, BOLY M, et al. Rethinking Segregation and Integration: Contributionsof Whole-Brain Modelling[J]. Nature Reviews Neuroscience, 2015, 16(7): 430-439.
[224] WANG R, LIU M, CHENG X, et al. Segregation, Integration, and Balance of Large-ScaleResting Brain Networks Configure Different Cognitive Abilities[J]. Proceedings of the NationalAcademy of Sciences, 2021, 118(23): e2022288118.
[225] COHEN J R, D’ESPOSITO M. The Segregation and Integration of Distinct Brain Networksand Their Relationship to Cognition[J]. Journal of Neuroscience, 2016, 36(48): 12083-12094.
[226] TELESFORD Q K, SIMPSON S L, BURDETTE J H, et al. The Brain as a Complex System:Using Network Science as a Tool for Understanding the Brain[J]. Brain Connectivity, 2011, 1(4): 295-308.
[227] Thiebaut de Schotten M, FORKEL S J. The Emergent Properties of the Connected Brain[J].Science, 2022, 378(6619): 505-510.
修改评论