中文版 | English
题名

Neural perturbational inference: a data-driven framework for mapping the whole-brain causal connectome

其他题名
神经扰动推断:通过数据驱动的方法构建全 脑因果连接图谱
姓名
姓名拼音
LUO Zixiang
学号
12032934
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
刘泉影
导师单位
生物医学工程系
论文答辩日期
2023-05-17
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

The human brain is composed of numerous interconnected brain regions, both structurally and functionally. The complex flow of information between these regions underpins human cognition and behavior. Therefore, characterizing the causal relationship maps between brain regions is crucial for understanding the integration and propagation of information in the brain, as well as the emergence of behavior. The causal connectivity between all brain regions is also referred to as the Effective Brain Connectome (EBC). It describes the strength and direction of causal relationships between brain regions and can distinguish between excitatory and inhibitory relationships. Although effective connectivity inference methods based on neural stimulation and computational modeling have been proposed, these methods can only infer causal relationships between a limited number of brain regions and cannot depict the entire brain's causal network. Consequently, we introduce a novel data-driven framework called Neural Perturbational Inference (NPI) to infer the whole-brain EBC for the first time.

The NPI framework integrates traditional neural stimulation-based effective connectivity inference methods into a data-driven framework. Traditional methods typically involve electrical or magnetic stimulation of a brain region, and the strength of effective connectivity between the stimulated region and other regions is measured based on their response levels after stimulation. Specifically, the NPI first trains an artificial neural network model to learn the brain's dynamical properties. Once trained, the NPI artificial neural network serves as a surrogate for the brain. By perturbing each region of the surrogate brain and observing the responses of other regions, the NPI can infer the direction, strength, and excitatory-inhibitory differences of whole-brain causal connections. We verified the generalization ability of ANN and the ability of NPI to infer real connections from time series data by using a recurrent neural network with known connection structures for generating data. At the same time, on the real data, we verify that ANN has good predictive ability and the ability to learn functional connectivity.

Next, we use the NPI framework to get the EBC of human brain for the following analysis. 1. We applied NPI to the resting state functional MRI data of human brain and obtained the resting state EBC for the first time. The inferred EBC explains how information flows within and between functional networks in the brain are organized, and reveals differences in excitatory and inhibitory connection strength between functional networks. It helps to understand many higher cognitive functions and the neural mechanisms of human behavior. 2. In order to explore the evolutionary dynamics behind the organizational structure of brain networks, we constructed a regularized autoregressive model to explore the optimal brain connection structure under the constraint of total connection strength. The results show that the combined constraints on the optimization of total connection length and the efficient completion of calculations during brain evolution lead to the formation of lognormal distribution and modular structure of brain connections. 3. We applied NPI to functional MRI data of infants at different levels of development and revealed key changes in effective connectivity across the brain during human brain development. The results showed that the developed brain showed a more stable network structure.

In conclusion, we introduced the NPI framework and characterized the human EBC for the first time. Scientifically, it deepens our understanding of the relationship between the brain's structural and functional networks. Technologically, the EBC offers new approaches for developing personalized stimulation treatments for neurological disorders.

关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] PARK H J, FRISTON K. Structural and Functional Brain Networks: From Connections toCognition[J]. Science, 2013, 342(6158): 1238411.
[2] KRIEGESKORTE N, DOUGLAS P K. Cognitive Computational Neuroscience[J]. NatureNeuroscience, 2018, 21(9): 1148-1160.
[3] YEH C H, JONES D K, LIANG X, et al. Mapping Structural Connectivity Using DiffusionMRI : Challenges and Opportunities[J]. Journal of Magnetic Resonance Imaging, 2021, 53(6):1666-1682.
[4] van den Heuvel M P, HULSHOFF POL H E. Exploring the Brain Network: A Review onResting-State fMRI Functional Connectivity[J]. European Neuropsychopharmacology, 2010,20(8): 519-534.
[5] SCHIPPERS M B, ROEBROECK A, RENKEN R, et al. Mapping the Information Flow fromOne Brain to Another during Gestural Communication[J]. Proceedings of the National Academyof Sciences, 2010, 107(20): 9388-9393.
[6] PEARL J. Causality[M]. Cambridge University Press, 2009.
[7] OZDEMIR R A, TADAYON E, BOUCHER P, et al. Individualized Perturbation of the HumanConnectome Reveals Reproducible Biomarkers of Network Dynamics Relevant to Cognition[J].Proceedings of the National Academy of Sciences, 2020, 117(14): 8115-8125.
[8] KELLER C J, HONEY C J, MÉGEVAND P, et al. Mapping Human Brain Networks withCortico-Cortical Evoked Potentials[J]. Philosophical Transactions of the Royal Society B: Bio￾logical Sciences, 2014, 369(1653): 20130528.
[9] BAUER A Q, KRAFT A W, BAXTER G A, et al. Effective Connectivity Measured Using Op￾togenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting StateFunctional Connectivity in the Mouse[J]. Cerebral Cortex, 2018, 28(1): 370-386.
[10] NARDONE R, HÖLLER Y, TEZZON F, et al. Neurostimulation in Alzheimer’s Disease: FromBasic Research to Clinical Applications[J]. Neurological Sciences, 2015, 36(5): 689-700.
[11] BARBORICA A, OANE I, DONOS C, et al. Imaging the Effective Networks Associated withCortical Function through Intracranial High-frequency Stimulation[J]. Human Brain Mapping,2022, 43(5): 1657-1675.
[12] MATSUMOTO R, NAIR D R, LAPRESTO E, et al. Functional Connectivity in Human CorticalMotor System: A Cortico-Cortical Evoked Potential Study[J]. Brain, 2006, 130(1): 181-197.
[13] LOGOTHETIS N K, AUGATH M, MURAYAMA Y, et al. The Effects of Electrical Micros￾timulation on Cortical Signal Propagation[J]. Nature Neuroscience, 2010, 13(10): 1283-1291.
[14] FRISTON K J, KAHAN J, BISWAL B, et al. A DCM for Resting State fMRI[J]. NeuroImage,2014, 94: 396-407.
[15] BARNETT L, SETH A K. The MVGC Multivariate Granger Causality Toolbox: A New Ap￾proach to Granger-Causal Inference[J]. Journal of Neuroscience Methods, 2014, 223: 50-68.
[16] LI S, XIAO Y, ZHOU D, et al. Causal Inference in Nonlinear Systems: Granger Causality versusTime-Delayed Mutual Information[J]. Physical Review E, 2018: 9.
[17] ROSSINI P, DI IORIO R, BENTIVOGLIO M, et al. Methods for Analysis of Brain Connectivity:An IFCN-Sponsored Review[J]. Clinical Neurophysiology, 2019, 130(10): 1833-1858.
[18] BASSETT D S, SPORNS O. Network Neuroscience[J]. Nature Neuroscience, 2017, 20(3):353-364.
[19] SUÁREZ L E, MARKELLO R D, BETZEL R F, et al. Linking Structure and Function inMacroscale Brain Networks[J]. Trends in Cognitive Sciences, 2020, 24(4): 302-315.
[20] WINDING M, PEDIGO B D, BARNES C L, et al. The Connectome of an Insect Brain[J].Science, 2023.
[21] YE L, ALLEN W E, THOMPSON K R, et al. Wiring and Molecular Features of PrefrontalEnsembles Representing Distinct Experiences[J]. Cell, 2016, 165(7): 1776-1788.
[22] COOK S J, JARRELL T A, BRITTIN C A, et al. Whole-Animal Connectomes of BothCaenorhabditis Elegans Sexes[J]. Nature, 2019, 571(7763): 63-71.
[23] Ercsey-Ravasz M. A Predictive Network Model of Cerebral Cortical Connectivity Based on aDistance Rule[J]. Neuron, 2013: 14.
[24] LEE W C A, BONIN V, REED M, et al. Anatomy and Function of an Excitatory Network inthe Visual Cortex[J]. Nature, 2016, 532(7599): 370-374.
[25] OH S W, HARRIS J A, NG L, et al. A Mesoscale Connectome of the Mouse Brain[J]. Nature,2014: 21.
[26] BUCKNER R L. Opportunities and Limitations of Intrinsic Functional Connectivity MRI[J].Nature Neuroscience, 2013, 16(7): 6.
[27] MESHULAM L, GAUTHIER J L, BRODY C D, et al. Coarse–Graining and Hints of Scalingin a Population of 1000+ Neurons: arXiv:1812.11904[M]. arXiv, 2018.
[28] ROSENBAUM R, SMITH M A, KOHN A, et al. The Spatial Structure of Correlated NeuronalVariability[J]. Nature Neuroscience, 2017, 20(1): 107-114.
[29] BOLT T, NOMI J S, BZDOK D, et al. A Parsimonious Description of Global Functional BrainOrganization in Three Spatiotemporal Patterns[J]. Nature Neuroscience, 2022, 25(8): 1093-1103.
[30] KIM S, MOON H S, VO T T, et al. Whole-Brain Mapping of Effective Connectivity by fMRIwith Cortex-Wide Patterned Optogenetics[J]. Neuron, 2023: S0896627323001708.
[31] van den Heuvel M P, SPORNS O. Rich-Club Organization of the Human Connectome[J]. Jour￾nal of Neuroscience, 2011, 31(44): 15775-15786.
[32] THOMAS YEO B T, KRIENEN F M, SEPULCRE J, et al. The Organization of the HumanCerebral Cortex Estimated by Intrinsic Functional Connectivity[J]. Journal of Neurophysiology,2011, 106(3): 1125-1165.
[33] MARGULIES D S, GHOSH S S, GOULAS A, et al. Situating the Default-Mode Networkalong a Principal Gradient of Macroscale Cortical Organization[J]. Proceedings of the NationalAcademy of Sciences, 2016, 113(44): 12574-12579.
[34] BREAKSPEAR M. Dynamic Models of Large-Scale Brain Activity[J]. Nature Neuroscience,2017, 20(3): 340-352.
[35] URAI A E, DOIRON B, LEIFER A M, et al. Large-Scale Neural Recordings Call for NewInsights to Link Brain and Behavior[J]. Nature Neuroscience, 2022, 25(1): 11-19.
[36] CHAUDHURI R, KNOBLAUCH K, GARIEL M A, et al. A Large-Scale Circuit Mechanismfor Hierarchical Dynamical Processing in the Primate Cortex[J]. Neuron, 2015, 88(2): 419-431.
[37] SANZ PERL Y, PALLAVICINI C, PÉREZ IPIÑA I, et al. Perturbations in Dynamical Modelsof Whole-Brain Activity Dissociate between the Level and Stability of Consciousness[J]. PLOSComputational Biology, 2021, 17(7): e1009139.
[38] SHINE J M, BREAKSPEAR M, BELL P T, et al. Human Cognition Involves the DynamicIntegration of Neural Activity and Neuromodulatory Systems[J]. Nature Neuroscience, 2019,22(2): 289-296.
[39] DECO G, Ponce-Alvarez A, HAGMANN P, et al. How Local Excitation-Inhibition Ratio Im￾pacts the Whole Brain Dynamics[J]. Journal of Neuroscience, 2014, 34(23): 7886-7898.
[40] DECO G, Ponce-Alvarez A, MANTINI D, et al. Resting-State Functional Connectivity Emergesfrom Structurally and Dynamically Shaped Slow Linear Fluctuations[J]. Journal of Neuro￾science, 2013, 33(27): 11239-11252.
[41] Sanz-Leon P, KNOCK S A, SPIEGLER A, et al. Mathematical Framework for Large-ScaleBrain Network Modeling in The Virtual Brain[J]. NeuroImage, 2015, 111: 385-430.
[42] WANG X J. Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Dis￾tributed Cognition[J]. Annual Review of Neuroscience, 2022, 45(1): 533-560.
[43] IZHIKEVICH E M. Computational Neuroscience: Dynamical Systems in Neuroscience: TheGeometry of Excitability and Bursting[M]. Cambridge, Mass: MIT Press, 2007.
[44] WILSON H R, COWAN J D. Excitatory and Inhibitory Interactions in Localized Populationsof Model Neurons[J]. Biophysical Journal, 1972, 12(1): 1-24.
[45] GERSTNER W, KISTLER W M, NAUD R, et al. Neuronal Dynamics: From Single Neuronsto Networks and Models of Cognition[M]. First ed. Cambridge University Press, 2014.
[46] MORRELL M C, SEDERBERG A J, NEMENMAN I. Latent Dynamical Variables ProduceSignatures of Spatiotemporal Criticality in Large Biological Systems[J]. Physical Review Let￾ters, 2021, 126(11): 118302.
[47] NOZARI E, BERTOLERO M A, STISO J, et al. Is the Brain Macroscopically Linear? A SystemIdentification of Resting State Dynamics: arXiv:2012.12351[M]. arXiv, 2021.
[48] DECO G, JIRSA V K, MCINTOSH A R. Emerging Concepts for the Dynamical Organizationof Resting-State Activity in the Brain[J]. Nature Reviews Neuroscience, 2011, 12(1): 43-56.
[49] LUNDERVOLD A S, LUNDERVOLD A. An Overview of Deep Learning in Medical ImagingFocusing on MRI[J]. Zeitschrift für Medizinische Physik, 2019, 29(2): 102-127.
[50] KIPF T, FETAYA E, WANG K C, et al. Neural Relational Inference for Interacting Systems[C]//Proceedings of the 35th International Conference on Machine Learning. PMLR, 2018:2688-2697.
[51] TIMME M, CASADIEGO J. Revealing Networks from Dynamics: An Introduction[A]. 2014.arxiv: 1408.2963.
[52] PANDARINATH C, O’SHEA D J, COLLINS J, et al. Inferring Single-Trial Neural PopulationDynamics Using Sequential Auto-Encoders[J]. Nature Methods, 2018, 15(10): 805-815.
[53] YAN Y, DAHMANI L, REN J, et al. Reconstructing Lost BOLD Signal in Individual Partici￾pants Using Deep Machine Learning[J]. Nature Communications, 2020, 11(1): 5046.
[54] LIANG Z, LUO Z, LIU K, et al. Online Learning Koopman Operator for Closed-Loop ElectricalNeurostimulation in Epilepsy[J]. IEEE Journal of Biomedical and Health Informatics, 2022: 1-12.
[55] SAXE A, NELLI S, SUMMERFIELD C. If Deep Learning Is the Answer, What Is the Question?[J]. Nature Reviews Neuroscience, 2021, 22(1): 55-67.
[56] YANG G R, WANG X J. Artificial Neural Networks for Neuroscientists: A Primer[J]. Neuron,2020, 107(6): 1048-1070.
[57] SEJNOWSKI T J. The Unreasonable Effectiveness of Deep Learning in Artificial Intelligence[J]. Proceedings of the National Academy of Sciences, 2020, 117(48): 30033-30038.
[58] Pérez-Enciso, Zingaretti. A Guide for Using Deep Learning for Complex Trait Genomic Pre￾diction[J]. Genes, 2019, 10(7): 553.
[59] SCHUESSLER F, MASTROGIUSEPPE F, DUBREUIL A, et al. The Interplay between Ran￾domness and Structure during Learning in RNNs[J]. 2020: 11.
[60] VALENTE A, OSTOJIC S, PILLOW J W. Probing the Relationship Between Latent LinearDynamical Systems and Low-Rank Recurrent Neural Network Models[J]. Neural Computation,2022, 34(9): 1871-1892.
[61] HERBERT E, OSTOJIC S. The Impact of Sparsity in Low-Rank Recurrent Neural Networks[J]. PLOS Computational Biology, 2022, 18(8): e1010426.
[62] PEARL J, MACKENZIE D. The Book of Why: The New Science of Cause and Effect[M].Basic books, 2018.
[63] MATSUI T, TAMURA K, KOYANO K W, et al. Direct Comparison of Spontaneous FunctionalConnectivity and Effective Connectivity Measured by Intracortical Microstimulation: An fMRIStudy in Macaque Monkeys[J]. Cerebral Cortex, 2011, 21(10): 2348-2356.
[64] KELLER C J, BICKEL S, ENTZ L, et al. Intrinsic Functional Architecture Predicts ElectricallyEvoked Responses in the Human Brain[J]. Proceedings of the National Academy of Sciences,2011, 108(25): 10308-10313.
[65] SADEH S, CLOPATH C. Patterned Perturbation of Inhibition Can Reveal the Dynamical Struc￾ture of Neural Processing[J]. eLife, 2020, 9: e52757.
[66] CHETTIH S N, HARVEY C D. Single-Neuron Perturbations Reveal Feature-Specific Compe￾tition in V1[J]. Nature, 2019, 567(7748): 334-340.
[67] LEPPERØD M E, STÖBER T, HAFTING T, et al. Inferring Causal Connectivity from PairwiseRecordings and Optogenetics[J]. Neuroscience, 2018.
[68] PALMIGIANO A, FUMAROLA F, MOSSING D P, et al. Structure and Variability of Optoge￾netic Responses Identify the Operating Regime of Cortex[J]. Neuroscience, 2020.
[69] PAPADOPOULOS L, LYNN C W, BATTAGLIA D, et al. Relations between Large-Scale BrainConnectivity and Effects of Regional Stimulation Depend on Collective Dynamical State[J].PLOS Computational Biology, 2020, 16(9): e1008144.
[70] STEPANIANTS G, BRUNTON B W, KUTZ J N. Inferring Causal Networks of DynamicalSystems through Transient Dynamics and Perturbation[J]. Physical Review E, 2020: 13.
[71] LOTFOLLAHI M, SUSMELJ A K, DE DONNO C, et al. Learning Interpretable CellularResponses to Complex Perturbations in High-Throughput Screens[J]. Bioinformatics, 2021.
[72] DONG M, WANG B, WEI J, et al. Causal Identification of Single-Cell Experimental Perturba￾tion Effects with CINEMA-OT[J]. Bioinformatics, 2022.
[73] YU H, WELCH J D. PerturbNet Predicts Single-Cell Responses to Unseen Chemical and Ge￾netic Perturbations[J]. Bioinformatics, 2022.
[74] ROOHANI Y, HUANG K, LESKOVEC J. GEARS: Predicting Transcriptional Outcomes ofNovel Multi-Gene Perturbations[J]. Bioinformatics, 2022.
[75] FAKHAR K, HILGETAG C C. Systematic Perturbation of an Artificial Neural Network: AStep towards Quantifying Causal Contributions in the Brain[J]. PLOS Computational Biology,2022, 18(6): e1010250.
[76] INECIK K, UHLMANN A, LOTFOLLAHI M, et al. MultiCPA: Multimodal CompositionalPerturbation Autoencoder[J]. Systems Biology, 2022.
[77] FONG R, PATRICK M, VEDALDI A. Understanding Deep Networks via Extremal Perturba￾tions and Smooth Masks[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, Korea (South): IEEE, 2019: 2950-2958.
[78] YI S, LIN S, LI Y, et al. Functional Variomics and Network Perturbation: Connecting Genotypeto Phenotype in Cancer[J]. Nature Reviews Genetics, 2017, 18(7): 395-410.
[79] WOO J H, SHIMONI Y, YANG W S, et al. Elucidating Compound Mechanism of Action byNetwork Perturbation Analysis[J]. Cell, 2015, 162(2): 441-451.
[80] BESTMANN S, RUFF C C, BLANKENBURG F, et al. Mapping Causal Interregional Influ￾ences with Concurrent TMS–fMRI[J]. Experimental Brain Research, 2008, 191(4): 383-402.
[81] Mizutani-Tiebel Y, TIK M, CHANG K Y, et al. Concurrent TMS-fMRI: Technical Challenges,Developments, and Overview of Previous Studies[J]. Frontiers in Psychiatry, 2022, 13: 825205.
[82] LUSCH B, MAIA P D, KUTZ J N. Inferring Connectivity in Networked Dynamical Systems:Challenges Using Granger Causality[J]. Physical Review E, 2016, 94(3): 032220.
[83] STEIN R R, MARKS D S, SANDER C. Inferring Pairwise Interactions from Biological DataUsing Maximum-Entropy Probability Models[J]. PLOS Computational Biology, 2015, 11(7):e1004182.
[84] MOHAMMADI M, ATASHIN A A, TAMBURRI D A. From 𝓁 1 Subgradient to Projection: ACompact Neural Network for 𝓁 1 -Regularized Logistic Regression[J]. Neurocomputing, 2023,526: 30-38.
[85] DAS A, FIETE I R. Systematic Errors in Connectivity Inferred from Activity in Strongly Re￾current Networks[J]. Nature Neuroscience, 2020, 23(10): 1286-1296.
[86] BARACK D L, MILLER E K, MOORE C I, et al. A Call for More Clarity around Causality inNeuroscience[J]. Trends in Neurosciences, 2022, 45(9): 654-655.
[87] SUGIHARA G, MAY R, YE H, et al. Detecting Causality in Complex Ecosystems[J]. Science,2012, 338(6106): 496-500.
[88] PENNY W D, FRISTON K J, ASHBURNER J T, et al. Statistical Parametric Mapping: TheAnalysis of Functional Brain Images[M]. Elsevier, 2011.
[89] MCLNTOSH A R, Gonzalez-Lima F. Structural Equation Modeling and Its Application toNetwork Analysis in Functional Brain Imaging[J]. Human Brain Mapping, 1994, 2(1-2): 2-22.
[90] ROEBROECK A, FORMISANO E, GOEBEL R. Mapping Directed Influence over the BrainUsing Granger Causality and fMRI[J]. NeuroImage, 2005, 25(1): 230-242.
[91] DHAMALA M, RANGARAJAN G, DING M. Analyzing Information Flow in Brain Networkswith Nonparametric Granger Causality[J]. NeuroImage, 2008, 41(2): 354-362.
[92] SMITH S M, MILLER K L, Salimi-Khorshidi G, et al. Network Modelling Methods for FMRI[J]. NeuroImage, 2011, 54(2): 875-891.
[93] MARRELEC G, KRAINIK A, DUFFAU H, et al. Partial Correlation for Functional BrainInteractivity Investigation in Functional MRI[J]. NeuroImage, 2006, 32(1): 228-237.
[94] SCHREIBER T. Measuring Information Transfer[J]. Physical Review Letters, 2000, 85(2):461-464.
[95] MCKEOWN M J, MAKEIG S, BROWN G G, et al. Analysis of fMRI Data by Blind Separationinto Independent Spatial Components[J]. Human Brain Mapping, 1998, 6(3): 160-188.
[96] BULLMORE E, SPORNS O. The Economy of Brain Network Organization[J]. Nature ReviewsNeuroscience, 2012, 13(5): 336-349.
[97] BASSETT D S, BULLMORE E T. Small-World Brain Networks Revisited[J]. The Neurosci￾entist, 2017, 23(5): 499-516.
[98] WATTS D J, STROGATZ S H. Collective Dynamics of‘Small-World’ Networks[J]. Nature,1998.
[99] SPORNS O, ZWI J D. The Small World of the Cerebral Cortex[J]. Neuroinformatics, 2004, 2(2): 145-162.
[100] BASSETT D S, BULLMORE E. Small-World Brain Networks[J]. The Neuroscientist, 2006,12(6): 512-523.
[101] van den Heuvel M P, SPORNS O. Network Hubs in the Human Brain[J]. Trends in CognitiveSciences, 2013, 17(12): 683-696.
[102] BUCKNER R L, SEPULCRE J, TALUKDAR T, et al. Cortical Hubs Revealed by IntrinsicFunctional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Dis￾ease[J]. The Journal of Neuroscience, 2009, 29(6): 1860-1873.
[103] BULLMORE E, SPORNS O. Complex Brain Networks: Graph Theoretical Analysis of Struc￾tural and Functional Systems[J]. Nature Reviews Neuroscience, 2009, 10(3): 186-198.
[104] JOHNSON M H. Functional Brain Development in Humans[J]. Nature Reviews Neuroscience,2001, 2(7): 475-483.86
[105] HUTTENLOCHER P R, DABHOLKAR A S. Regional Differences in Synaptogenesis in Hu￾man Cerebral Cortex[J]. The Journal of Comparative Neurology, 1997, 387(2): 167-178.
[106] TAU G Z, PETERSON B S. Normal Development of Brain Circuits[J]. Neuropsychopharma￾cology, 2010, 35(1): 147-168.
[107] FAIR D A, DOSENBACH N U F, CHURCH J A, et al. Development of Distinct ControlNetworks through Segregation and Integration[J]. Proceedings of the National Academy ofSciences, 2007, 104(33): 13507-13512.
[108] GAO W, ZHU H, GIOVANELLO K S, et al. Evidence on the Emergence of the Brain’s DefaultNetwork from 2-Week-Old to 2-Year-Old Healthy Pediatric Subjects[J]. Proceedings of theNational Academy of Sciences, 2009, 106(16): 6790-6795.
[109] CASEY B, GIEDD J N, THOMAS K M. Structural and Functional Brain Development and ItsRelation to Cognitive Development[J]. Biological Psychology, 2000, 54(1-3): 241-257.
[110] MARS R B, NEUBERT F X, NOONAN M P, et al. On the Relationship between the “DefaultMode Network” and the “Social Brain”[J]. Frontiers in Human Neuroscience, 2012, 6.
[111] ANTONELLO P C, VARLEY T F, BEGGS J, et al. Self-Organization of in Vitro NeuronalAssemblies Drives to Complex Network Topology[J]. eLife, 2022, 11: e74921.
[112] LOOMBA S, STRAEHLE J, GANGADHARAN V, et al. Connectomic Comparison of Mouseand Human Cortex[J]. Science, 2022, 377(6602): eabo0924.
[113] WITVLIET D, MULCAHY B, MITCHELL J K, et al. Connectomes across Development Re￾veal Principles of Brain Maturation[J]. Nature, 2021, 596(7871): 257-261.
[114] WILLIAMS L Z J, FITZGIBBON S P, BOZEK J, et al. Structural and Functional Asymmetryof the Neonatal Cerebral Cortex[J]. Neuroscience, 2021.
[115] FRISTON K J. Functional and Effective Connectivity: A Review[J]. Brain Connectivity, 2011,1(1): 13-36.
[116] PENNY W, STEPHAN K, MECHELLI A, et al. Comparing Dynamic Causal Models[J]. Neu￾roImage, 2004, 22(3): 1157-1172.
[117] LOGOTHETIS N K. What We Can Do and What We Cannot Do with fMRI[J]. Nature, 2008,453(7197): 869-878.
[118] MURPHY K, BIRN R M, BANDETTINI P A. Resting-State fMRI Confounds and Cleanup[J].NeuroImage, 2013, 80: 349-359.
[119] LUO Z, LIANG Z, XU C, et al. Mapping the Whole-Brain Effective Connectome withExcitatory-Inhibitory Causal Relationship: arXiv:2301.00148[M]. arXiv, 2023.
[120] VAN ESSEN D C, SMITH S M, BARCH D M, et al. The WU-Minn Human ConnectomeProject: An Overview[J]. NeuroImage, 2013, 80: 62-79.
[121] SCANGOS K W, MAKHOUL G S, SUGRUE L P, et al. State-Dependent Responses to In￾tracranial Brain Stimulation in a Patient with Depression[J]. Nature Medicine, 2021, 27(2):229-231.
[122] MASTROGIUSEPPE F, OSTOJIC S. Linking Connectivity, Dynamics, and Computations inLow-Rank Recurrent Neural Networks[J]. Neuron, 2018, 99(3): 609-623.e29.87
[123] BEIRAN M, DUBREUIL A, VALENTE A, et al. Shaping Dynamics With Multiple Populationsin Low-Rank Recurrent Networks[J]. Neural Computation, 2021, 33(6): 1572-1615.
[124] SCHUECKER J, GOEDEKE S, HELIAS M. Optimal Sequence Memory in Driven RandomNetworks[J]. Physical Review X, 2018, 8(4).
[125] SHENOY K V, KAO J C. Measurement, Manipulation and Modeling of Brain-Wide NeuralPopulation Dynamics[J]. Nature Communications, 2021, 12(1): 633.
[126] KADMON J, SOMPOLINSKY H. Transition to Chaos in Random Neuronal Networks[J]. Phys￾ical Review X, 2015, 5(4): 041030.
[127] MANTE V, SUSSILLO D, SHENOY K V, et al. Context-Dependent Computation by RecurrentDynamics in Prefrontal Cortex[J]. Nature, 2013, 503(7474): 78-84.
[128] Sanchez-Romero R, RAMSEY J D, ZHANG K, et al. Estimating Feedforward and FeedbackEffective Connections from fMRI Time Series: Assessments of Statistical Methods[J]. NetworkNeuroscience, 2019, 3(2): 274-306.
[129] SINGH M F, BRAVER T S, COLE M W, et al. Estimation and Validation of IndividualizedDynamic Brain Models with Resting State fMRI[J]. NeuroImage, 2020, 221: 117046.
[130] WOODWARD J. Causation and Manipulability[M]//ZALTA E N. The Stanford Encyclopediaof Philosophy. Winter 2016 ed. Metaphysics Research Lab, Stanford University, 2016.
[131] Ud-Dean S M M, GUNAWAN R. Optimal Design of Gene Knockout Experiments for GeneRegulatory Network Inference[J]. Bioinformatics, 2016, 32(6): 875-883.
[132] NEYSHABUR B, LI Z, BHOJANAPALLI S. THE ROLE OF OVER-PARAMETRIZATIONIN GENERALIZATION OF NEURAL NETWORKS[J]. 2019.
[133] ZHANG C, BENGIO S, HARDT M, et al. Understanding Deep Learning (Still) Requires Re￾thinking Generalization[J]. Communications of the ACM, 2021, 64(3): 107-115.
[134] KOPPE G, TOUTOUNJI H, KIRSCH P, et al. Identifying Nonlinear Dynamical Systems viaGenerative Recurrent Neural Networks with Applications to fMRI[J]. PLOS ComputationalBiology, 2019, 15(8): e1007263.
[135] SCHUEPBACH W, RAU J, KNUDSEN K, et al. Neurostimulation for Parkinson’s Disease withEarly Motor Complications[J]. New England Journal of Medicine, 2013, 368(7): 610-622.
[136] SCANGOS K W, KHAMBHATI A N, DALY P M, et al. Closed-Loop Neuromodulation in anIndividual with Treatment-Resistant Depression[J]. Nature Medicine, 2021, 27(10): 1696-1700.
[137] Azeredo da Silveira R, RIEKE F. The Geometry of Information Coding in Correlated NeuralPopulations[J]. Annual Review of Neuroscience, 2021, 44(1): 403-424.
[138] PANZERI S, MORONI M, SAFAAI H, et al. The Structures and Functions of Correlations inNeural Population Codes[J]. Nature Reviews Neuroscience, 2022, 23(9): 551-567.
[139] KUMAR A, ROTTER S, AERTSEN A. Spiking Activity Propagation in Neuronal Networks:Reconciling Different Perspectives on Neural Coding[J]. Nature Reviews Neuroscience, 2010,11(9): 615-627.
[140] SCHNEIDMAN E, BERRY M J, SEGEV R, et al. Weak Pairwise Correlations Imply StronglyCorrelated Network States in a Neural Population[J]. Nature, 2006, 440(7087): 1007-1012.88
[141] MUELLER S, WANG D, FOX M D, et al. Individual Variability in Functional ConnectivityArchitecture of the Human Brain[J]. Neuron, 2013, 77(3): 586-595.
[142] FELLEMAN D J, VAN ESSEN D C. Distributed Hierarchical Processing in the Primate Cere￾bral Cortex[J]. Cerebral Cortex, 1991, 1(1): 1-47.
[143] HAHN G, Ponce-Alvarez A, DECO G, et al. Portraits of Communication in Neuronal Networks[J]. Nature Reviews Neuroscience, 2019, 20(2): 117-127.
[144] GRAZIANO M S A, GUTERSTAM A, BIO B J, et al. Toward a Standard Model of Con￾sciousness: Reconciling the Attention Schema, Global Workspace, Higher-Order Thought, andIllusionist Theories[J]. Cognitive Neuropsychology, 2020, 37(3-4): 155-172.
[145] XU J, YIN X, GE H, et al. Heritability of the Effective Connectivity in the Resting-State DefaultMode Network[J]. Cerebral Cortex, 2017, 27(12): 5626-5634.
[146] BUCKNER R L, DINICOLA L M. The Brain’s Default Network: Updated Anatomy, Physiol￾ogy and Evolving Insights[J]. Nature Reviews Neuroscience, 2019, 20(10): 593-608.
[147] RAICHLE M E. The Brain’s Default Mode Network[J]. Annual Review of Neuroscience, 2015,38(1): 433-447.
[148] EUSTON D R, GRUBER A J, MCNAUGHTON B L. The Role of Medial Prefrontal Cortex inMemory and Decision Making[J]. Neuron, 2012, 76(6): 1057-1070.
[149] MÜLLER N, DRESLER M, JANZEN G, et al. Medial Prefrontal Decoupling from the DefaultMode Network Benefits Memory[J]. NeuroImage, 2020, 210: 116543.
[150] PHILLIPS M L, ROBINSON H A, Pozzo-Miller L. Ventral Hippocampal Projections to theMedial Prefrontal Cortex Regulate Social Memory[J]. eLife, 2019, 8: e44182.
[151] JIN J, MAREN S. Prefrontal-Hippocampal Interactions in Memory and Emotion[J]. Frontiersin Systems Neuroscience, 2015, 9.
[152] SUKENIK N, VINOGRADOV O, WEINREB E, et al. Neuronal Circuits Overcome Imbalancein Excitation and Inhibition by Adjusting Connection Numbers[J]. Proceedings of the NationalAcademy of Sciences, 2021, 118(12): e2018459118.
[153] AVERMANN M, TOMM C, MATEO C, et al. Microcircuits of Excitatory and Inhibitory Neu￾rons in Layer 2/3 of Mouse Barrel Cortex[J]. Journal of Neurophysiology, 2012, 107(11): 3116-3134.
[154] BARRAL J, D REYES A. Synaptic Scaling Rule Preserves Excitatory–Inhibitory Balance andSalient Neuronal Network Dynamics[J]. Nature Neuroscience, 2016, 19(12): 1690-1696.
[155] DENÈVE S, MACHENS C K. Efficient Codes and Balanced Networks[J]. Nature Neuroscience,2016, 19(3): 375-382.
[156] RUBIN D B, VAN HOOSER S D, MILLER K D. The Stabilized Supralinear Network: AUnifying Circuit Motif Underlying Multi-Input Integration in Sensory Cortex[J]. Neuron, 2015,85(2): 402-417.
[157] HERTÄG L, CLOPATH C. Prediction-Error Neurons in Circuits with Multiple Neuron Types:Formation, Refinement, and Functional Implications[J]. Proceedings of the National Academyof Sciences, 2022, 119(13): e2115699119.
[158] BAKER C, ZHU V, ROSENBAUM R. Nonlinear Stimulus Representations in Neural Circuitswith Approximate Excitatory-Inhibitory Balance[J]. PLOS Computational Biology, 2020, 16(9): e1008192.
[159] KADMON J, TIMCHECK J, GANGULI S. Predictive Coding in Balanced Neural Networkswith Noise, Chaos and Delays[J]. 34th Conference on Neural Information Processing Systems,2020: 12.
[160] AHMADIAN Y, MILLER K D. What Is the Dynamical Regime of Cerebral Cortex?[J]. Neuron,2021, 109(21): 3373-3391.
[161] CHINI M, PFEFFER T, Hanganu-Opatz I. An Increase of Inhibition Drives the DevelopmentalDecorrelation of Neural Activity[J]. eLife, 2022, 11: e78811.
[162] ISAACSON J S, SCANZIANI M. How Inhibition Shapes Cortical Activity[J]. Neuron, 2011,72(2): 231-243.
[163] POORT J, WILMES K A, BLOT A, et al. Learning and Attention Increase Visual ResponseSelectivity through Distinct Mechanisms[J]. Neuron, 2022, 110(4): 686-697.e6.
[164] GALLINARO J V, CLOPATH C. Memories in a Network with Excitatory and Inhibitory Plas￾ticity Are Encoded in the Spiking Irregularity[J]. PLOS Computational Biology, 2021, 17(11):e1009593.
[165] HAIDER B, MCCORMICK D A. Rapid Neocortical Dynamics: Cellular and Network Mech￾anisms[J]. Neuron, 2009, 62(2): 171-189.
[166] MONGILLO G, RUMPEL S, LOEWENSTEIN Y. Inhibitory Connectivity Defines the Realmof Excitatory Plasticity[J]. Nature Neuroscience, 2018, 21(10): 1463-1470.
[167] OZEKI H, FINN I M, SCHAFFER E S, et al. Inhibitory Stabilization of the Cortical NetworkUnderlies Visual Surround Suppression[J]. Neuron, 2009, 62(4): 578-592.
[168] SANZENI A, AKITAKE B, GOLDBACH H C, et al. Inhibition Stabilization Is a WidespreadProperty of Cortical Networks[J]. eLife, 2020, 9: e54875.
[169] SADEH S, CLOPATH C. Excitatory-Inhibitory Balance Modulates the Formation and Dynam￾ics of Neuronal Assemblies in Cortical Networks[J]. Science Advances, 2021: 17.
[170] CARDIN J A. Inhibitory Interneurons Regulate Temporal Precision and Correlations in CorticalCircuits[J]. Trends in Neurosciences, 2018, 41(10): 689-700.
[171] ROBINSON E C, JBABDI S, GLASSER M F, et al. MSM: A New Flexible Framework forMultimodal Surface Matching[J]. NeuroImage, 2014, 100: 414-426.
[172] GLASSER M F, COALSON T S, ROBINSON E C, et al. A Multi-Modal Parcellation of HumanCerebral Cortex[J]. Nature, 2016, 536(7615): 171-178.
[173] Tzourio-Mazoyer N, LANDEAU B, PAPATHANASSIOU D, et al. Automated AnatomicalLabeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRISingle-Subject Brain[J]. NeuroImage, 2002, 15(1): 273-289.
[174] GLASSER M F, SOTIROPOULOS S N, WILSON J A, et al. The Minimal PreprocessingPipelines for the Human Connectome Project[J]. NeuroImage, 2013, 80: 105-124.
[175] ABRAHAM A, PEDREGOSA F, EICKENBERG M, et al. Machine Learning for Neuroimagingwith Scikit-Learn[J]. Frontiers in Neuroinformatics, 2014, 8.
[176] DEMIRTAŞ M, BURT J B, HELMER M, et al. Hierarchical Heterogeneity across HumanCortex Shapes Large-Scale Neural Dynamics[J]. Neuron, 2019, 101(6): 1181-1194.e13.
[177] VAROQUAUX G, GRAMFORT A, PEDREGOSA F, et al. Multi-Subject Dictionary Learningto Segment an Atlas of Brain Spontaneous Activity[C]//SZÉKELY G, HAHN H K. LectureNotes in Computer Science: Information Processing in Medical Imaging. Berlin, Heidelberg:Springer, 2011: 562-573.
[178] MARKOV N T, Ercsey-Ravasz M M, RIBEIRO GOMES A R, et al. A Weighted and DirectedInterareal Connectivity Matrix for Macaque Cerebral Cortex[J]. Cerebral Cortex, 2014, 24(1):17-36.
[179] MURRAY J D, BERNACCHIA A, FREEDMAN D J, et al. A Hierarchy of Intrinsic Timescalesacross Primate Cortex[J]. Nature Neuroscience, 2014, 17(12): 1661-1663.
[180] CHRISTOFF K, IRVING Z C, FOX K C R, et al. Mind-Wandering as Spontaneous Thought:A Dynamic Framework[J]. Nature Reviews Neuroscience, 2016, 17(11): 718-731.
[181] MASHOUR G A, ROELFSEMA P, CHANGEUX J P, et al. Conscious Processing and theGlobal Neuronal Workspace Hypothesis[J]. Neuron, 2020, 105(5): 776-798.
[182] BARGMANN C I, MARDER E. From the Connectome to Brain Function[J]. Nature Methods,2013, 10(6): 483-490.
[183] SEMEDO J D, JASPER A I, ZANDVAKILI A, et al. Feedforward and Feedback Interactionsbetween Visual Cortical Areas Use Different Population Activity Patterns[J]. Nature Commu￾nications, 2022, 13(1): 1099.
[184] MEJIAS J F, MURRAY J D, KENNEDY H, et al. Feedforward and Feedback Frequency￾Dependent Interactions in a Large-Scale Laminar Network of the Primate Cortex[J]. ScienceAdvances, 2016.
[185] MITZENMACHER M. A Brief History of Generative Models for Power Law and LognormalDistributions[J]. Internet Mathematics, 2004, 1(2): 226-251.
[186] SADEH S, CLOPATH C. Inhibitory Stabilization and Cortical Computation[J]. Nature ReviewsNeuroscience, 2021, 22(1): 21-37.
[187] CHANES L, BARRETT L F. Redefining the Role of Limbic Areas in Cortical Processing[J].Trends in Cognitive Sciences, 2016, 20(2): 96-106.
[188] HUNTENBURG J M, BAZIN P L, MARGULIES D S. Large-Scale Gradients in Human Cor￾tical Organization[J]. Trends in Cognitive Sciences, 2018, 22(1): 21-31.
[189] WOLFF A, BERBERIAN N, GOLESORKHI M, et al. Intrinsic Neural Timescales: TemporalIntegration and Segregation[J]. Trends in Cognitive Sciences, 2022, 26(2): 159-173.
[190] KIM R, SEJNOWSKI T J. Strong Inhibitory Signaling Underlies Stable Temporal Dynamics andWorking Memory in Spiking Neural Networks[J]. Nature Neuroscience, 2021, 24(1): 129-139.
[191] RUNYAN C A, PIASINI E, PANZERI S, et al. Distinct Timescales of Population Coding acrossCortex[J]. Nature, 2017, 548(7665): 92-96.
[192] HONEY C J, THESEN T, DONNER T H, et al. Slow Cortical Dynamics and the Accumulationof Information over Long Timescales[J]. Neuron, 2012, 76(2): 423-434.
[193] GAO R, van den Brink R L, PFEFFER T, et al. Neuronal Timescales Are Functionally Dynamicand Shaped by Cortical Microarchitecture[J]. eLife, 2020, 9: e61277.
[194] FALLON J, WARD P G D, PARKES L, et al. Timescales of Spontaneous fMRI FluctuationsRelate to Structural Connectivity in the Brain[J]. Network Neuroscience, 2020, 4(3): 788-806.
[195] WANG X J. Macroscopic Gradients of Synaptic Excitation and Inhibition in the Neocortex[J].Nature Reviews Neuroscience, 2020, 21(3): 169-178.
[196] ALMGREN H, Van de Steen F, KÜHN S, et al. Variability and Reliability of Effective Connec￾tivity within the Core Default Mode Network: A Multi-Site Longitudinal Spectral DCM Study[J]. NeuroImage, 2018, 183: 757-768.
[197] COLE M W. Intrinsic and Task-Evoked Network Architectures of the Human Brain[J]. 2014:19.
[198] HEARNE L. Activity Flow Underlying Abnormalities in Brain Activations and Cognition inSchizophrenia[J]. Science Advances, 2021: 14.
[199] HU Y, JI S, JIN Y, et al. Local Structure Can Identify and Quantify Influential Global Spreadersin Large Scale Social Networks[J]. Proceedings of the National Academy of Sciences, 2018,115(29): 7468-7472.
[200] MEUNIER D, LAMBIOTTE R, BULLMORE E T. Modular and Hierarchically Modular Or￾ganization of Brain Networks[J]. Frontiers in Neuroscience, 2010, 4.
[201] KAISER M, HILGETAG C C. Spatial Growth of Real-World Networks[J]. Physical Review E,2004, 69(3): 036103.
[202] CHKLOVSKII D B, SCHIKORSKI T, STEVENS C F. Wiring Optimization in Cortical Circuits[J]. Neuron, 2002, 34(3): 341-347.
[203] SPORNS O, BETZEL R F. Modular Brain Networks[J]. Annual Review of Psychology, 2016,67(1): 613-640.
[204] EGUÍLUZ V M, CHIALVO D R, CECCHI G A, et al. Scale-Free Brain Functional Networks[J]. Physical Review Letters, 2005, 94(1): 018102.
[205] BUZSÁKI G, MIZUSEKI K. The Log-Dynamic Brain: How Skewed Distributions AffectNetwork Operations[J]. Nature Reviews Neuroscience, 2014, 15(4): 264-278.
[206] DECO G, SANZ PERL Y, VUUST P, et al. Rare Long-Range Cortical Connections EnhanceHuman Information Processing[J]. Current Biology, 2021, 31(20): 4436-4448.e5.
[207] BYSTRON I, BLAKEMORE C, RAKIC P. Development of the Human Cerebral Cortex: Boul￾der Committee Revisited[J]. Nature Reviews Neuroscience, 2008, 9(2): 110-122.
[208] DEHAY C, KENNEDY H. Evolution of the Human Brain[J]. Science, 2020, 369(6503): 506-507.
[209] PREUSS T M, WISE S P. Evolution of Prefrontal Cortex[J]. Neuropsychopharmacology, 2022,47(1): 3-19.
[210] VANDERHAEGHEN P, POLLEUX F. Developmental Mechanisms Underlying the Evolutionof Human Cortical Circuits[J]. Nature Reviews Neuroscience, 2023, 24(4): 213-232.
[211] PETANJEK Z, JUDAŠ M, ŠIMIĆ G, et al. Extraordinary Neoteny of Synaptic Spines in theHuman Prefrontal Cortex[J]. Proceedings of the National Academy of Sciences, 2011, 108(32):13281-13286.
[212] HENSCH T K. Critical period regulation[J]. Annual Review of Neuroscience, 2004, 27(1):549-579.
[213] KUHL P K. Early Language Acquisition: Cracking the Speech Code[J]. Nature Reviews Neu roscience, 2004, 5(11): 831-843.
[214] FITZGIBBON S P, HARRISON S J, JENKINSON M, et al. The Developing Human Connec tome Project (dHCP) Automated Resting-State Functional Processing Framework for NewbornInfants[J]. NeuroImage, 2020, 223: 117303.
[215] LUO L, O’LEARY D D. AXON RETRACTION AND DEGENERATION IN DEVELOP MENT AND DISEASE[J]. Annual Review of Neuroscience, 2005, 28(1): 127-156.
[216] DOUGLAS R J, MARTIN K A. NEURONAL CIRCUITS OF THE NEOCORTEX[J]. AnnualReview of Neuroscience, 2004, 27(1): 419-451.
[217] VOGELS T P, SPREKELER H, ZENKE F, et al. Inhibitory Plasticity Balances Excitation andInhibition in Sensory Pathways and Memory Networks[J]. Science, 2011, 334(6062): 1569-1573.
[218] SABERI M, KHOSROWABADI R, KHATIBI A, et al. Topological Impact of Negative Linkson the Stability of Resting-State Brain Network[J]. Scientific Reports, 2021, 11(1): 2176.
[219] RUBINOV M, SPORNS O. Complex Network Measures of Brain Connectivity: Uses andInterpretations[J]. NeuroImage, 2010, 52(3): 1059-1069.
[220] SHAO Y, OSTOJIC S. Relating Local Connectivity and Global Dynamics in RecurrentExcitatory-Inhibitory Networks[J]. Neuroscience, 2022.
[221] BAO X, HU Q, JI P, et al. Impact of Basic Network Motifs on the Collective Response toPerturbations[J]. Nature Communications, 2022, 13(1): 5301.
[222] HU Y, BRUNTON S L, CAIN N, et al. Feedback through Graph Motifs Relates Structure andFunction in Complex Networks[J]. Physical Review E, 2018, 98(6): 062312.
[223] DECO G, TONONI G, BOLY M, et al. Rethinking Segregation and Integration: Contributionsof Whole-Brain Modelling[J]. Nature Reviews Neuroscience, 2015, 16(7): 430-439.
[224] WANG R, LIU M, CHENG X, et al. Segregation, Integration, and Balance of Large-ScaleResting Brain Networks Configure Different Cognitive Abilities[J]. Proceedings of the NationalAcademy of Sciences, 2021, 118(23): e2022288118.
[225] COHEN J R, D’ESPOSITO M. The Segregation and Integration of Distinct Brain Networksand Their Relationship to Cognition[J]. Journal of Neuroscience, 2016, 36(48): 12083-12094.
[226] TELESFORD Q K, SIMPSON S L, BURDETTE J H, et al. The Brain as a Complex System:Using Network Science as a Tool for Understanding the Brain[J]. Brain Connectivity, 2011, 1(4): 295-308.
[227] Thiebaut de Schotten M, FORKEL S J. The Emergent Properties of the Connected Brain[J].Science, 2022, 378(6619): 505-510.

所在学位评定分委会
电子科学与技术
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544779
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
Luo ZX. Neural perturbational inference: a data-driven framework for mapping the whole-brain causal connectome[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032934-罗子翔-生物医学工程系(10521KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗子翔]的文章
百度学术
百度学术中相似的文章
[罗子翔]的文章
必应学术
必应学术中相似的文章
[罗子翔]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。