[1] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J]. Phys. Rev. Lett, 1982, 49: 405.
[2] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J]. Rev.Mod. Phys, 2010, 82: 1539.
[3] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J]. Rev. Mod. Phys, 2010, 82 : 1959.
[4] KATO Y K, MYERS R C, GOSSARD A C, et al. Observation of the Spin Hall Effect in Semiconductors[J]. Science, 2004a, 306: 1910.
[5] WUNDERLICH J, KAESTNER B, SINNOVA J, et al. Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System[J]. Phys. Rev. Lett, 2005, 94: 047204.
[6] SINOVA J, CULCER D, NIU Q, et al. Universal Intrinsic Spin Hall Effect[J].Phys. Rev. Lett, 2004, 92: 126603.
[7] KANE C L, MELE E J. Quantum Spin Hall Effect in Graphene[J]. Phys. Rev.Lett, 2005, 95: 226801.
[8] SHI J R, ZHANG P, XIAO D, et al. Proper Definition of Spin Current in Spin-Orbit Coupled Systems[J]. Phys. Rev. Lett, 2006, 96: 076604.
[9] SINOVA J, VALENZUELA S O, WUNDERLICH J, et al. Spin Hall effects[J].Rev. Mod. Phys, 2015, 87: 1213.
[10] CULCER D, SINOVA J, SINITSYN N A, et al. Semiclassical Spin Transport in Spin-Orbit-Coupled Bands[J]. Phys. Rev. Lett, 2004, 93: 046602.
[11] COOPER N R, DALIBARD J, SPIELMAN I B. Topological bands for ultracold atoms[J]. Rev. Mod. Phys, 2019, 91 : 015005.
[12] AIDELSBURGER M, ATALA M, LOHSE M, et al . Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices[J]. Phys.Rev. Lett, 2013, 111: 185301.
[13] MIYAKE H, SIVILOGLOU G A, KENNEDY C J, et al. Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices[J]. Phys. Rev.Lett, 2013, 111: 185302.
[14] VARGAS J, NUSKE M, EICHBERGER R, et al. Orbital Many -Body Dynamics of Bosons in the Second Bloch Band of an Optical Lattice[J]. Phys.Rev. Lett, 2021, 126: 200402.
[15] WANG X Q, LUO G Q, LIU J Y, et al. Evidence for an atomic chiral superfluid with topological excitations[J]. Nature, 2021, 596: 227-231.
[16] ANDERSON R, WANG F D, XU P H, et al. Conductivity Spectrum of Ultracold Atoms in an Optical Lattice[J]. Phys. Rev. Lett, 2019, 122 : 153602.
[17] WU Z G, TAYLOR E, ZAREMBA E. Probing the optical conductivity of trapped charge -neutral quantum gases[J]. EPL, 2015, 110: 26002.
[18] TRAN D T, DAUPHIN A, GRUSHIN A G, et al. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms[J]. Sci. Adv, 2017, 3: e1701207.
[19] TRAN D T, COOPER N R, GOLDMAN N. Quantized Rabi oscillations and circular dichroism in quantum Hall systems[J]. Phys. Rev. A, 2018, 97:061602.
[20] ASTERIA L, TRAN D T, OZAWA T, et al. Measuring quantized circular dichroism in ultracold topological matter[J]. Nat. Phys, 2019, 15: 449-454.
[21] MIDTGAARD J M, WU Z G, GOLDMAN N, et al. Detecting chiral pairing and topological superfluidity using circular dichroism[J]. Phys. Rev.Research, 2020, 2: 033385.
[22] LIU X J, BORUNDA M F, L X, et al. Effect of Induced Spin-Orbit Coupling for Atoms via Laser Fields[J]. Phys. Rev. Lett, 2009, 102: 046402.
[23] WANG B Z, LU Y H, SUN W, et al. Dirac -, Rashba-, and Weyl-type spinorbit couplings: Toward experimental realization in ultracold atoms[J]. Phys.Rev. A, 2018, 97: 011605.
[24] WU Z, ZHANG L, SUN W, et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin -orbit coupling[J]. Science, 2016, 354:83.
[25] MENG Z M, HUANG L H, PENG P, et al. Experimental Observation of a Topological Band Gap Opening in Ultracold Fermi Gases with Two -Dimensional Spin-Orbit Coupling[J]. Phys. Rev. Lett, 2016, 117: 235304.
[26] DAUPHIN A, MULLER M, MARTIN-DELGADO M A. Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice[J]. Phys.Rev. A, 2016, 93: 043611.
[27] XU Z F, HEMMERICH A, LIU W V. Odd -parity topological superfluidity for fermions in a bond-centered square optical lattice[J]. Phys. Rev. A, 2017, 96:053607.
[28] MCKAY D, WHITE M, PASIENSKI M, et al. Phase -slip-induced dissipation in an atomic Bose–Hubbard system[J]. Nature, 2008, 453: 76.
[29] TOKUNO A, GIAMARCHI T. Spectroscopy for Cold Atom Gases in Periodically Phase -Modulated Optical Lattices,[J]. Phys. Rev. Lett, 2011, 106: 205301.
[30] PATUCHA K, GRYGIEL B, ZALESKI T A. Ha ll effect for interacting bosons in a lattice[J]. Phys. Rev. B, 2018, 97 : 214522.
[31] BRYDON P M R, ABERGEL D S L, AGTERBERG D F, et al. Loop Currents and Anomalous Hall Effect from Time -Reversal Symmetry-Breaking Superconductivity on the Honeycomb Lattice[J]. Phys. Rev. X, 2019, 9:031025.
[32] DENYS M D E, BRYDON P M R. Origin of the anomalous Hall effect in two-band chiral superconductors[J]. Phys. Rev. B, 2021, 103: 094503.
[33] HUANG G H, LUO G Q, WU Z G, et al. Interaction -induced topological Bogoliubov excitations in a spin-orbit-coupled Bose -Einstein condensate[J].Phys. Rev. A, 2021, 103: 043328.
[34] POWELL B J. Emergent particles and gauge fields in quantum matter[J].Contemp Phys, 2020, 61: 96-131.
[35] JUNGWIRTH T, NIU Q, MACDONALD A H. Anomalous Hall Effect in Ferromagnetic Semiconductors[J]. Phys. Rev. Lett, 2002, 88: 207208.
[36] ONODA M, NAGAOSA N. Topological Nature of Anomalous Hall Effect in Ferromagnets[J]. J. Phys. Soc. Jpn, 2002, 71 : 19.
[37] HACHMANN M, KIEFER Y, RIEBESEHL J, et al. Quantum Degenerate Fermi Gas in an Orbital Optical Lattice[J]. Phys. Rev. Lett, 2021, 127 :033201.
[38] JIN S J, ZHANG W J, GUO X X, et al. Evidence of Potts-Nematic Superfluidity in a Hexagonal 𝑠𝑝2 Optical Lattice[J]. Phys. Rev. Lett, 2021, 126: 035301.
[39] MARKUS G, SIMON F. Optical lattices[J]. Nature, 2008, 453: 736-738.
[40] LI Y, SENGUPTA P, BATROUNI G G, et al. Berry curvature of interacting bosons in a honeycomb lattice [J]. Phys. Rev. A, 2015, 92 : 043605.
[41] LIBERTO D M, HEMMERICH A, SMITH M C. Topological Varma Superfluid in Optical Lattices[J]. Phys. Rev. Lett, 2016, 117 : 163001.
[42] HUANG G H, XU Z F, WU Z G. Intrinsic Anomalous Hall Effect in a Bosonic Chiral Superfluid[J]. Phys. Rev. Lett, 2022, 129 : 185301.
[43] SUN W, WANG B Z, XU X T, et al. Highly Controllable and Robust 2D Spin-Orbit Coupling for Quantum Gases[J]. Phys. Rev. Lett, 2018, 121 :150401.
[44] GUSYNIN P V, SHARAPOV S G, CARBOTTE J P. Sum rules for the optical and Hall conductivity in graphene[J]. Phys. Rev. B, 2007, 75: 165407.
[45] PAN J S, ZHANG W, YI W, et al. Bose -Einstein condensate in an optical lattice with Raman-assisted two-dimensional spin-orbit coupling[J]. Phys. Rev. A, 2016, 94: 043619.
[46] SHINDOU R, MATSUMOTO R, MURAKAMI S, et al. Topological chiral magnonic edge mode in a magnonic crystal[J]. Phys. Rev. B, 2013, 87:174427.
[47] FURUKAWA S, UEDA M. Excitation band topology and edge matter waves in Bose–Einstein condensates in optical lattices[J]. New J. Phys, 2015, 17: 115014.
[48] IKEGAMI H, TSUTSUMI Y, KONO K. Chiral Symmetry Breaking in Superfluid 3𝐻𝑒 − 𝐴[J]. Science, 2013, 341: 59-62.
[49] KALLIN C, BERLINSKY J. Chiral superconductors[J]. Rep. Prog. Phys, 2016, 79: 054502.
修改评论