中文版 | English
题名

自旋轨道耦合玻色爱因斯坦凝聚中的反常霍尔效应

其他题名
ANOMALOUS HALL EFFECT IN SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES
姓名
姓名拼音
CHEN Canhao
学号
12032696
学位类型
硕士
学位专业
070203 原子与分子物理
学科门类/专业学位类别
07 理学
导师
吴志钢
导师单位
量子科学与工程研究院
论文答辩日期
2023-05-11
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

理解各种物理模型的霍尔效应机制对建立材料输运理论具有重要意义。 本文的主要工作是研究已被实验实现了的二维自旋轨道耦合玻色气体在零 温下的内在的反常霍尔效应。在各向异性的原子相互作用的条件下,系统 的基态随着自旋轨道耦合强度的增加会从 x-y 平面内的磁化相转变成 z 方向的磁化相,相变发生的原因是自旋轨道耦合的能量和相互作用能量的相互竞争着去降低体系的能量。我们在线性理论框架下计算系统在线性力场的微扰下的霍尔响应,结果表明有限频率的霍尔响应在两个相中都是存在的,它是基态和准粒子激发态带间跃迁的结果,但是由于 z 磁化相和平面磁化相具有不同的对称性,它们的有限频率霍尔响应的实部和虚部的特性则是恰好对调了,并且相应的跃迁矩阵元遵守不同的选择定则。特别地,我们发现只有 z 磁化相具有非零的零频霍尔响应,而另一个相则没有,为了探讨可能的背后的物理原因,我们进一步计算了系统的角动量和基态的贝里曲率并研究零频霍尔传导率与它们的关联,结果显示只有具有手性的基态才会表现出反常霍尔效应,同时霍尔响应要依赖于动量凝聚点的有限贝里曲率。最后我们讨论了用质心运动学的方法以相位延迟来观测囚禁气体的有限频率霍尔传导率的共振峰以及实部和虚部的占比。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J]. Phys. Rev. Lett, 1982, 49: 405.
[2] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J]. Rev.Mod. Phys, 2010, 82: 1539.
[3] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J]. Rev. Mod. Phys, 2010, 82 : 1959.
[4] KATO Y K, MYERS R C, GOSSARD A C, et al. Observation of the Spin Hall Effect in Semiconductors[J]. Science, 2004a, 306: 1910.
[5] WUNDERLICH J, KAESTNER B, SINNOVA J, et al. Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System[J]. Phys. Rev. Lett, 2005, 94: 047204.
[6] SINOVA J, CULCER D, NIU Q, et al. Universal Intrinsic Spin Hall Effect[J].Phys. Rev. Lett, 2004, 92: 126603.
[7] KANE C L, MELE E J. Quantum Spin Hall Effect in Graphene[J]. Phys. Rev.Lett, 2005, 95: 226801.
[8] SHI J R, ZHANG P, XIAO D, et al. Proper Definition of Spin Current in Spin-Orbit Coupled Systems[J]. Phys. Rev. Lett, 2006, 96: 076604.
[9] SINOVA J, VALENZUELA S O, WUNDERLICH J, et al. Spin Hall effects[J].Rev. Mod. Phys, 2015, 87: 1213.
[10] CULCER D, SINOVA J, SINITSYN N A, et al. Semiclassical Spin Transport in Spin-Orbit-Coupled Bands[J]. Phys. Rev. Lett, 2004, 93: 046602.
[11] COOPER N R, DALIBARD J, SPIELMAN I B. Topological bands for ultracold atoms[J]. Rev. Mod. Phys, 2019, 91 : 015005.
[12] AIDELSBURGER M, ATALA M, LOHSE M, et al . Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices[J]. Phys.Rev. Lett, 2013, 111: 185301.
[13] MIYAKE H, SIVILOGLOU G A, KENNEDY C J, et al. Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices[J]. Phys. Rev.Lett, 2013, 111: 185302.
[14] VARGAS J, NUSKE M, EICHBERGER R, et al. Orbital Many -Body Dynamics of Bosons in the Second Bloch Band of an Optical Lattice[J]. Phys.Rev. Lett, 2021, 126: 200402.
[15] WANG X Q, LUO G Q, LIU J Y, et al. Evidence for an atomic chiral superfluid with topological excitations[J]. Nature, 2021, 596: 227-231.
[16] ANDERSON R, WANG F D, XU P H, et al. Conductivity Spectrum of Ultracold Atoms in an Optical Lattice[J]. Phys. Rev. Lett, 2019, 122 : 153602.
[17] WU Z G, TAYLOR E, ZAREMBA E. Probing the optical conductivity of trapped charge -neutral quantum gases[J]. EPL, 2015, 110: 26002.
[18] TRAN D T, DAUPHIN A, GRUSHIN A G, et al. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms[J]. Sci. Adv, 2017, 3: e1701207.
[19] TRAN D T, COOPER N R, GOLDMAN N. Quantized Rabi oscillations and circular dichroism in quantum Hall systems[J]. Phys. Rev. A, 2018, 97:061602.
[20] ASTERIA L, TRAN D T, OZAWA T, et al. Measuring quantized circular dichroism in ultracold topological matter[J]. Nat. Phys, 2019, 15: 449-454.
[21] MIDTGAARD J M, WU Z G, GOLDMAN N, et al. Detecting chiral pairing and topological superfluidity using circular dichroism[J]. Phys. Rev.Research, 2020, 2: 033385.
[22] LIU X J, BORUNDA M F, L X, et al. Effect of Induced Spin-Orbit Coupling for Atoms via Laser Fields[J]. Phys. Rev. Lett, 2009, 102: 046402.
[23] WANG B Z, LU Y H, SUN W, et al. Dirac -, Rashba-, and Weyl-type spin￾orbit couplings: Toward experimental realization in ultracold atoms[J]. Phys.Rev. A, 2018, 97: 011605.
[24] WU Z, ZHANG L, SUN W, et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin -orbit coupling[J]. Science, 2016, 354:83.
[25] MENG Z M, HUANG L H, PENG P, et al. Experimental Observation of a Topological Band Gap Opening in Ultracold Fermi Gases with Two -Dimensional Spin-Orbit Coupling[J]. Phys. Rev. Lett, 2016, 117: 235304.
[26] DAUPHIN A, MULLER M, MARTIN-DELGADO M A. Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice[J]. Phys.Rev. A, 2016, 93: 043611.
[27] XU Z F, HEMMERICH A, LIU W V. Odd -parity topological superfluidity for fermions in a bond-centered square optical lattice[J]. Phys. Rev. A, 2017, 96:053607.
[28] MCKAY D, WHITE M, PASIENSKI M, et al. Phase -slip-induced dissipation in an atomic Bose–Hubbard system[J]. Nature, 2008, 453: 76.
[29] TOKUNO A, GIAMARCHI T. Spectroscopy for Cold Atom Gases in Periodically Phase -Modulated Optical Lattices,[J]. Phys. Rev. Lett, 2011, 106: 205301.
[30] PATUCHA K, GRYGIEL B, ZALESKI T A. Ha ll effect for interacting bosons in a lattice[J]. Phys. Rev. B, 2018, 97 : 214522.
[31] BRYDON P M R, ABERGEL D S L, AGTERBERG D F, et al. Loop Currents and Anomalous Hall Effect from Time -Reversal Symmetry-Breaking Superconductivity on the Honeycomb Lattice[J]. Phys. Rev. X, 2019, 9:031025.
[32] DENYS M D E, BRYDON P M R. Origin of the anomalous Hall effect in two-band chiral superconductors[J]. Phys. Rev. B, 2021, 103: 094503.
[33] HUANG G H, LUO G Q, WU Z G, et al. Interaction -induced topological Bogoliubov excitations in a spin-orbit-coupled Bose -Einstein condensate[J].Phys. Rev. A, 2021, 103: 043328.
[34] POWELL B J. Emergent particles and gauge fields in quantum matter[J].Contemp Phys, 2020, 61: 96-131.
[35] JUNGWIRTH T, NIU Q, MACDONALD A H. Anomalous Hall Effect in Ferromagnetic Semiconductors[J]. Phys. Rev. Lett, 2002, 88: 207208.
[36] ONODA M, NAGAOSA N. Topological Nature of Anomalous Hall Effect in Ferromagnets[J]. J. Phys. Soc. Jpn, 2002, 71 : 19.
[37] HACHMANN M, KIEFER Y, RIEBESEHL J, et al. Quantum Degenerate Fermi Gas in an Orbital Optical Lattice[J]. Phys. Rev. Lett, 2021, 127 :033201.
[38] JIN S J, ZHANG W J, GUO X X, et al. Evidence of Potts-Nematic Superfluidity in a Hexagonal 𝑠𝑝2 Optical Lattice[J]. Phys. Rev. Lett, 2021, 126: 035301.
[39] MARKUS G, SIMON F. Optical lattices[J]. Nature, 2008, 453: 736-738.
[40] LI Y, SENGUPTA P, BATROUNI G G, et al. Berry curvature of interacting bosons in a honeycomb lattice [J]. Phys. Rev. A, 2015, 92 : 043605.
[41] LIBERTO D M, HEMMERICH A, SMITH M C. Topological Varma Superfluid in Optical Lattices[J]. Phys. Rev. Lett, 2016, 117 : 163001.
[42] HUANG G H, XU Z F, WU Z G. Intrinsic Anomalous Hall Effect in a Bosonic Chiral Superfluid[J]. Phys. Rev. Lett, 2022, 129 : 185301.
[43] SUN W, WANG B Z, XU X T, et al. Highly Controllable and Robust 2D Spin-Orbit Coupling for Quantum Gases[J]. Phys. Rev. Lett, 2018, 121 :150401.
[44] GUSYNIN P V, SHARAPOV S G, CARBOTTE J P. Sum rules for the optical and Hall conductivity in graphene[J]. Phys. Rev. B, 2007, 75: 165407.
[45] PAN J S, ZHANG W, YI W, et al. Bose -Einstein condensate in an optical lattice with Raman-assisted two-dimensional spin-orbit coupling[J]. Phys. Rev. A, 2016, 94: 043619.
[46] SHINDOU R, MATSUMOTO R, MURAKAMI S, et al. Topological chiral magnonic edge mode in a magnonic crystal[J]. Phys. Rev. B, 2013, 87:174427.
[47] FURUKAWA S, UEDA M. Excitation band topology and edge matter waves in Bose–Einstein condensates in optical lattices[J]. New J. Phys, 2015, 17: 115014.
[48] IKEGAMI H, TSUTSUMI Y, KONO K. Chiral Symmetry Breaking in Superfluid 3𝐻𝑒 − 𝐴[J]. Science, 2013, 341: 59-62.
[49] KALLIN C, BERLINSKY J. Chiral superconductors[J]. Rep. Prog. Phys, 2016, 79: 054502.

所在学位评定分委会
物理学
国内图书分类号
O481
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544780
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
陈灿豪. 自旋轨道耦合玻色爱因斯坦凝聚中的反常霍尔效应[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032696-陈灿豪-量子科学与工程(2135KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈灿豪]的文章
百度学术
百度学术中相似的文章
[陈灿豪]的文章
必应学术
必应学术中相似的文章
[陈灿豪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。