[1]Magnan A, Pörtner H-O, Duvat V, et al. Estimating the global risk of anthropogenic climate change[J]. Nature Climate Change, 2021, 11: 1-7.[2]Ward P, De Ruiter M, Mård J, et al. The need to integrate flood and drought disaster risk reduction strategies[J]. Water Security, 2020, 11: 100070.
[3]徐宗学,任梅芳,陈浩. 我国沿海城市洪潮组合风险分析[J]. 水资源保护, 2021, 37(02): 10-14.
[4]姚蕊,杨群涛,张书亮. 城市暴雨内涝灾害脆弱性研究综述[J]. 水资源保护, 2023, 39(01): 93-100.
[5]Chen Z, Li K, Du J, et al. Three-dimensional simulation of regional urban waterlogging based on high-precision DEM model[J]. Natural Hazards, 2021, 108.
[6]Ye L, Wu A. Urbanization, Land Development, and Land Financing: Evidence from Chinese Cities[J]. Journal of Urban Affairs, 2014, 36: 354-368.
[7]Du J, Fang J, Xu W, et al. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China[J]. Stochastic Environmental Research and Risk Assessment, 2012, 27: 377-387.
[8]Deng M, Li Z, Tao F. Rainstorm Disaster Risk Assessment and Influence Factors Analysis in the Yangtze River Delta, China[J]. International Journal of Environmental Research and Public Health, 2022, 19: 9497.
[9]陈文龙,杨芳,宋利祥,等. 高密度城市暴雨洪涝防御对策——郑州“7·20”特大暴雨启示[J]. 中国水利, 2021, 15: 18-20.
[10]Guo X, Yao H, Chen X, et al. A Study on the Online Attention of Emergency Events of Torrential Rain in Shanxi and Henan[J]. Water, 2022, 14: 2183.[11]Liu J, Shi Z, Wang D. Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China[J]. Natural Hazards, 2016, 83: 1545-1565.[12]Sun R, Gao G, Gong Z, et al. A review of risk analysis methods for natural disasters[J]. Natural Hazards, 2020, 100(2): 571-593.[13]Ning Y, Dong W, Lin L, et al. Analyzing the causes of urban waterlogging and sponge city technology in China[C]. Guangzhou: IOP Publishing, Earth and Environmental Science, 2017: 012047.[14]Xu D, Ouyang Z, Wu T, et al. Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China[J]. Sustainability, 2020, 12(11): 4799.[15]卢晓雄,李晴岚,陈申鹏,等. 2008—2017年深圳降水时空特征研究[J]. 气象科技进展, 2019, 9(03): 171-178.[16]Wang X, Tong D, Gao J, et al. The reshaping of land development density through rail transit: The stories of central areas vs. suburbs in Shenzhen, China[J]. Cities, 2019, 89: 35-45.[17]Lyu H, Zhou W, Shen S, et al. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen[J]. Sustainable Cities and Society, 2020, 56: 102103.[18]Jalayer F, De Risi R, De Paola F, et al. Probabilistic GIS-based method for delineation of urban flooding risk hotspots[J]. Natural Hazards, 2014(73): 975-1001.[19]Tehrany M S, Pradhan B, Jebur M N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS[J]. Journal of Hydrology, 2014, 512: 332-343.[20]Hong H, Pradhan B, Bui D T, et al. Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China)[J]. Geomatics, Natural Hazards and Risk, 2016, 8(2): 544-569.[21]刘瑞. 基于贝叶斯网络的洪水灾害风险评估与建模研究[D]. 上海: 华东师范大学, 2016: 103-106.[22]赵玉杰,王昊,刘子龙,等. 基于组合赋权的多情景内涝灾害风险评估[J]. 水利水电技术(2022, 53(05): 1-12.[23]Tang X, Shu Y, Lian Y, et al. A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes classifier[J]. The Science of the total environment, 2018, 630: 264-274.[24]Giriraj A, Umer Y, Alahacoon N, et al. Modelling the flood-risk extent using LISFLOOD-FP in a complex watershed: case study of Mundeni Aru River Basin, Sri Lanka[J]. Proceedings of the International Association of Hydrological Sciences, 2015, 370: 131-138.[25]叶陈雷,徐宗学,雷晓辉,等. 基于InfoWorks的城市水系水文水动力过程耦合模拟——以福州市江北城区及东北部山区为例[J]. 北京师范大学学报(自然科学版), 2019, 55(05): 609-616.[26]张建云,王银堂,贺瑞敏,等. 中国城市洪涝问题及成因分析[J]. 水科学进展, 2016, 27(04): 485-491.[27]Jia J, Cui W, Liu J. Urban Catchment-Scale Blue-Green-Gray Infrastructure Classification with Unmanned Aerial Vehicle Images and Machine Learning Algorithms[J]. Frontiers in Environmental Science, 2022, 9: 734.[28]Lamovec P, Veljanovski T, Matjaž M, et al. Detecting flooded areas with machine learning techniques: Case study of the Selška Sora river flash flood in September 2007[J]. Journal of Applied Remote Sensing, 2013, 7: 073564.[29]Tehrany M S, Pradhan B, Jebur M N. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(4): 1149-1165.[30]白岗岗,侯精明,韩浩,等. 基于深度学习的道路积水智能监测方法[J]. 水资源保护, 2021, 37(05): 75-80.[31]Shen J, Zhou J, Zhou J, et al. Constructing the CityGML ADE for the Multi-Source Data Integration of Urban Flooding[J]. International Journal of Geo-Information, 2020, 9: 359.[32]申海燕,陈妍哲,张盈. 基于层次分析-模糊综合评价法对城市内涝风险评估研究[J]. 科技资讯, 2020, 18(02): 192-193.[33]陈嘉雷,陈文杰,黄国如. 基于情景模拟与多源数据的城市内涝风险评估[J]. 水电能源科学, 2021, 39(06): 55-59.[34]Shahabi H, Shirzadi A, Ghaderi K, et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier[J]. Remote Sensing, 2020, 12(2).[35]郭欣怡,赵双明. 利用Sentinel-1/2融合影像分析城市内涝[J]. 测绘地理信息, 2022, 47(03): 128-131.[36]张红萍. 基于遥感技术的城市洪涝灾害承载力评估模型研究[D]. 武汉: 中国地质大学, 2020: 1-9.[37]Tanavud C, Yongchalermchai C, Kheowvongsri P, et al. Application of GIS and Remote Sensing techniques for flood disaster management in songkhla Province[J]. Songklanakarin Journal of Science and Technology, 2001, 23: 425-442.[38]黄敏敏. 基于Seminel-1/2数据的寿光市洪涝灾害监测与预测研究[D]. 南京: 南京信息工程大学, 2022: 1-14.[39]曹罗丹,李加林. 基于遥感与GIS的浙江省洪涝灾害综合风险评估研究[J]. 自然灾害学报, 2015, 24(04): 111-119.[40]Elkhrachy I. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA)[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2015, 18(2): 261-278.[41]Mukherjee F, Singh D. Detecting flood prone areas in Harris County: a GIS based analysis[J]. GeoJournal, 2019, 85(3): 647-663.[42]Fischer S, Schumann A, Bühler P. A statistics-based automated flood event separation[J]. Journal of Hydrology X, 2020, 10: 100070.[43]Arabameri A, Rezaei K, Cerdà A, et al. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran[J]. Science of The Total Environment, 2019, 660: 443-458.[44]D'addabbo A, Refice A, Pasquariello G, et al. A Bayesian Network for Flood Detection Combining SAR Imagery and Ancillary Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54: 1-14.[45]陈文杰. 城市洪涝水文水动力模型构建与洪涝管理关键问题研究[D]. 广州: 华南理工大学, 2019: 123-125.[46]Yu D, Lane S N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: mesh resolution effects[J]. Hydrological Processes, 2006, 20(7): 1541-1565.[47]Yu D, Lane S N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment[J]. Hydrological Processes, 2006, 20(7): 1567-1583.[48]盛浩. 基于SWMM的清华校园雨洪管理研究[D]. 北京: 清华大学, 2017: 1-11.[49]范玉燕,汪诚文,喻海军. 基于一二维耦合水动力模型的海绵小区建设效果评估[J]. 水电能源科学, 2018, 36(12): 16-20.[50]Zhang T, Feng P, Maksimović Č, et al. Application of a Three-Dimensional Unstructured-Mesh Finite-Element Flooding Model and Comparison with Two-Dimensional Approaches[J]. Water Resources Management, 2015, 30(2): 823-841.[51]郝莹. 气象水文耦合的城市内涝风险多尺度预测与预估研究[D]. 南京: 南京大学, 2021: 1-7.[52]唐颖,张永祥,王昊,等. 基于雷达外推的城市内涝实时预警[J]. 哈尔滨工业大学学报, 2019, 51(02): 58-62.[53]Wang X, Kingsland G, Poudel D, et al. Urban Flood Prediction Under Heavy Precipitation[J]. Journal of Hydrology, 2019, 577: 123984.[54]Nayak P C, Sudheer K P, Rangan D M, et al. Short-term flood forecasting with a neurofuzzy model[J]. Water Resources Research, 2005, 41(4): W04004.[55]Feng Q, Liu J, Gong J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China[J]. Water, 2015, 7(12): 1437-1455.[56]Raghavendra. N S, Deka P C. Support vector machine applications in the field of hydrology: A review[J]. Applied Soft Computing, 2014, 19: 372-386.[57]郭其一,路向阳,李维刚,等. 基于小波分析和模糊神经网络的水文预测[J]. 同济大学学报(自然科学版), 2005(01): 130-133.[58]Ding Y, Zhu Y, Feng J, et al. Interpretable Spatio-Temporal Attention LSTM Model for Flood Forecasting[J]. Neurocomputing, 2020, 403: 348-359.[59]Guo Z, Leitão J, Simões N, et al. Data‐driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks[J]. Journal of Flood Risk Management, 2020, 14.[60]Puttinaovarat S, Horkaew P. Flood Forecasting System Based on Integrated Big and Crowdsource Data by Using Machine Learning Techniques[J]. IEEE Access, 2020, 8: 5885-5905.[61]Ouyang Q, Lu W, Xin X, et al. Monthly Rainfall Forecasting Using EEMD-SVR Based on Phase-Space Reconstruction[J]. Water Resources Management, 2016, 30(7): 2311-2325.[62]Tien Bui D, Tuan T A, Klempe H, et al. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 2015, 13(2): 361-378.[63]Rahmati O, Darabi H, Panahi M, et al. Development of novel hybridized models for urban flood susceptibility mapping[J]. Scientific Reports, 2020, 10: 12937.[64]Chang F, Chen P, Lu Y, et al. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control[J]. Journal of Hydrology, 2014, 517: 836-846.[65]樊婧妍,李晓娟,王京,等. 平原河网地区城市水位预测——以常州为例[J]. 城市建设理论研究(电子版), 2019(01): 169-170.[66]Ke Q, Tian X, Bricker J, et al. Urban pluvial flooding prediction by machine learning approaches – a case study of Shenzhen city, China[J]. Advances in Water Resources, 2020, 145: 103719.[67]Lammers R, Li A, Nag S, et al. Prediction Models for Urban Flood Evolution for Satellite Remote Sensing[J]. Journal of Hydrology, 2021, 603: 127175.[68]张响亮,许文华,杨明灿,等. 基于机器学习的内涝积水深度预报方法研究[J]. 海峡科学, 2022(03): 36-39.[69]郑姗姗,万庆,贾明元. 基于STARMA模型的城市暴雨积水点积水短时预测[J]. 地理科学进展, 2014, 33(07): 949-957.[70]张梦. 基于神经网络的城市内涝点降雨积水预测研究[D]. 广州: 华南理工大学, 2019: 59-60.[71]Li S, Lu L, Hu W, et al. Prediction Algorithm of Wind Waterlogging Disaster in Distribution Network Based on Multi-Source Data Fusion[J]. Mathematical Problems in Engineering, 2022, 2022: 1-11.[72]陶迎春. 基于多源数据的城市下垫面信息提取与内涝模拟模型研究[J]. 北京测绘, 2019, 33(07): 867.[73]Yan H, Hamid M. Toward more Robust Extreme Flood Prediction by Bayesian Hierarchical and Multimodeling[J]. Natural Hazards, 2016, 81: 203-225.[74]Zhou Y, Wu Z, Xu H, et al. Prediction and early warning method of inundation process at waterlogging points based on Bayesian model average and data-driven[J]. Journal of Hydrology: Regional Studies, 2022, 44: 101248.[75]Wang H, Zhao Y, Zhu Y, et al. Prediction of urban water accumulation points and water accumulation process based on machine learning[J]. Earth Science Informatics, 2021, 14: 2317-2328.[76]Khatri S, Kokane P, Kumar V, et al. Prediction of waterlogged zones under heavy rainfall conditions using machine learning and GIS tools: a case study of Mumbai[J]. GeoJournal, 2022, 87: 1-15.[77]Wu Z, Zhou Y, Wang H, et al. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse[J]. Sci Total Environ, 2020, 716: 137077.[78]Nguyen D H, Bae D-H. Correcting mean areal precipitation forecasts to improve urban flooding predictions by using long short-term memory network[J]. Journal of Hydrology, 2020, 584: 124710.[79]Han H, Morrison R. Data-driven approaches for runoff prediction using distributed data[J]. Stochastic Environmental Research and Risk Assessment, 2021, 36: 1-19.[80]Yuan Y, Wang D. Path selection model and algorithm for emergency logistics management[J]. Computers & Industrial Engineering, 2009, 56: 1081-1094.[81]Sun Y. A reliability-based approach of fastest routes planning in dynamic traffic network under emergency management situation[J]. International Journal of Computational Intelligence Systems, 2011, 4: 1224-1236.[82]Gai W, Du Y, Deng Y. Multi-objective Route Planning Model and Algorithm for Emergency Management[J]. Decision-making Analysis and Optimization Modeling of Emergency Warnings for Major Accidents, 2019, 1: 113-150.[83]Zhang X, Zhang Z, Zhang Y, et al. Route selection for emergency logistics management: A bio-inspired algorithm[J]. Safety Science, 2013, 54: 87-91.[84]Alem D, Clark A, Moreno A. Stochastic Network Models for Logistics Planning in Disaster Relief[J]. European Journal of Operational Research, 2016, 255(1): 187-206.[85]Wei X, Qiu H, Wang D, et al. An integrated location-routing problem with post-disaster relief distribution[J]. Computers & Industrial Engineering, 2020, 147: 106632.[86]Tang Z, Li W, Yu S, et al. A fuzzy multi-objective programming optimization model for emergency resource dispatching under equitable distribution principle[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41: 1-10.[87]Rodriguez S, De La Fuente R, Aguayo M, et al. A simulation-optimization approach for the facility location and vehicle assignment problem for firefighters using a loosely coupled spatio-temporal arrival process[J]. Computers & Industrial Engineering, 2021, 157: 107242.[88]黄茹月,陈鹏. 城市暴雨内涝灾害应急救援研究——以长春市南关区为例[J]. 农业灾害研究, 2021, 11(02): 97-99.[89]Tingyu Y, Xiaoqian P, Chen D, et al. Research on trans-region integrated traffic emergency dispatching technology based on multi-agent[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38: 1-12.[90]Hu S, Han C-F, Meng L. A scenario planning approach for propositioning rescue centers for urban waterlog disasters[J]. Computers & Industrial Engineering, 2015, 87.[91]Jiyong D, Cai J, Guo G, et al. An Emergency Decision-Making Method for Urban Rainstorm Water-Logging: A China Study[J]. Sustainability, 2018, 10: 3453.[92]Gharib M, Fatemi Ghomi S M T, Jolai F. A dynamic dispatching problem to allocate relief vehicles after a disaster[J]. Engineering Optimization, 2020, 53: 1-18.[93]Wu X, Guo J. Finding of Urban Rainstorm and Waterlogging Disasters Based on Microblogging Data and the Location-Routing Problem Model of Urban Emergency Logistics[J]. Economic Impacts and Emergency Management of Disasters in China, 2021: 221-258.[94]王付宇,张康. 考虑道路约束的应急物资调度优化模型与算法[J]. 复杂系统与复杂性科学, 2022, 19(02): 53-62.[95]Sarkar S K, Rahman M A, Esraz-Ul-Zannat M, et al. Simulation-based modeling of urban waterlogging in Khulna City[J]. Journal of Water and Climate Change, 2020, 12(2): 56-579.[96]Bazin P-H, Mignot E, Paquier A. Computing flooding of crossroads with obstacles using a 2D numerical model[J]. Journal of Hydraulic Research, 2016, 55(1): 72-84.[97]Jiang Y, Li C, Sun L, et al. A deep learning algorithm for multi-source data fusion to predict water quality of urban sewer networks[J]. Journal of Cleaner Production, 2021, 318: 128533.[98]Liu Z, Li X, Zhu X, et al. Towards rainstorm event identification: A transfer learning framework using citizen-report texts and multi-source spatial data[J]. International Journal of Disaster Risk Reduction, 2022, 83: 103427.[99]Zhang Z, Zeng Y, Huang Z, et al. Multi-Source Data Fusion and Hydrodynamics for Urban Waterlogging Risk Identification[J]. International Journal of Environmental Research and Public Health, 2023, 20(3): 2528.[100]Yang Y, Pan C, Fan G, et al. A New Urban Waterlogging Simulation Method Based on Multi-Factor Correlation[J]. Water, 2022, 14: 1421.[101]Liu F, Liu X, Xu T, et al. Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China[J]. Water, 2021, 13: 770.[102]Ma B, Wu Z, Wang H, et al. Study on the Classification of Urban Waterlogging Rainstorms and Rainfall Thresholds in Cities Lacking Actual Data[J]. Water, 2020, 12: 3328.[103]Pant D, Keesari T, Rishi M, et al. Hydrochemical evolution of groundwater in the waterlogged area of southwest Punjab[J]. Arabian Journal of Geosciences, 2020, 13: 1-11.[104]Ren X, Wang S, Yang P, et al. Performance Evaluation of Different Combined Drainage Forms on Flooding and Waterlogging Removal[J]. Water, 2021, 13: 2968.[105]Li B, Zhang W, Long J, et al. Multi-source information fusion technology for risk assessment of water inrush from coal floor karst aquifer[J]. Geomatics, Natural Hazards and Risk, 2022, 13: 2086-2106.[106]Yan X, Xu K, Feng W, et al. A Rapid Prediction Model of Urban Flood Inundation in a High-Risk Area Coupling Machine Learning and Numerical Simulation Approaches[J]. International Journal of Disaster Risk Science, 2021, 12.[107]Shao W W, Su X, Lu J, et al. Urban Resilience of Shenzhen City under Climate Change[J]. Atmosphere, 2021, 12(5): 537.[108]Zhu H, Yu M, Zhu J, et al. Simulation Study on Effect of Permeable Pavement on Reducing Flood Risk of Urban Runoff[J], 2019, 8: 373-382.[109]吴俊,王以尧,马艳. 基于新型径流采集方法的城市不同非渗透下垫面径流系数解析[J]. 环境工程, 2021, 39(02): 47-52.[110]Tarasova L, Basso S, Zink M, et al. Exploring Controls on Rainfall-Runoff Events: 1. Time Series-Based Event Separation and Temporal Dynamics of Event Runoff Response in Germany[J]. Water Resources Research, 2018, 54(10): 7711-7732.[111]Jiang B. Analysis of urban waterlogging causes and LID techniques[J]. Highlights in Science, Engineering and Technology, 2022, 5: 244-249.[112]Piacentini T, Galli A, Vincenzo M, et al. Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy[J]. Water, 2018, 10: 1314.[113]Herrera J, Flamant G, Gironás J, et al. Using a Hydrological Model to Simulate the Performance and Estimate the Runoff Coefficient of Green Roofs in Semiarid Climates[J]. Water, 2018, 10: 198.[114]刘兰岚. 降雨产流计算中径流曲线法(SCS模型)局限性的探讨[J]. 环境科学与管理, 2013, 38(05): 64-68.[115]Russ T H. Site planning and design handbook[M]. 2nd ed. New York: McGraw-Hill Education, 2002.[116]Zhang H, Yang Z, Cai Y, et al. Impacts of Climate Change on Urban Drainage Systems by Future Short-Duration Design Rainstorms[J]. Water, 2021, 13: 2718.[117]Chen W, Dong J, Yan C, et al. What Causes Waterlogging?—Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation[J]. Sustainability, 2021, 13: 8546.[118]Zhang M, Xu M, Wang Z, et al. Assessment of the vulnerability of road networks to urban waterlogging based on a coupled hydrodynamic model[J]. Journal of Hydrology, 2021, 603: 127105.[119]Li H, Xu E, Zhang H. High-resolution assessment of urban disaster resilience: a case study of Futian District, Shenzhen, China[J]. Natural Hazards, 2021, 108: 1001-1024.[120]Rahaman Z. Runoff coefficient (C value) evaluation and generation using rainfall simulator: a case study in urban areas in Penang, Malaysia[J]. Arabian Journal of Geosciences, 2021, 14: 1-10.[121]Liu W, Feng Q, Deo R, et al. Experimental Study on the Rainfall-Runoff Responses of Typical Urban Surfaces and Two Green Infrastructures Using Scale-Based Models[J]. Environmental Management, 2020, 66: 683-693.[122]Chu X, Wang Y, Xia Y, et al. Generation of runoff characteristics over three time periods for four typical forests in Jinyun Mountain, Chongqing City, southwest China[J]. Frontiers of Forestry in China, 2009, 4: 171-177.[123]Fang H, Cai Q, Chen H, et al. Effect of Rainfall Regime and Slope on Runoff in a Gullied Loess Region on the Loess Plateau in China[J]. Environmental management, 2008, 42: 402-11.[124]Merz R, Blöschl G. A Regional Analysis of Event Runoff Coefficients With Respect to Climate and Catchment Characteristics in Austria[J]. Water Resources Research, 2009, 45(1): W01405.[125]顾祝军,陈文龙,高阳,等. 中国城市水土流失的现状、对策及研究展望——以广东省深圳市为例[J]. 水土保持通报, 2022, 42(02): 369-376.[126]Zhou L, Wu X, Ji Z, et al. Characteristic analysis of rainstorm-induced catastrophe and the countermeasures of flood hazard mitigation about Shenzhen city[J]. Geomatics, Natural Hazards and Risk, 2017, 8: 1-12.[127]Zhang X, Hu M, Chen G, et al. Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China[J]. Water Resources Management, 2012, 26: 3757-3766.[128]Tarboton D. A New Method For The Determination Of Flow Directions And Upslope Areas In Grid Digital Elevation Models[J]. Water Resources Research, 1997, 33(2): 309-319.[129]Bisht D, Chatterjee C, Kalakoti S, et al. Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study[J]. Natural Hazards, 2016, 84: 749-776.[130]Martz L, Garbrecht J. Numerical Definition of Drainage Networks and Subcatchment Areas from Digital Elevation Models[J]. Computers & Geosciences, 1992, 18: 747-761.[131]Liu L, Sun J, Lin B. A large-scale waterlogging investigation in a megacity[J]. Natural Hazards, 2022, 114: 1-20.[132]黄俊,蒋乐,周俊,等. 《城市道路交通规划设计规范》(GB50220—95)中有关指标合理性和取值研究[J]. 交通标准化, 2011(08): 18-20.[133]Abedin S, Stephen H. GIS Framework for Spatiotemporal Mapping of Urban Flooding[J]. Geosciences Journal, 2019, 9(2): 77.[134]Zhang Z, Meng F, Zeng Y, et al. Identification of Urban Rainstorm Waterlogging Based on Multi-source Information Fusion:A Case Study in Futian District, Shenzhen[C]. France: E3S Web of Conferences, 2021: 01004.[135]Strupczewski W, Szymkiewicz R. Analysis of paradoxes arising from the Chezy formula with constant roughness: II. Flow area-discharge curve[J]. Hydrological Sciences Journal, 1996, 41(5): 675-682.[136]Qi X, Zhang Z. Assessing the urban road waterlogging risk to propose relative mitigation measures[J]. Science of The Total Environment, 2022, 849: 157691.[137]Zhang Z, Liang J, Zhou Y, et al. A multi-strategy-mode waterlogging-prediction framework for urban flood depth[J]. Natural Hazards and Earth System Sciences, 2022, 22: 4139-4165.[138]Yu X, Liong S-Y. Forecasting of hydrologic time series with ridge regression in feature space[J]. Journal of Hydrology, 2007, 332(3-4): 290-302.[139]Ali M, Prasad R, Xiang Y, et al. Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts[J]. Journal of Hydrology, 2020, 584: 124647.[140]Shen F, Liu J, Wu K. Multivariate Time Series Forecasting Based on Elastic Net and High-Order Fuzzy Cognitive Maps: A Case Study on Human Action Prediction Through EEG Signals[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(8): 2336-2348.[141]Roy S S, Mittal D, Basu A, et al. Stock Market Forecasting Using LASSO Linear Regression Model[C]. Addis Ababa: Afro-European Conference for Industrial Advancement: Proceedings of the First International Afro-European Conference for Industrial Advancement AECIA 2014, 2015: 371-381.[142]Gocheva-Ilieva S G, Voynikova D S, Stoimenova M P, et al. Regression trees modeling of time series for air pollution analysis and forecasting[J]. Neural Computing and Applications, 2019, 31(12): 9023-9039.[143]Wu H, Cai Y, Wu Y, et al. Time series analysis of weekly influenza-like illness rate using a one-year period of factors in random forest regression[J]. Biosci Trends, 2017, 11(3): 292-296.[144]Martínez F, Frías M P, Pérez M D, et al. A methodology for applying k-nearest neighbor to time series forecasting[J]. Artificial Intelligence Review, 2017, 52(3): 2019-2037.[145]Weber B, Mateas M. A data mining approach to strategy prediction[C]. Milan: 2009 IEEE Symposium on Computational Intelligence and Games, 2009: 140-147.[146]张艳芳,刘航图,张乃元,等. 影响天气预报准确率的因素及对策分析[J]. 农业灾害研究, 2021, 11(04): 116-117.[147]Cheng H, Tan P, Gao J, et al. Multistep-Ahead Time Series Prediction[C]. Singapore: Advances in Knowledge Discovery and Data Mining: 10th Pacific-Asia Conference, 2006: 765-774.[148]Hamzaçebi C, Akay D, Kutay F. Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting[J]. Expert Systems with Applications, 2009, 36(2): 3839-3844.[149]Kline D M. Neural networks in business forecasting[M]. Hershey, Pennsylvania: IGI Global, 2004: 226-250.[150]Ben Taieb S, Bontempi G, Atiya A F, et al. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition[J]. Expert Systems with Applications, 2012, 39(8): 7067-7083.[151]Santos C, Silva G. Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models[J]. Hydrological Sciences Journal, 2014, 59: 312-324.[152]Luo T, Liu X, Zhang J, et al. An Analysis Study of the Impact of Urbanization on Rainfall in Wuhan[J]. IOP Conference Series: Earth and Environmental Science, 2020, 455(1): 012205.[153]秦玉忠,吴银成,黄春,等. 城市道路积水监测用超声波水位传感器研究[J]. 自动化与仪器仪表, 2021(03): 101-104.[154]Georgiadou P S, Papazoglou I A, Kiranoudis C T, et al. Multi-objective evolutionary emergency response optimization for major accidents[J]. Journal of Hazardous Materials, 2010, 178(1-3): 792-803.[155]Daoud J. Multicollinearity and Regression Analysis[J]. Journal of Physics: Conference Series, 2017, 949: 012009.[156]David N, Alpert P, Messer H. The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions[J]. Atmospheric Research, 2013, 131: 13-21.[157]Burak S, Bilge A, Ülker D. Computation of monthly runoff coefficients for Istanbul (Turkey)[J]. Thermal Science, 2020, 25: 147-147.[158]Zavala L, Jordán A, Bellinfante N. Seasonal Variability of Runoff and Soil Loss on Forest Road Backslopes under Simulated Rainfall[J]. Catena, 2008, 74: 73-79.[159]Ran Q, Su D, Li P, et al. Experimental Study of the Impact of Rainfall Characteristics on Runoff Generation and Soil Erosion[J]. Journal of Hydrology, 2012, 424: 99–111.[160]Khalid S, Shehryar T, Nasreen S. A survey of feature selection and feature extraction techniques in machine learning[C]. London: 2014 science and information conference, 2014: 372-378.[161]Zhang H, Yao Z, Yang Q, et al. An integrated algorithm to evaluate flow direction and flow accumulation in flat regions of hydrologically corrected DEMs[J]. Catena, 2017, 151: 174-181.[162]Dou X, Song J, Wang L, et al. Flood sk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong Urban Area, China[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32: 1131-1146.[163]Gunawan D, Sembiring C, Budiman M. The Implementation of Cosine Similarity to Calculate Text Relevance between Two Documents[J]. Journal of Physics: Conference Series, 2018, 978(1): 012120.[164]Xia P, Zhang L, Li F. Learning Similarity with Cosine Similarity Ensemble[J]. Information Sciences, 2015, 307: 39-52.[165]Garg H, Bansal C, Kaushal R, et al. Identifying Actionable Information from Social Media for Better Government-Public Relationship[C]. Paris: 2017 10th International Conference on Developments in eSystems Engineering (DeSE), 2017: 206-211.[166]Dehnavi E, Abdi H, Mohammadi F. Optimal Emergency Demand Response Program Integrated with Multi-Objective Dynamic Economic Emission Dispatch Problem[J]. Journal of Operation and Automation in Power Engineering, 2016, 4(1): 29-41.[167]Jotshi A, Gong Q, Batta R. Dispatching and routing of emergency vehicles in disaster mitigation using data fusion[J]. Socio-Economic Planning Sciences, 2009, 43: 1-24.[168]赵玉杰,王昊,刘子龙,等. 基于组合赋权的多情景内涝灾害风险评估[J]. 水利水电技术, 2022, 53(05): 1-12.[169]Liang J. Dynamic rescue forces dispatching and emergency resource allocation for urban waterlogging disasters[D]. 深圳: 南方科技大学, 2021.[170]梁亚婷,温家洪,杜士强,等. 人口的时空分布模拟及其在灾害与风险管理中的应用[J]. 灾害学, 2015, 30(04): 220-228.[171]徐一剑. 我国沿海城市应对气候变化的发展战略[J]. 气候变化研究进展, 2020, 16(01): 88-98.[172]Candra A, Budiman M, Pohan R. Application of A-Star Algorithm on Pathfinding Game[C]. Journal of Physics: Conference Series, 2021: 012047.[173]Duchoň F, Babinec A, Kajan M, et al. Path Planning with Modified a Star Algorithm for a Mobile Robot[J]. Procedia Engineering, 2014, 96: 59-69.[174]Candra A, Budiman M, Hartanto K. Dijkstra's and A-Star in Finding the Shortest Path: a Tutorial[C]. Medan: 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), 2020: 28-32.[175]王铁宁,梁波,曹钰,等. 基于多资源点的装备应急器材调度决策模型[J]. 装甲兵工程学院学报, 2012, 26(06): 10-14.
修改评论