[1]王颖,许伟伟,孙国柱,陈健,曹俊宇,丛山桦,吴培亨.噪声对超导量子比特测量系统的影响[J].低温与超导,2007(01):53-55.DOI:10.16711/j.1001-7100.2007.01.015.
[2]张振涛. 超导量子比特的调控与退相干研究[D].南京大学,2013.
[3]R.P. Feynman, “Stimulating Physics with computers,”International Journal of Theoretical Physics, 21(6-7)467-488(1982). doi.org/10.1007/BF02650179.
[4]S. Boixo, S.V. Isakov, V.N. Smelyanskly, R.Babbush, N. Ding, Z. Jiang, M.J. Bremner, J.M.Martinis, and H. Neven, “Characterizing quantumsupremacy in near-term devices,” Nature Physics, 14595-600 (2018).doi.org/10.1038/s41567-018-0124-x.
[5]J. Emerson, Y.S. Weinstein, M. Saraceno, S. Lloyd,and D.G. Cory, “Pseudo-random unitary operators for quantum information processing,” Science, 3022098–2100(2003).doi.org/10.1126/science.1090790.
[6]A.J. Scott, T.A. Brun, C.M. Caves, and R. Schack,“Hypersensitivity and chaos signatures in the quantum baker's maps,” J. Phys. A, 3913405–13433(2006).doi.org/10.1088/0305-4470/39/43/002.
[7]R. Oliveira, O. Dahlsten, and M. Plenio, “Generic entanglement can be generated efficiently,” Physic.Rev. Lett., 98 130502(2007).doi.org/10.1103/PhysRev Lett. 98.130502.
[8]C. M.Trail, V. Madhok, and I.H. Deutsch,“Entanglement and the generation of random states in the quantum chaotic dynamics of kicked coupled tops,” Phys. Rev. E, 78 046211(2008).doi.org/10.1103 /Phys RevE.78.046211.
[9]A.W. Harrow, and R.A. Low, “Random Quantum Circuits are approximate 2-designs,” Commun.Math. Phys, 291 257–302(2009).doi.org/10.1007/s002 20-009-0873-6.
[10]Y.S. Weinstein,W.G.Brown, and L.Viola, “Parameters of pseudo-random quantum circuits,” Phys.Rev.A,78 052332(2008). doi.org/ 10.1103/PhysRevA.78.052332.
[11]W. Brown, and O. Fawzi, “Scrambling speed of random quantum circuits,” arXiv preprint arXiv:1210. 6644(2012). doi.org/10.48550/arXiv.1210.6644.
[12]J. Preskill, “Quantum computing and the entanglement frontier,”, arXiv preprint arXiv: 1203 5813 (2012).doi.org/10.48550/arXiv.1203.5813.
[13]DEUTSCHD. Quantum theory, the church-turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London,1985,400(1818):97-117.
[14]SHOR P W.Algorithms for quantum computation: Discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science.Santa Fe:[S.l.],1994:124-134.
[15]T. Zelovich, L. Kronik, and O. Hod, “State representation approach for atomistic timedependent transport calculations in molecular junctions,” J. Chem. Theory Comput.,102927-2941(2014). doi.org/10. 1021/ct500135e.
[16]T. Zelovich, L. Kronik, and O. Hod,“Molecule–Lead Coupling at Molecular Junctions:Relation between the Real-and State-SpacePerspectives,” J. Chem. Theory Comput, 114861-4869(2015).doi. org/10.1021/acs.jctc.5b00612.
[17]T. Zelovich, L. Kronik, and O. Hod, “Driven Liouville von Neumann approach for time-dependent electronic transport calculations in a nonorthogonal basis-set representation,”J. Phys.Chem.C, 120 15052-15062(2016). doi.org/ 10.1021/acs.jpcc.6b03838.
[18]O. Hod, C.A. Rodríguez-Rosario, T. Zelovich, and T.Frauenheim, “Driven Liouville von Neumann equation in Lindblad form,” J. Phys. Chem. A 1203278-3285 (2016). doi.org/10.1021/acs. jpca.5b12212.
[19]T. Zelovich, T. Hansen, Z.-F. Liu, J. B. Neaton, L.Kronik, and O. Hod, “Parameter-free driven Liouville-von Neumann approach for time-dependent electronic transport simulations in open quantum systems,” J. Chem. Phys., 146092331 (2017). doi.org/10. 1063/1.4976731.
[20]I.Oz,O.Hod,andA.Nitzan, “Evaluation of dynamical properties of open quantum systems using the driven Liouville-von Neumann approach: methodological considerations,”Mol. Phys, 117 2083-2096 (2019).doi.org/10.1080/ 002689 76. 2019.1584338.
[21]A. Oz, O. Hod, and A. Nitzan, “Numerical approach to non equilibrium quantum thermodynamics: Nonperturbative treatment of the driven resonant level model based on the driven liouville von-neumann formalism,” J. Chem. Theory Comput, 161232-1248(2020). doi.org/10.1021/acs.jctc.9b00999.
[22]T.M. Chiang, Q.R. Huang, and L.Y. Hsu, “Electric Current Fluctuations Induced by Molecular Vibrations in the Adiabatic Limit: Molecular Dynamics-Driven Liouville von Neumann Approach,” J. Phys. Chem. C, 123 10746-10755(2019).doi.org/10.1021/ acs.jpcc.8b12555.
[23]V. Pohl, L.E.M. Steinkasserer, and J.C. Tremblay,“Imaging Time-Dependent Electronic Currents through a Graphene-Based Nanojunction,” J. Phys.Chem. Lett., 10 5387-5394(2019).doi.org/10.1021/acs.jpclett. 9b01732.
[24]L.M.K. Vandersypen, and I.L. Chuang, “NMR techniques for quantum control and computation,”Rev. Mod. Phys, 76 1036-69 (2005). doi.org/10.1103/ RevMod Phys. 76.1037.
[25]R. Blatt, and C.F. Ross, “Quantum simulations with trapped ions,” Nature Physics, 8 277-284 (2012).doi.org/10.1038/nphys2252.
[26]L.M.K. Vandersypen, and I.L. Chuang, “NMR techniques for quantum control and computation,”Rev. Mod. Phys, 76 1036-69 (2005). doi.org/10.1103/ RevMod Phys. 76.1037.
[27]Y. He, S.K. Gorman, D. Keith, L. Kranz, J.G. Keizer, and M.Y. Simmons, “A two-qubit gate between phosphorus donor electrons in silicon,” Nature, 571371-375(2019). doi.org/10.1038/s41586-019-1381-2.
[28]D.W. Kim, H.S. Kil, K. Nakabayashi, S.H. Yoon, and J. Miyawaki, “Improvement of electric conductivity of non-graphitizable carbon material time-dependent electronic transport calculations in a nonorthogonal basis-set representation,”J. Phys.Chem.C, 120 15052-15062(2016). doi.org/ 10.1021/acs.jpcc.6b03838.
[29]G. Wendin, “Quantum information processing with superconducting circuits: a review,” Reports on Progress in Physics, 80 106001 (2017). doi.org/10.1088/ 1361-6633/aa7e1a.
[30]H. Elserafy, “Assessment of demo reactors for fusion power utilization,” Evergreen, 5 (4) 18–25(2018). doi:10.5109/217485.
[31]M. Kabiruzzaman, R. Ahmed, T. Nakagawa, and S.Mizuno, “Investigation of c(2×2) phase of pb and bico adsorption on cu(001) by low energy electron diffraction,” Evergreen, 4(1)10–15(2017).doi:10.5109/ 1808306.
[32]G. Gupta, R.K. Tyagi, and S.K. Rajput, “A Statistical Analysis of Sputtering Parameters on Superconducting Properties of Niobium Thin Film,”Evergreen, 8(1)44-50(2021).doi.org/ 10.5109/4372259.
[33]NAKAMURAYPASHKINYATSAIJS.Coherent control ofmacroscopic quantum states in a single-cooper-pair box[U]. Nature, 1999,398(6775):49-51.
[34]Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[35]Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 2004, 431(7005): 162-167.
[36]H. Bosma. Theoretical Aspects Of 3-Port Junction Circulators[J]. Emergency Medicine Clinics of North America, 1966, 66(1): 261-263.
[37]Comstock R L , Fay C E . Performance and Ferrimagnetic Material Considerations in Cryogenic Microwave Devices[J]. Journal of Applied Physics, 1965, 36(3):1253.
[38]C. M. Krowne, ''Theory of the recursive dyadic green's function for inhomogeneous ferrite canonically shaped microstrip circulators,'' Adv. Imag. Electron Phys., vol. 98, pp. 321-377, Jan. 1996.
[39]J. Lee, Y.-K. Hong, C. Yun, W. Lee, J. Park, and B.-C. Choi, ''Magnetic parameters for ultra-high frequency (UHF) ferrite circula-tor design,'' J. Magn., vol. 19, no. 4, pp. 399-403, Dec. 2014, doi: 10.4283/jmag.2014.19.4.399.
[40]V. V. K. Thalakkatukalathil, A. Chevalier, V. Laur, G. Verissimo, P. Queffelec, L. Qassym, and R. Lebourgeois, ''Electromagnetic modeling of anisotropic ferrites-Application to microstrip Y-junction circulator design,'' J. Appl. Phys., vol. 123, no. 23, Jun. 2018, Art. no. 234503, doi: 10.1063/1.5026482.
[41]S. Ayter and Y. Ayasli, ''The frequency behavior of stripline circulator junctions,'' IEEE Trans. Microw. Theory Techn., vol. MTT-26, no. 3, pp. 197-202, Mar. 1978.
[42]P. Krivic, G. Radosavljevic, S. Birgermajer, N. Cselyuszka, and H. Arthaber, ''Design and fabrication of the Bosma stripline circulator in LTCC technology,'' in Proc. IEEE Int. Conf. Microw., Commun., Antennas Electron. Syst. (COMCAS), Nov. 2015, pp. 2-4.
[43]A. Ghadiya, K. Trivedi, S. Soni, and P. Bhatt, ''Wide band stripline circulator at Ku band for space applications,'' in IEEE MTT-S Int. Microw. Symp. Dig., Nov. 2018, pp. 1-7.
[44]Z. Uzdy, ''Computer-aided design of stripline ferrite junction circulators,'' IEEE Trans. Microw. Theory Techn., vol. MTT-28, no. 10, pp. 1134-1136, Oct. 1980.
[45]A. M. Borjak and L. E. Davis, ''More compact ferrite circulator junctions with predicted performance,'' IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2352-2358, Dec. 1992.
[46]K. Tian, L. Z. You, and H. Liu, ''Minimized Ku band microstrip circulator design,'' in Proc. Int. Conf. Microw. Millim. Wave Technol., May 2010, pp. 1967-1968.
[47]E. Schwartz, ''Broadband matching of resonator circuits and circulators,'' IEEE Trans. Microw. Theory Tech., vol. MTT-16, no. 3, pp. 158-165, Mar. 1968.
[48]E. Schloemann and R. E. Blight, ''Broad-band stripline circulators based on YIG and Li-ferrite single crystals,'' IEEE Trans. Microw. Theory Techn., vol. MTT-34, no. 12, pp. 1394-1400, Dec. 1986.
[49]A. Setiawan, Y. Y. Maulana, Y. Sulaeman, T. Praludi, and Y. Taryana, ''Design of 3 GHz stripline ferrite circulator for radar applications,'' in Proc. Int. Conf. Radar, Antenna, Microw., Electron., Telecommun., 2017, pp. 154-157.
[50]V. Kelaiya and M. R. Naik, ''Design and simulation of X band microstrip circulator,'' in Proc. IEEE Region 10 Conf. (TENCON), Nov. 2016, pp. 1961-1964.
[51]E. J. Sedek and A. T. Milewski, ''Computer aided design and optimization of three-port ferrite stripline and microstrip circulators,'' WSEAS Trans. Inf. Sci. Appl., vol. 2, no. 9, pp. 395-398, 2005.
[52]H. Ren and Y. Xie, ''Simulation design of an X-band high isolation circulator,'' in Proc. 2nd Int. Conf. Inf. Technol. Comput. Appl. (ITCA), Dec. 2020, pp. 387-390.
[53]J. Helszajn, “The Synthesis of Quarter-Wave Coup led Circulators with Chebyshev Characteristics", IEEE Trans. MTT-20,Nov.1972,p.764.
[54]T.-H. Chang, ''Ferrite materials and applications,'' in Electromagnetic Materials and Devices, 2020, pp. 1-14, doi: 10.5772/intechopen.84623.
[55]W. V. Aulock, ''Selection of ferrite materials for microwave device applications,'' IEEE Trans. Magn., vol. MAG-2, no. 3, pp. 251-255, Sep. 1966.
[56]M. D. Hill, D. B. Cruickshank, and I. A. MacFarlane, ''Perspective on ceramic materials for 5G wireless communication systems,'' Appl. Phys. Lett., vol. 118, no. 12, Mar. 2021, Art. no. 120501, doi: 10.1063/5.0036058.
[57]V. Voronkov, ''Microwave ferrites: The present and the future,'' Le J. Phys. IV, vol. 7, no. C1, pp. C1-35-C1-38, Mar. 1997, doi: 10.1051/jp4:1997104.
[58]V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, and A. Yang, ''Recent advances in processing and applications of microwave ferrites,'' J. Magn. Magn. Mater., vol. 321, no. 14, pp. 2035-2047, 2009.
[59]H. Bosma, ''On the principle of stripline circulation,'' Proc. IEE-B, Electron. Commun. Eng., vol. 109, no. 21, pp. 137-146, Jan. 1962.
[60]H. Bosma, ''A general model for junction circulators; choice of magnetization and bias field,'' IEEE Trans. Magn., vol. MAG-4, no. 3, pp. 587-596, Sep. 1968.
[61]H. Bosma, ''On stripline Y-circulation at UHF,'' IEEE Trans. Microw. Theory Techn., vol. MTT-12, no. 1, pp. 61-72, Jan. 1964.
[62]C. E. Fay and R. L. Comstock, ''Operation of the ferrite junction circulator,'' IEEE Trans. Microw. Theory Techn., vol. MTT-13, no. 1, pp. 15-27, Jan. 1965.
[63]D. B. Cruickshank, Implementing Full Duplexing for 5G. Norwood, MA, USA: Artech House, 2006.
[64]D. M. Pozar, Microwave Engineering, 4th ed. Rosewood, MA, USA: Wiley, 2012.
[65]D. K. Linkhart, Microwave Circulator Design, D. K. Linkhart, Ed., 2nd ed. Norwood, MA, USA: Artech House, 2014.
[66]Wu Y S , Rosenbaum F J . Wideband Operation of Microstrip Circulators[J]. Microwave Theory & Techniques IEEE Transactions on, 1973, 73(10):92-94.
[67]S. Ramachandran. A Review on Ferrite Devices[J]. IETE Journal of Research,2015,9(8).
[68]Afshani A , Wu K . Concurrent Dual-Mode Circulator[C]// 2019 49th European Microwave Conference (EuMC). 2019.
[69]J. Rosenbaum Y. S. Wu, ''Wide-band operation of microstrip cir-culator,'' IEEE Trans. Microw. Theory Techn., vol. MTT-22, no. 10, pp. 849-857, Oct. 1974.
[70]V. Laur, J. P. Gouavogui, and B. Balde, ''C-band hybrid 3-D-printed microwave isolator,'' IEEE Trans. Microw. Theory Techn., vol. 69, no. 3, pp. 1579-1585, Mar. 2021.
[71]S. A. Ivanov, ''Inherently matched Y-junction stripline circulator,'' IEEE Trans. Microw. Theory Techn., vol. 45, no. 5, pp. 648-652, May 1997.
[72]M. Pinto, L. Marzall, A. Ashley, D. Psychogiou, and Z. Popovic, ''Design-oriented modelling of microstrip ferrite circulators,'' in Proc. 48th Eur. Microw. Conf. (EuMC), Sep. 2018, pp. 215-218.
[73]L. Martinez, V. Laur, A. L. Borja, P. Queffelec, and A. Belenguer, ''Low loss ferrite Y-junction circulator based on empty substrate integrated coax-ial line at Ku-band,'' IEEE Access,vol.7,pp.104789104796,2019,doi:10.1109/ACCESS.2019.2931588.
[74]S. Khim, S. Cheab, S. Soeung and G. S. Ng, "Design and Synthesis of Ferrite Strip-Line Circulator Based on Enhanced Closed Form Solution and Power Handling Analysis," in IEEE Access, vol. 10, pp. 112812-112831, 2022, doi: 10.1109/ACCESS.2022.3216585.
[75]刘宇浩. 超导电路量子电动力学系统的调控与读取[D].南京大学,2016.
[76]王腾辉. 超导量子比特与绝热快速捷径在量子模拟和量子门中的应用[D].浙江大学,2018.
[77]李少炜. 超导量子比特高精度调控与高保真度双比特门实现[D].中国科学技术大学,2022.DOI:10.27517/d.cnki.gzkju.2022.000029.
[78]张振涛. 超导量子比特的调控与退相干研究[D].南京大学,2013.
[79]Dowling J P, Milburn G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 361(1809): 1655-1674.
[80]BARENDSRKELLYJMEGRANTA,etal.Coherent josephson qubit suitable for scalable quantum integrated circuits[J]. Physical Review Letters, 2013, 111(8):32-36.
[81]Devoret M H, Martinis J M. Implementing qubits with superconducting integrated circuits[J]. Experimental aspects of quantum computing, 2005: 163-203.
[82]Chen Z. Metrology of quantum control and measurement in superconducting qubits[M]. University of California, Santa Barbara, 2018.
[83]Krantz P, Kjaergaard M, Yan F, et al. A quantum engineer's guide to superconducting qubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[84]陈恒. 微带环行器的优化设计和工艺研究[D].华中科技大学,2008.
[85]李士根.新型微波铁氧体器件的开发和应用[J].磁性材料及器件,2000(03):26-30.
[86]程俊杰. 2~6GHz超宽带同轴环行器建模、仿真及研制[D].电子科技大学,2011.
[87]杨林颖. 铁氧体非互易器件新结构及其特性研究[D].电子科技大学,2011.
[88]汪鹏.带状线环行器、隔离器大功率容量设计技术[J].电子元器件与信息技术,2019(04):33-36.DOI:10.19772/j.cnki.2096-4455.2019.4.010.
[89]徐榆鸿. 960~1225MHZ宽带带线隔离器仿真设计与制备[D].电子科技大学,2013.
[90]郑燕. 微带铁氧体薄膜环行器的设计[D].杭州电子科技大学,2009.
[91]石中立. 毫米波环行器的设计[D].电子科技大学,2011.
[92]张维. W波段模式转换器和C波段环行器的研究[D].电子科技大学,2020.DOI:10.27005/d.cnki.gdzku.2020.002756.
[93]沈维福.带线环行器、隔离器生产技术[J].磁性材料及器件,2010,41(02):72-75+78.
[94]尹亮忠.环行器/隔离器在微波通信中的应用[J].山西焦煤科技,2006(S2):95-96+98.
[95]郝天琪. 基于铁氧体的微波环行器/隔离器的研究与设计[D].南京邮电大学,2019.DOI:10.27251/d.cnki.gnjdc.2019.001110.
[96]Zelman Harbater. Analyze Circulator Design Equations[J]. Microwaves & RF,2005,44(5).
[97]邵合理. 铁氧体环行器的设计与带外效应的研究[D].电子科技大学,2009.
[98]蒋仁培.带线环行器的设计综述[J].磁性材料及器件,1988(01):6-16.
[99]潘永吉.倍频程带线环行器最佳设计理论[J].系统工程与电子技术,1991(12):1-11.
[100]杨铁山.超倍频程λ/4耦合双Y结环行器[J].磁性材料及器件,1980(03):10-18.
[101]Ranzani L, Aumentado J. Circulators at the quantum limit: Recent realizations of quantum-limited superconducting circulators and related approaches[J]. IEEE Microwave Magazine, 2019, 20(4): 112-122.
[102]Richman B, Taylor J M. Circulation by microwave-induced vortex transport for signal isolation[J]. PRX Quantum, 2021, 2(3): 030309.
[103]Chapman B J, Rosenthal E I, Kerckhoff J, et al. Widely tunable on-chip microwave circulator for superconducting quantum circuits[J]. Physical Review X, 2017, 7(4): 041043.
[104]Helszajn J. The Stripline Circulator: Theory and Practice[M]. John Wiley & Sons, 2008.
[105]Chait H N, Curry T R. Y circulator[J]. Journal of Applied Physics, 1959, 30(4): S152-S153.
[106]Fujii Y. High-isolation polarization-independent optical circulator[J]. Journal of Lightwave Technology, 1991, 9(10): 1238-1243.
[107]Heydari M B, Samiei M H V. Three-port terahertz circulator with multi-layer triangular graphene-based post[J]. Optik, 2021, 231: 166457.
[108]高峰. 低损耗YIG铁氧体材料及其环行器的研究与应用[D].电子科技大学,2022.DOI:10.27005/d.cnki.gdzku.2022.003868.
[109]V. V K Thalakkatukalathil,A. Chevalier,V. Laur,G. Verissimo,P. Queffelec,L. Qassym,R. Lebourgeois. Electromagnetic modeling of anisotropic ferrites-Application to microstrip Y-junction circulator design[J]. Journal of Applied Physics,2018,123(23).
[110]Olivier V , Huitema L , Lenoir B , et al. Stripline dual-band ferrite circulators operating on weak field conditions[C]// 2020 50th European Microwave Conference (EuMC). 2021.
[111]钱杨伟. Ku波段铁氧体微带线环行器的设计与仿真[D].杭州电子科技大学,2015.
[112]Magnetic Parameters for Ultra-high Frequency (UHF) Ferrite Circulator Design[J]. Journal of Magnetics,2014,19(4).
[113]S. D. Yoon,Jiangwei Wang,Nian Sun,C. Vittoria,V. G. Harris. Ferrite-Coupled Line Circulator Simulations For Application at X-Band Frequency[J]. IEEE Transactions on Magnetics,2007,43(6).
[114]Pinto M , Marzall L , Ashley A , et al. Design-Oriented Modelling of Microstrip Ferrite Circulators[C]// 2018 48th European Microwave Conference (EuMC). 2018.
[115]The physical implementation of quantum computation. Fortschritte der Physik. 48, 771–783 (2000).John Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
修改评论