中文版 | English
题名

超导量子比特测量链路的优化

其他题名
OPTIMIZATION OF MEASUREMENT LINK FOR SUPERCONDUCTING QUANTUM BITS
姓名
姓名拼音
HUANG Yuqi
学号
12132840
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
李剑
导师单位
量子科学与工程研究院
论文答辩日期
2023-05-23
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  量子计算机由于具有超强算力,逐渐成为如今热门的研究领域。在众多备选的实验方案中,超导量子计算体系目前是最有可能实现通用量子计算的路径之一。然而,由于环境噪声的影响,超导量子比特不可避免的发生退相干,导致量子计算过程的失真。因此,在测量控制系统的线路上加入合适的滤波和衰减器件,从而降低量子比特感受到的噪音强度,显得十分关键。低温环行器是超导量子比特测控系统中的一个关键低温微波器件,主要有两方面的应用,其一是作为隔离器降低稀释制冷机的高温盘区的热噪音通过测控线对超导量子芯片的影响,其二是作为环行器对超导量子比特读取信号进行特定方向性的传导。目前实用于超导量子计算工作频率的微波波段的商用低温环行器,主要都是国外公司的产品,价格昂贵且存在禁运风险,而国内则鲜有对这类低温微波器件的研究。因此,本论文对高隔离度、适用于4K低温下的C波段环行器展开研究。低温环行器与室温环行器最主要的区别在于构成环行器的永磁体、铁氧体和介质等材料的选取,因此研制低温环行器需要充分考虑这些材料在极低温环境下的性质。

  本文总结了带线环行器的设计流程,包括材料选择和设计电路两部分。基于环行器中使用的磁性材料特性以及由于铁氧体材料旋磁特性产生的环行器非互易性、非线性效应和损耗,通过测试实验选择具有合适的磁矩的磁性材料,并对带线环行器中不同结构的尺寸计算,完成了一个适用于7-9GHz的带线双Y结环行器的设计。

  本文对设计的环行器进行了实物的常温、低温测试,通过实验和仿真模拟结果比较,得出该环行器设计在磁性材料选取、填充介质介电常数和内导体形状中的优化方案。实验结果表明,低温下的环行器在7-9GHz具有较好的环行性能,基本达到隔离度、插入损耗的指标。

其他摘要

  Quantum computers are gradually becoming a popular research area today due to their super computing power. Among the different implementation methods, superconducting quantum computers are recognized as the most promising quantum computers for pervasiveness. The development of superconducting quantum computing faces the problem of decoherence of quantum bits due to the effect of noise in the experimental environment, therefore, it is crucial to study the devices that reduce noise in the system. The cryogenic circulator is a key cryogenic microwave device in the superconducting quantum bit measurement and control system, which has two main roles: as an isolator to isolate the noise brought to the superconducting quantum chip by the cryogenic measurement and control line inside the dilution chiller; as a circulator to separate the superconducting quantum bit reading input and output signals. At present, there is little research on such cryogenic microwave devices in China, and the commercially available foreign-made cryogenic circulators are expensive and subject to embargo risks. Therefore, in this thesis, a C-band circulator with high isolation and suitable for 4K cryogenic temperature is investigated. The main difference between cryogenic and room temperature circulators lies in the selection of materials such as permanent magnets, ferrites and dielectrics that make up the circulator, so the development of cryogenic circulators needs to fully consider the properties of these materials at very low temperatures.

  This paper summarizes the design process for a wire-banded circulator, including both material selection and design of the circuit. Based on the characteristics of the magnetic materials used in the circulator and the non-reciprocity, non-linear effects and losses of the circulator due to the spinning magnetic properties of the ferrite material, the design of a band-line double Y-junction circulator suitable for 7-9 GHz is completed by selecting magnetic materials with suitable magnetic moments through test experiments and calculating the dimensions of different structures in the band-line circulator.

  In this paper, the designed circulator is tested in real life at room temperature and low temperature, and the experimental and simulation results are compared to arrive at an optimized solution for this circulator design in terms of magnetic material selection, dielectric constant of the filling medium and shape of the inner conductor. The experimental results show that the circulator at low temperature has good circulating performance at 7-9 GHz, and basically achieves the index of isolation degree and insertion loss.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1]王颖,许伟伟,孙国柱,陈健,曹俊宇,丛山桦,吴培亨.噪声对超导量子比特测量系统的影响[J].低温与超导,2007(01):53-55.DOI:10.16711/j.1001-7100.2007.01.015.
[2]张振涛. 超导量子比特的调控与退相干研究[D].南京大学,2013.
[3]R.P. Feynman, “Stimulating Physics with computers,”International Journal of Theoretical Physics, 21(6-7)467-488(1982). doi.org/10.1007/BF02650179.
[4]S. Boixo, S.V. Isakov, V.N. Smelyanskly, R.Babbush, N. Ding, Z. Jiang, M.J. Bremner, J.M.Martinis, and H. Neven, “Characterizing quantumsupremacy in near-term devices,” Nature Physics, 14595-600 (2018).doi.org/10.1038/s41567-018-0124-x.
[5]J. Emerson, Y.S. Weinstein, M. Saraceno, S. Lloyd,and D.G. Cory, “Pseudo-random unitary operators for quantum information processing,” Science, 3022098–2100(2003).doi.org/10.1126/science.1090790.
[6]A.J. Scott, T.A. Brun, C.M. Caves, and R. Schack,“Hypersensitivity and chaos signatures in the quantum baker's maps,” J. Phys. A, 3913405–13433(2006).doi.org/10.1088/0305-4470/39/43/002.
[7]R. Oliveira, O. Dahlsten, and M. Plenio, “Generic entanglement can be generated efficiently,” Physic.Rev. Lett., 98 130502(2007).doi.org/10.1103/PhysRev Lett. 98.130502.
[8]C. M.Trail, V. Madhok, and I.H. Deutsch,“Entanglement and the generation of random states in the quantum chaotic dynamics of kicked coupled tops,” Phys. Rev. E, 78 046211(2008).doi.org/10.1103 /Phys RevE.78.046211.
[9]A.W. Harrow, and R.A. Low, “Random Quantum Circuits are approximate 2-designs,” Commun.Math. Phys, 291 257–302(2009).doi.org/10.1007/s002 20-009-0873-6.
[10]Y.S. Weinstein,W.G.Brown, and L.Viola, “Parameters of pseudo-random quantum circuits,” Phys.Rev.A,78 052332(2008). doi.org/ 10.1103/PhysRevA.78.052332.
[11]W. Brown, and O. Fawzi, “Scrambling speed of random quantum circuits,” arXiv preprint arXiv:1210. 6644(2012). doi.org/10.48550/arXiv.1210.6644.
[12]J. Preskill, “Quantum computing and the entanglement frontier,”, arXiv preprint arXiv: 1203 5813 (2012).doi.org/10.48550/arXiv.1203.5813.
[13]DEUTSCHD. Quantum theory, the church-turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London,1985,400(1818):97-117.
[14]SHOR P W.Algorithms for quantum computation: Discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science.Santa Fe:[S.l.],1994:124-134.
[15]T. Zelovich, L. Kronik, and O. Hod, “State representation approach for atomistic timedependent transport calculations in molecular junctions,” J. Chem. Theory Comput.,102927-2941(2014). doi.org/10. 1021/ct500135e.
[16]T. Zelovich, L. Kronik, and O. Hod,“Molecule–Lead Coupling at Molecular Junctions:Relation between the Real-and State-SpacePerspectives,” J. Chem. Theory Comput, 114861-4869(2015).doi. org/10.1021/acs.jctc.5b00612.
[17]T. Zelovich, L. Kronik, and O. Hod, “Driven Liouville von Neumann approach for time-dependent electronic transport calculations in a nonorthogonal basis-set representation,”J. Phys.Chem.C, 120 15052-15062(2016). doi.org/ 10.1021/acs.jpcc.6b03838.
[18]O. Hod, C.A. Rodríguez-Rosario, T. Zelovich, and T.Frauenheim, “Driven Liouville von Neumann equation in Lindblad form,” J. Phys. Chem. A 1203278-3285 (2016). doi.org/10.1021/acs. jpca.5b12212.
[19]T. Zelovich, T. Hansen, Z.-F. Liu, J. B. Neaton, L.Kronik, and O. Hod, “Parameter-free driven Liouville-von Neumann approach for time-dependent electronic transport simulations in open quantum systems,” J. Chem. Phys., 146092331 (2017). doi.org/10. 1063/1.4976731.
[20]I.Oz,O.Hod,andA.Nitzan, “Evaluation of dynamical properties of open quantum systems using the driven Liouville-von Neumann approach: methodological considerations,”Mol. Phys, 117 2083-2096 (2019).doi.org/10.1080/ 002689 76. 2019.1584338.
[21]A. Oz, O. Hod, and A. Nitzan, “Numerical approach to non equilibrium quantum thermodynamics: Nonperturbative treatment of the driven resonant level model based on the driven liouville von-neumann formalism,” J. Chem. Theory Comput, 161232-1248(2020). doi.org/10.1021/acs.jctc.9b00999.
[22]T.M. Chiang, Q.R. Huang, and L.Y. Hsu, “Electric Current Fluctuations Induced by Molecular Vibrations in the Adiabatic Limit: Molecular Dynamics-Driven Liouville von Neumann Approach,” J. Phys. Chem. C, 123 10746-10755(2019).doi.org/10.1021/ acs.jpcc.8b12555.
[23]V. Pohl, L.E.M. Steinkasserer, and J.C. Tremblay,“Imaging Time-Dependent Electronic Currents through a Graphene-Based Nanojunction,” J. Phys.Chem. Lett., 10 5387-5394(2019).doi.org/10.1021/acs.jpclett. 9b01732.
[24]L.M.K. Vandersypen, and I.L. Chuang, “NMR techniques for quantum control and computation,”Rev. Mod. Phys, 76 1036-69 (2005). doi.org/10.1103/ RevMod Phys. 76.1037.
[25]R. Blatt, and C.F. Ross, “Quantum simulations with trapped ions,” Nature Physics, 8 277-284 (2012).doi.org/10.1038/nphys2252.
[26]L.M.K. Vandersypen, and I.L. Chuang, “NMR techniques for quantum control and computation,”Rev. Mod. Phys, 76 1036-69 (2005). doi.org/10.1103/ RevMod Phys. 76.1037.
[27]Y. He, S.K. Gorman, D. Keith, L. Kranz, J.G. Keizer, and M.Y. Simmons, “A two-qubit gate between phosphorus donor electrons in silicon,” Nature, 571371-375(2019). doi.org/10.1038/s41586-019-1381-2.
[28]D.W. Kim, H.S. Kil, K. Nakabayashi, S.H. Yoon, and J. Miyawaki, “Improvement of electric conductivity of non-graphitizable carbon material time-dependent electronic transport calculations in a nonorthogonal basis-set representation,”J. Phys.Chem.C, 120 15052-15062(2016). doi.org/ 10.1021/acs.jpcc.6b03838.
[29]G. Wendin, “Quantum information processing with superconducting circuits: a review,” Reports on Progress in Physics, 80 106001 (2017). doi.org/10.1088/ 1361-6633/aa7e1a.
[30]H. Elserafy, “Assessment of demo reactors for fusion power utilization,” Evergreen, 5 (4) 18–25(2018). doi:10.5109/217485.
[31]M. Kabiruzzaman, R. Ahmed, T. Nakagawa, and S.Mizuno, “Investigation of c(2×2) phase of pb and bico adsorption on cu(001) by low energy electron diffraction,” Evergreen, 4(1)10–15(2017).doi:10.5109/ 1808306.
[32]G. Gupta, R.K. Tyagi, and S.K. Rajput, “A Statistical Analysis of Sputtering Parameters on Superconducting Properties of Niobium Thin Film,”Evergreen, 8(1)44-50(2021).doi.org/ 10.5109/4372259.
[33]NAKAMURAYPASHKINYATSAIJS.Coherent control ofmacroscopic quantum states in a single-cooper-pair box[U]. Nature, 1999,398(6775):49-51.
[34]Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[35]Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 2004, 431(7005): 162-167.
[36]H. Bosma. Theoretical Aspects Of 3-Port Junction Circulators[J]. Emergency Medicine Clinics of North America, 1966, 66(1): 261-263.
[37]Comstock R L , Fay C E . Performance and Ferrimagnetic Material Considerations in Cryogenic Microwave Devices[J]. Journal of Applied Physics, 1965, 36(3):1253.
[38]C. M. Krowne, ''Theory of the recursive dyadic green's function for inhomogeneous ferrite canonically shaped microstrip circulators,'' Adv. Imag. Electron Phys., vol. 98, pp. 321-377, Jan. 1996.
[39]J. Lee, Y.-K. Hong, C. Yun, W. Lee, J. Park, and B.-C. Choi, ''Magnetic parameters for ultra-high frequency (UHF) ferrite circula-tor design,'' J. Magn., vol. 19, no. 4, pp. 399-403, Dec. 2014, doi: 10.4283/jmag.2014.19.4.399.
[40]V. V. K. Thalakkatukalathil, A. Chevalier, V. Laur, G. Verissimo, P. Queffelec, L. Qassym, and R. Lebourgeois, ''Electromagnetic modeling of anisotropic ferrites-Application to microstrip Y-junction circulator design,'' J. Appl. Phys., vol. 123, no. 23, Jun. 2018, Art. no. 234503, doi: 10.1063/1.5026482.
[41]S. Ayter and Y. Ayasli, ''The frequency behavior of stripline circulator junctions,'' IEEE Trans. Microw. Theory Techn., vol. MTT-26, no. 3, pp. 197-202, Mar. 1978.
[42]P. Krivic, G. Radosavljevic, S. Birgermajer, N. Cselyuszka, and H. Arthaber, ''Design and fabrication of the Bosma stripline circulator in LTCC technology,'' in Proc. IEEE Int. Conf. Microw., Commun., Antennas Electron. Syst. (COMCAS), Nov. 2015, pp. 2-4.
[43]A. Ghadiya, K. Trivedi, S. Soni, and P. Bhatt, ''Wide band stripline circulator at Ku band for space applications,'' in IEEE MTT-S Int. Microw. Symp. Dig., Nov. 2018, pp. 1-7.
[44]Z. Uzdy, ''Computer-aided design of stripline ferrite junction circulators,'' IEEE Trans. Microw. Theory Techn., vol. MTT-28, no. 10, pp. 1134-1136, Oct. 1980.
[45]A. M. Borjak and L. E. Davis, ''More compact ferrite circulator junctions with predicted performance,'' IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2352-2358, Dec. 1992.
[46]K. Tian, L. Z. You, and H. Liu, ''Minimized Ku band microstrip circulator design,'' in Proc. Int. Conf. Microw. Millim. Wave Technol., May 2010, pp. 1967-1968.
[47]E. Schwartz, ''Broadband matching of resonator circuits and circulators,'' IEEE Trans. Microw. Theory Tech., vol. MTT-16, no. 3, pp. 158-165, Mar. 1968.
[48]E. Schloemann and R. E. Blight, ''Broad-band stripline circulators based on YIG and Li-ferrite single crystals,'' IEEE Trans. Microw. Theory Techn., vol. MTT-34, no. 12, pp. 1394-1400, Dec. 1986.
[49]A. Setiawan, Y. Y. Maulana, Y. Sulaeman, T. Praludi, and Y. Taryana, ''Design of 3 GHz stripline ferrite circulator for radar applications,'' in Proc. Int. Conf. Radar, Antenna, Microw., Electron., Telecommun., 2017, pp. 154-157.
[50]V. Kelaiya and M. R. Naik, ''Design and simulation of X band microstrip circulator,'' in Proc. IEEE Region 10 Conf. (TENCON), Nov. 2016, pp. 1961-1964.
[51]E. J. Sedek and A. T. Milewski, ''Computer aided design and optimization of three-port ferrite stripline and microstrip circulators,'' WSEAS Trans. Inf. Sci. Appl., vol. 2, no. 9, pp. 395-398, 2005.
[52]H. Ren and Y. Xie, ''Simulation design of an X-band high isolation circulator,'' in Proc. 2nd Int. Conf. Inf. Technol. Comput. Appl. (ITCA), Dec. 2020, pp. 387-390.
[53]J. Helszajn, “The Synthesis of Quarter-Wave Coup led Circulators with Chebyshev Characteristics", IEEE Trans. MTT-20,Nov.1972,p.764.
[54]T.-H. Chang, ''Ferrite materials and applications,'' in Electromagnetic Materials and Devices, 2020, pp. 1-14, doi: 10.5772/intechopen.84623.
[55]W. V. Aulock, ''Selection of ferrite materials for microwave device applications,'' IEEE Trans. Magn., vol. MAG-2, no. 3, pp. 251-255, Sep. 1966.
[56]M. D. Hill, D. B. Cruickshank, and I. A. MacFarlane, ''Perspective on ceramic materials for 5G wireless communication systems,'' Appl. Phys. Lett., vol. 118, no. 12, Mar. 2021, Art. no. 120501, doi: 10.1063/5.0036058.
[57]V. Voronkov, ''Microwave ferrites: The present and the future,'' Le J. Phys. IV, vol. 7, no. C1, pp. C1-35-C1-38, Mar. 1997, doi: 10.1051/jp4:1997104.
[58]V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, and A. Yang, ''Recent advances in processing and applications of microwave ferrites,'' J. Magn. Magn. Mater., vol. 321, no. 14, pp. 2035-2047, 2009.
[59]H. Bosma, ''On the principle of stripline circulation,'' Proc. IEE-B, Electron. Commun. Eng., vol. 109, no. 21, pp. 137-146, Jan. 1962.
[60]H. Bosma, ''A general model for junction circulators; choice of magnetization and bias field,'' IEEE Trans. Magn., vol. MAG-4, no. 3, pp. 587-596, Sep. 1968.
[61]H. Bosma, ''On stripline Y-circulation at UHF,'' IEEE Trans. Microw. Theory Techn., vol. MTT-12, no. 1, pp. 61-72, Jan. 1964.
[62]C. E. Fay and R. L. Comstock, ''Operation of the ferrite junction circulator,'' IEEE Trans. Microw. Theory Techn., vol. MTT-13, no. 1, pp. 15-27, Jan. 1965.
[63]D. B. Cruickshank, Implementing Full Duplexing for 5G. Norwood, MA, USA: Artech House, 2006.
[64]D. M. Pozar, Microwave Engineering, 4th ed. Rosewood, MA, USA: Wiley, 2012.
[65]D. K. Linkhart, Microwave Circulator Design, D. K. Linkhart, Ed., 2nd ed. Norwood, MA, USA: Artech House, 2014.
[66]Wu Y S , Rosenbaum F J . Wideband Operation of Microstrip Circulators[J]. Microwave Theory & Techniques IEEE Transactions on, 1973, 73(10):92-94.
[67]S. Ramachandran. A Review on Ferrite Devices[J]. IETE Journal of Research,2015,9(8).
[68]Afshani A , Wu K . Concurrent Dual-Mode Circulator[C]// 2019 49th European Microwave Conference (EuMC). 2019.
[69]J. Rosenbaum Y. S. Wu, ''Wide-band operation of microstrip cir-culator,'' IEEE Trans. Microw. Theory Techn., vol. MTT-22, no. 10, pp. 849-857, Oct. 1974.
[70]V. Laur, J. P. Gouavogui, and B. Balde, ''C-band hybrid 3-D-printed microwave isolator,'' IEEE Trans. Microw. Theory Techn., vol. 69, no. 3, pp. 1579-1585, Mar. 2021.
[71]S. A. Ivanov, ''Inherently matched Y-junction stripline circulator,'' IEEE Trans. Microw. Theory Techn., vol. 45, no. 5, pp. 648-652, May 1997.
[72]M. Pinto, L. Marzall, A. Ashley, D. Psychogiou, and Z. Popovic, ''Design-oriented modelling of microstrip ferrite circulators,'' in Proc. 48th Eur. Microw. Conf. (EuMC), Sep. 2018, pp. 215-218.
[73]L. Martinez, V. Laur, A. L. Borja, P. Queffelec, and A. Belenguer, ''Low loss ferrite Y-junction circulator based on empty substrate integrated coax-ial line at Ku-band,'' IEEE Access,vol.7,pp.104789104796,2019,doi:10.1109/ACCESS.2019.2931588.
[74]S. Khim, S. Cheab, S. Soeung and G. S. Ng, "Design and Synthesis of Ferrite Strip-Line Circulator Based on Enhanced Closed Form Solution and Power Handling Analysis," in IEEE Access, vol. 10, pp. 112812-112831, 2022, doi: 10.1109/ACCESS.2022.3216585.
[75]刘宇浩. 超导电路量子电动力学系统的调控与读取[D].南京大学,2016.
[76]王腾辉. 超导量子比特与绝热快速捷径在量子模拟和量子门中的应用[D].浙江大学,2018.
[77]李少炜. 超导量子比特高精度调控与高保真度双比特门实现[D].中国科学技术大学,2022.DOI:10.27517/d.cnki.gzkju.2022.000029.
[78]张振涛. 超导量子比特的调控与退相干研究[D].南京大学,2013.
[79]Dowling J P, Milburn G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 361(1809): 1655-1674.
[80]BARENDSRKELLYJMEGRANTA,etal.Coherent josephson qubit suitable for scalable quantum integrated circuits[J]. Physical Review Letters, 2013, 111(8):32-36.
[81]Devoret M H, Martinis J M. Implementing qubits with superconducting integrated circuits[J]. Experimental aspects of quantum computing, 2005: 163-203.
[82]Chen Z. Metrology of quantum control and measurement in superconducting qubits[M]. University of California, Santa Barbara, 2018.
[83]Krantz P, Kjaergaard M, Yan F, et al. A quantum engineer's guide to superconducting qubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[84]陈恒. 微带环行器的优化设计和工艺研究[D].华中科技大学,2008.
[85]李士根.新型微波铁氧体器件的开发和应用[J].磁性材料及器件,2000(03):26-30.
[86]程俊杰. 2~6GHz超宽带同轴环行器建模、仿真及研制[D].电子科技大学,2011.
[87]杨林颖. 铁氧体非互易器件新结构及其特性研究[D].电子科技大学,2011.
[88]汪鹏.带状线环行器、隔离器大功率容量设计技术[J].电子元器件与信息技术,2019(04):33-36.DOI:10.19772/j.cnki.2096-4455.2019.4.010.
[89]徐榆鸿. 960~1225MHZ宽带带线隔离器仿真设计与制备[D].电子科技大学,2013.
[90]郑燕. 微带铁氧体薄膜环行器的设计[D].杭州电子科技大学,2009.
[91]石中立. 毫米波环行器的设计[D].电子科技大学,2011.
[92]张维. W波段模式转换器和C波段环行器的研究[D].电子科技大学,2020.DOI:10.27005/d.cnki.gdzku.2020.002756.
[93]沈维福.带线环行器、隔离器生产技术[J].磁性材料及器件,2010,41(02):72-75+78.
[94]尹亮忠.环行器/隔离器在微波通信中的应用[J].山西焦煤科技,2006(S2):95-96+98.
[95]郝天琪. 基于铁氧体的微波环行器/隔离器的研究与设计[D].南京邮电大学,2019.DOI:10.27251/d.cnki.gnjdc.2019.001110.
[96]Zelman Harbater. Analyze Circulator Design Equations[J]. Microwaves & RF,2005,44(5).
[97]邵合理. 铁氧体环行器的设计与带外效应的研究[D].电子科技大学,2009.
[98]蒋仁培.带线环行器的设计综述[J].磁性材料及器件,1988(01):6-16.
[99]潘永吉.倍频程带线环行器最佳设计理论[J].系统工程与电子技术,1991(12):1-11.
[100]杨铁山.超倍频程λ/4耦合双Y结环行器[J].磁性材料及器件,1980(03):10-18.
[101]Ranzani L, Aumentado J. Circulators at the quantum limit: Recent realizations of quantum-limited superconducting circulators and related approaches[J]. IEEE Microwave Magazine, 2019, 20(4): 112-122.
[102]Richman B, Taylor J M. Circulation by microwave-induced vortex transport for signal isolation[J]. PRX Quantum, 2021, 2(3): 030309.
[103]Chapman B J, Rosenthal E I, Kerckhoff J, et al. Widely tunable on-chip microwave circulator for superconducting quantum circuits[J]. Physical Review X, 2017, 7(4): 041043.
[104]Helszajn J. The Stripline Circulator: Theory and Practice[M]. John Wiley & Sons, 2008.
[105]Chait H N, Curry T R. Y circulator[J]. Journal of Applied Physics, 1959, 30(4): S152-S153.
[106]Fujii Y. High-isolation polarization-independent optical circulator[J]. Journal of Lightwave Technology, 1991, 9(10): 1238-1243.
[107]Heydari M B, Samiei M H V. Three-port terahertz circulator with multi-layer triangular graphene-based post[J]. Optik, 2021, 231: 166457.
[108]高峰. 低损耗YIG铁氧体材料及其环行器的研究与应用[D].电子科技大学,2022.DOI:10.27005/d.cnki.gdzku.2022.003868.
[109]V. V K Thalakkatukalathil,A. Chevalier,V. Laur,G. Verissimo,P. Queffelec,L. Qassym,R. Lebourgeois. Electromagnetic modeling of anisotropic ferrites-Application to microstrip Y-junction circulator design[J]. Journal of Applied Physics,2018,123(23).
[110]Olivier V , Huitema L , Lenoir B , et al. Stripline dual-band ferrite circulators operating on weak field conditions[C]// 2020 50th European Microwave Conference (EuMC). 2021.
[111]钱杨伟. Ku波段铁氧体微带线环行器的设计与仿真[D].杭州电子科技大学,2015.
[112]Magnetic Parameters for Ultra-high Frequency (UHF) Ferrite Circulator Design[J]. Journal of Magnetics,2014,19(4).
[113]S. D. Yoon,Jiangwei Wang,Nian Sun,C. Vittoria,V. G. Harris. Ferrite-Coupled Line Circulator Simulations For Application at X-Band Frequency[J]. IEEE Transactions on Magnetics,2007,43(6).
[114]Pinto M , Marzall L , Ashley A , et al. Design-Oriented Modelling of Microstrip Ferrite Circulators[C]// 2018 48th European Microwave Conference (EuMC). 2018.
[115]The physical implementation of quantum computation. Fortschritte der Physik. 48, 771–783 (2000).John Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).

所在学位评定分委会
材料科学与工程
国内图书分类号
TN61
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544987
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
黄钰期. 超导量子比特测量链路的优化[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132840-黄钰期-量子科学与工程(5349KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄钰期]的文章
百度学术
百度学术中相似的文章
[黄钰期]的文章
必应学术
必应学术中相似的文章
[黄钰期]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。