中文版 | English
题名

骨髓来源的髓样肿瘤融合细胞对前列腺癌骨转移进展的影响

其他题名
MYELOID-LIKE TUMORHYBRIDCELLS IN BONE MARROWPROMOTEPROGRESSIONOF PROSTATECANCER BONE METASTASIS
姓名
姓名拼音
YE Xinyu
学号
11930901
学位类型
博士
学位专业
071000
学科门类/专业学位类别
07 理学
导师
张健
导师单位
南方科技大学医学院
论文答辩日期
2023-05-12
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

前列腺癌(PCa)是男性中最常见的恶性肿瘤之一。肿瘤转移是造成前列腺癌患者死亡最主要的原因,其中骨是前列腺癌最好发的转移部位。目前针对前列腺癌晚期骨转移的患者仍然没有有效的治疗手段。散播肿瘤细胞(DTCs)可以在骨髓腔中保持休眠状态来对化疗和放疗产生逃逸,是造成治疗失败和癌症复发的主要原因之一。在形成骨转移的过程中,散播肿瘤细胞(DTCs)往往能获得新的特性。因此,进一步探究和了解骨髓腔中散播肿瘤细胞(DTCs)的性质和状态对于我们开发新的针对骨转移的治疗方案至关重要。

在本研究中,我们首先通过对GEO数据库中前列腺癌患者骨转移样本单细胞转录组测序数据进行分析,发现了一群特殊的高表达髓系细胞标志物的散播肿瘤细胞(DTCs我们将它命名为髓样肿瘤细胞,并且在这群细胞中富集到了许多与免疫调节和肿瘤发展相关的信号通路。因此,我们推测这群髓样肿瘤细胞可能在前列腺癌的发展中发挥重要的作用。我们通过尾动脉注射小鼠前列腺癌细胞RM1的方式构建了小鼠骨转移模型,发现散播肿瘤细胞与骨髓细胞融合是这群髓样肿瘤细胞的来源之一。我们通过多组学分析的方法比较了髓样肿瘤融合细胞与亲本RM1细胞之间的差异,发现它在细胞增殖和细胞粘附方面与亲本细胞之间存在巨大的差异,并且通过体内动物实验也进一步证明了髓样肿瘤融合细胞具有更强的增殖能力和转移能力。我们还通过单细胞测序分析了髓样肿瘤融合细胞对免疫微环境的影响,发现髓样肿瘤融合细胞形成的肿瘤中含有更多的N2型肿瘤相关中性粒细胞(N2 TANs),并且肿瘤中的中性粒细胞、单核细胞和巨噬细胞呈现出更的免疫抑制表型。我们通过质谱流式分析髓样肿瘤融合细胞对骨髓微环境的影响,发现髓样肿瘤融合细胞能诱导更多巨噬细胞的产生,并且可以诱导巨噬细胞中M2型巨噬细胞标志物Arg1的高表达。此外,我们发现髓样肿瘤融合细胞表现出更高的上皮间充质转化(EMT)的表型,在体内具有更好的成瘤能力。髓样肿瘤融合细胞还表现出对化疗药物多烯紫杉醇和铁死亡诱导剂的抗性,但是对放疗依然十分敏感。

综上所述,本研究发现骨髓来源的髓样肿瘤融合细胞具有更强的成瘤能力、转移能力,能够诱导更强的免疫抑制的肿瘤微环境,并且对化疗产生抗性。因此,髓样肿瘤融合细胞在前列腺癌骨转移的进展中发挥重要的作用,有望成为前列腺癌临床治疗新的靶点。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Coleman R E. Clinical features of metastatic bone disease and risk of skeletal morbidity[J]. Clin Cancer Res, 2006, 12(20 Pt 2): 6243s-6249s.
[3] Coleman R E, Croucher P I, Padhani A R, et al. Bone metastases[J]. Nat Rev Dis Primers, 2020, 6(1): 83.
[4] Maurizi A, Rucci N. The Osteoclast in Bone Metastasis: Player and Target[J]. Cancers (Basel), 2018, 10(7).
[5] Cackowski F C, Heath E I. Prostate cancer dormancy and recurrence[J]. Cancer Lett, 2022, 524: 103-108.
[6] Tahara R K, Brewer T M, Theriault R L, et al. Bone Metastasis of Breast Cancer[J]. Adv Exp Med Biol, 2019, 1152: 105-129.
[7] D'oronzo S, Coleman R, Brown J, et al. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management[J]. J Bone Oncol, 2019, 15: 004-4.
[8] Clezardin P, Coleman R, Puppo M, et al. Bone metastasis: mechanisms, therapies, and biomarkers[J]. Physiol Rev, 2021, 101(3): 797-855.
[9] Singh T, Kaur V, Kumar M, et al. The critical role of bisphosphonates to target bone cancer metastasis: an overview[J]. J Drug Target, 2015, 23(1): 1-15.
[10] Chen J, Zhou L, Liu X, et al. Meta-analysis of clinical trials to assess denosumab over zoledronic acid in bone metastasis[J]. Int J Clin Pharm, 2021, 43(1): 2-10.
[11] Fornetti J, Welm A L, Stewart S A. Understanding the Bone in Cancer Metastasis[J]. J Bone Miner Res, 2018, 33(12): 2099-2113.
[12] Seeman E, Delmas P D. Bone quality--the material and structural basis of bone strength and fragility[J]. N Engl J Med, 2006, 354(21): 2250-61.
[13] Siddiqui J A, Partridge N C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement[J]. Physiology (Bethesda), 2016, 31(3): 233-45.
[14] Tuffour A, Kosiba A A, Zhang Y, et al. Role of the calcium-sensing receptor (CaSR) in cancer metastasis to bone: Identifying a potential therapeutic target[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188528.
[15] Brenner W, Haber T, Junker K, et al. [Bone metastasis by renal cell carcinoma. Importance of calcium and calcium-sensing receptor][J]. Urologe A, 2015, 54(6): 839-43.
[16] Kingsley L A, Fournier P G, Chirgwin J M, et al. Molecular biology of bone metastasis[J]. Mol Cancer Ther, 2007, 6(10): 2609-17.
[17] Yin J J, Selander K, Chirgwin J M, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development[J]. J Clin Invest, 1999, 103(2): 197-206.
[18] He N, Jiang J. Contribution of immune cells to bone metastasis pathogenesis[J]. Front Endocrinol (Lausanne), 2022, 13: 1019864.
[19] Li B, Wang P, Jiao J, et al. Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis[J]. Front Immunol, 2022, 13: 824117.
[20] Satcher R L, Zhang X H. Evolving cancer-niche interactions and therapeutic targets during bone metastasis[J]. Nat Rev Cancer, 2022, 22(2): 85-101.
[21] Shi J, Wei Y, Xia J, et al. CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis[J]. Future Oncol, 2014, 10(5): 749-59.
[22] Cox T R, Rumney R M H, Schoof E M, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase[J]. Nature, 2015, 522(7554): 106-110.
[23] Wortzel I, Dror S, Kenific C M, et al. Exosome-Mediated Metastasis: Communication from a Distance[J]. Dev Cell, 2019, 49(3): 347-360.
[24] Woodward J K, Holen I, Coleman R E, et al. The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer[J]. Bone, 2007, 41(6): 912-27.
[25] Casimiro S, Mohammad K S, Pires R, et al. RANKL/RANK/MMP-1 molecular triad contributes to the metastatic phenotype of breast and prostate cancer cells in vitro[J]. PLoS One, 2013, 8(5): e63153.
[26] Weilbaecher K N, Guise T A, Mccauley L K. Cancer to bone: a fatal attraction[J]. Nat Rev Cancer, 2011, 11(6): 411-25.
[27] Sosa M S, Bragado P, Aguirre-Ghiso J A. Mechanisms of disseminated cancer cell dormancy: an awakening field[J]. Nat Rev Cancer, 2014, 14(9): 611-22.
[28] Yin J J, Mohammad K S, Kakonen S M, et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases[J]. Proc Natl Acad Sci U S A, 2003, 100(19): 10954-9.
[29] Roudier M P, Corey E, True L D, et al. Histological, immunophenotypic and histomorphometric characterization of prostate cancer bone metastases[J]. Cancer Treat Res, 2004, 118: 311-39.
[30] Adamik J, Galson D L, Roodman G D. Osteoblast suppression in multiple myeloma bone disease[J]. J Bone Oncol, 2018, 13: 62-70.
[31] Wu M Y, Li C J, Yiang G T, et al. Molecular Regulation of Bone Metastasis Pathogenesis[J]. Cell Physiol Biochem, 2018, 46(4): 1423-1438.
[32] Sethi N, Dai X, Winter C G, et al. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells[J]. Cancer Cell, 2011, 19(2): 192-205.
[33] Siddiqui J A, Seshacharyulu P, Muniyan S, et al. GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation[J]. Bone Res, 2022, 10(1): 6.
[34] Todd G M, Gao Z, Hyvonen M, et al. Secreted BMP antagonists and their role in cancer and bone metastases[J]. Bone, 2020, 137: 115455.
[35] Rucci N, Teti A. Osteomimicry: How the Seed Grows in the Soil[J]. Calcif Tissue Int, 2018, 102(2): 131-140.
[36] Swami U, Mcfarland T R, Nussenzveig R, et al. Advanced Prostate Cancer: Treatment Advances and Future Directions[J]. Trends Cancer, 2020, 6(8): 702-715.
[37] Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590.
[38] Ge R, Wang Z, Montironi R, et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer[J]. Ann Oncol, 2020, 31(4): 470-479.
[39] Gandaglia G, Abdollah F, Schiffmann J, et al. Distribution of metastatic sites in patients with prostate cancer: A population-based analysis[J]. Prostate, 2014, 74(2): 210-6.
[40] Conley-Lacomb M K, Semaan L, Singareddy R, et al. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis[J]. Mol Cancer, 2016, 15(1): 68.
[41] Antonarakis E S, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer[J]. N Engl J Med, 2014, 371(11): 1028-38.
[42] Carlinfante G, Vassiliou D, Svensson O, et al. Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma[J]. Clin Exp Metastasis, 2003, 20(5): 437-44.
[43] Widner D B, Park S H, Eber M R, et al. Interactions Between Disseminated Tumor Cells and Bone Marrow Stromal Cells Regulate Tumor Dormancy[J]. Curr Osteoporos Rep, 2018, 16(5): 596-602.
[44] Shiozawa Y, Pedersen E A, Patel L R, et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche[J]. Neoplasia, 2010, 12(2): 116-27.
[45] Ren D, Dai Y, Yang Q, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone[J]. J Exp Med, 2019, 216(2): 428-449.
[46] Yumoto K, Eber M R, Wang J, et al. Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow[J]. Sci Rep, 2016, 6: 36520.
[47] Aguirre Ghiso J A, Kovalski K, Ossowski L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling[J]. J Cell Biol, 1999, 147(1): 89-104.
[48] Decker A M, Jung Y, Cackowski F C, et al. Sympathetic Signaling Reactivates Quiescent Disseminated Prostate Cancer Cells in the Bone Marrow[J]. Mol Cancer Res, 2017, 15(12): 1644-1655.
[49] Byrne N M, Summers M A, Mcdonald M M. Tumor Cell Dormancy and Reactivation in Bone: Skeletal Biology and Therapeutic Opportunities[J]. JBMR Plus, 2019, 3(3): e10125.
[50] Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol, 2017, 10(1): 58.
[51] Riabov V, Gudima A, Wang N, et al. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis[J]. Front Physiol, 2014, 5: 75.
[52] Ghajar C M, Peinado H, Mori H, et al. The perivascular niche regulates breast tumour dormancy[J]. Nat Cell Biol, 2013, 15(7): 807-17.
[53] Liu F L, Chen C L, Lee C C, et al. The Simultaneous Inhibitory Effect of Niclosamide on RANKL-Induced Osteoclast Formation and Osteoblast Differentiation[J]. Int J Med Sci, 2017, 14(9): 840-852.
[54] Deng X, He G, Liu J, et al. Recent advances in bone-targeted therapies of metastatic prostate cancer[J]. Cancer Treat Rev, 2014, 40(6): 730-8.
[55] Vidak E, Javorsek U, Vizovisek M, et al. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment[J]. Cells, 2019, 8(3).
[56] Lin X, Patil S, Gao Y G, et al. The Bone Extracellular Matrix in Bone Formation and Regeneration[J]. Front Pharmacol, 2020, 11: 757.
[57] Olumi A F, Grossfeld G D, Hayward S W, et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium[J]. Cancer Res, 1999, 59(19): 5002-11.
[58] Thalmann G N, Rhee H, Sikes R A, et al. Human prostate fibroblasts induce growth and confer castration resistance and metastatic potential in LNCaP Cells[J]. Eur Urol, 2010, 58(1): 162-71.
[59] Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases[J]. J Pathol, 2003, 200(4): 500-3.
[60] Levesque C, Nelson P S. Cellular Constituents of the Prostate Stroma: Key Contributors to Prostate Cancer Progression and Therapy Resistance[J]. Cold Spring Harb Perspect Med, 2018, 8(8).
[61] Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, et al. Fibroblasts in the Tumor Microenvironment: Shield or Spear?[J]. Int J Mol Sci, 2018, 19(5).
[62] Chen S, Zhu G, Yang Y, et al. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression[J]. Nat Cell Biol, 2021, 23(1): 87-98.
[63] Josson S, Matsuoka Y, Chung L W, et al. Tumor-stroma co-evolution in prostate cancer progression and metastasis[J]. Semin Cell Dev Biol, 2010, 21(1): 26-32.
[64] Pang X, Xie R, Zhang Z, et al. Identification of SPP1 as an Extracellular Matrix Signature for Metastatic Castration-Resistant Prostate Cancer[J]. Front Oncol, 2019, 9: 924.
[65] Tang L, Xu M, Zhang L, et al. Role of alphaVbeta3 in Prostate Cancer: Metastasis Initiator and Important Therapeutic Target[J]. Onco Targets Ther, 2020, 13: 7411-7422.
[66] San Martin R, Pathak R, Jain A, et al. Tenascin-C and Integrin alpha9 Mediate Interactions of Prostate Cancer with the Bone Microenvironment[J]. Cancer Res, 2017, 77(21): 5977-5988.
[67] Gupta A, Cao W, Chellaiah M A. Integrin alphavbeta3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-kappaB ligand signaling axis[J]. Mol Cancer, 2012, 11: 66.
[68] Gupta G P, Massague J. Cancer metastasis: building a framework[J]. Cell, 2006, 127(4): 679-95.
[69] Berish R B, Ali A N, Telmer P G, et al. Translational models of prostate cancer bone metastasis[J]. Nat Rev Urol, 2018, 15(7): 403-421.
[70] Gartrell B A, Coleman R, Efstathiou E, et al. Metastatic Prostate Cancer and the Bone: Significance and Therapeutic Options[J]. Eur Urol, 2015, 68(5): 850-8.
[71] Ganguly S S, Li X, Miranti C K. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis[J]. Front Oncol, 2014, 4: 364.
[72] Liu Y, Cao X. Characteristics and Significance of the Pre-metastatic Niche[J]. Cancer Cell, 2016, 30(5): 668-681.
[73] Lorenc T, Klimczyk K, Michalczewska I, et al. Exosomes in Prostate Cancer Diagnosis, Prognosis and Therapy[J]. Int J Mol Sci, 2020, 21(6).
[74] Adekoya T O, Richardson R M. Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis[J]. Int J Mol Sci, 2020, 21(12).
[75] Loberg R D, Ying C, Craig M, et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo[J]. Cancer Res, 2007, 67(19): 9417-24.
[76] Liu C M, Hsieh C L, Shen C N, et al. Exosomes from the tumor microenvironment as reciprocal regulators that enhance prostate cancer progression[J]. Int J Urol, 2016, 23(9): 734-44.
[77] Henrich S E, Mcmahon K M, Plebanek M P, et al. Prostate cancer extracellular vesicles mediate intercellular communication with bone marrow cells and promote metastasis in a cholesterol-dependent manner[J]. J Extracell Vesicles, 2020, 10(2): e12042.
[78] Deep G, Jain A, Kumar A, et al. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches[J]. Mol Carcinog, 2020, 59(3): 323-332.
[79] Tyekucheva S, Bowden M, Bango C, et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer[J]. Nat Commun, 2017, 8(1): 420.
[80] Karkampouna S, De Filippo M R, Ng C K Y, et al. Stroma Transcriptomic and Proteomic Profile of Prostate Cancer Metastasis Xenograft Models Reveals Prognostic Value of Stroma Signatures[J]. Cancers (Basel), 2020, 12(12).
[81] Ozdemir B C, Hensel J, Secondini C, et al. The molecular signature of the stroma response in prostate cancer-induced osteoblastic bone metastasis highlights expansion of hematopoietic and prostate epithelial stem cell niches[J]. PLoS One, 2014, 9(12): e114530.
[82] Tsunoda T, Furusato B, Takashima Y, et al. The increased expression of periostin during early stages of prostate cancer and advanced stages of cancer stroma[J]. Prostate, 2009, 69(13): 1398-403.
[83] Singh M, Jha R, Melamed J, et al. Stromal androgen receptor in prostate development and cancer[J]. Am J Pathol, 2014, 184(10): 2598-607.
[84] Wikstrom P, Marusic J, Stattin P, et al. Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients[J]. Prostate, 2009, 69(8): 799-809.
[85] Leach D A, Need E F, Toivanen R, et al. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome[J]. Oncotarget, 2015, 6(18): 16135-50.
[86] Mantalaris A, Panoskaltsis N, Sakai Y, et al. Localization of androgen receptor expression in human bone marrow[J]. J Pathol, 2001, 193(3): 361-6.
[87] Zhang Z, Karthaus W R, Lee Y S, et al. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer[J]. Cancer Cell, 2020, 38(2): 279-296 e9.
[88] He M X, Cuoco M S, Crowdis J, et al. Transcriptional mediators of treatment resistance in lethal prostate cancer[J]. Nat Med, 2021, 27(3): 426-433.
[89] Nervi B, Ramirez P, Rettig M P, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100[J]. Blood, 2009, 113(24): 6206-14.
[90] Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study[J]. Lancet, 2011, 377(9768): 813-22.
[91] Fanti S, Minozzi S, Antoch G, et al. Consensus on molecular imaging and theranostics in prostate cancer[J]. Lancet Oncol, 2018, 19(12): e696-e708.
[92] Gallicchio R, Giacomobono S, Nardelli A, et al. Palliative treatment of bone metastases with samarium-153 EDTMP at onset of pain[J]. J Bone Miner Metab, 2014, 32(4): 434-40.
[93] Morris M J, Corey E, Guise T A, et al. Radium-223 mechanism of action: implications for use in treatment combinations[J]. Nat Rev Urol, 2019, 16(12): 745-756.
[94] Hofman M S, Emmett L, Sandhu S, et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial[J]. Lancet, 2021, 397(10276): 797-804.
[95] Meng S, Tripathy D, Frenkel E P, et al. Circulating tumor cells in patients with breast cancer dormancy[J]. Clin Cancer Res, 2004, 10(24): 8152-62.
[96] Pantel K, Brakenhoff R H. Dissecting the metastatic cascade[J]. Nat Rev Cancer, 2004, 4(6): 448-56.
[97] Schmidt-Kittler O, Ragg T, Daskalakis A, et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression[J]. Proc Natl Acad Sci U S A, 2003, 100(13): 7737-42.
[98] Lacroix M. Significance, detection and markers of disseminated breast cancer cells[J]. Endocr Relat Cancer, 2006, 13(4): 1033-67.
[99] Riethmuller G, Klein C A. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients[J]. Semin Cancer Biol, 2001, 11(4): 307-11.
[100] Penn I. Donor transmitted disease: cancer[J]. Transplant Proc, 1991, 23(5): 2629-31.
[101] Loh E, Couch F J, Hendricksen C, et al. Development of donor-derived prostate cancer in a recipient following orthotopic heart transplantation[J]. JAMA, 1997, 277(2): 133-7.
[102] Shimizu H, Takeishi S, Nakatsumi H, et al. Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells[J]. JCI Insight, 2019, 4(4).
[103] Johnson R W, Finger E C, Olcina M M, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow[J]. Nat Cell Biol, 2016, 18(10): 1078-1089.
[104] Jiang J, Zheng M, Zhang M, et al. PRRX1 Regulates Cellular Phenotype Plasticity and Dormancy of Head and Neck Squamous Cell Carcinoma Through miR-642b-3p[J]. Neoplasia, 2019, 21(2): 216-229.
[105] Jiang Y, Berk M, Singh L S, et al. KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha[J]. Clin Exp Metastasis, 2005, 22(5): 369-76.
[106] Vera-Ramirez L, Hunter K W. Tumor cell dormancy as an adaptive cell stress response mechanism[J]. F1000Res, 2017, 6: 2134.
[107] Lu Z, Luo R Z, Lu Y, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells[J]. J Clin Invest, 2008, 118(12): 3917-29.
[108] Shimizu T, Sugihara E, Yamaguchi-Iwai S, et al. IGF2 preserves osteosarcoma cell survival by creating an autophagic state of dormancy that protects cells against chemotherapeutic stress[J]. Cancer Res, 2014, 74(22): 6531-41.
[109] Adam A P, George A, Schewe D, et al. Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence[J]. Cancer Res, 2009, 69(14): 5664-72.
[110] Aguirre-Ghiso J A, Liu D, Mignatti A, et al. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo[J]. Mol Biol Cell, 2001, 12(4): 863-79.
[111] Robinson N J, Parker K A, Schiemann W P. Epigenetic plasticity in metastatic dormancy: mechanisms and therapeutic implications[J]. Ann Transl Med, 2020, 8(14): 903.
[112] Sosa M S, Parikh F, Maia A G, et al. NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes[J]. Nat Commun, 2015, 6: 6170.
[113] Gawrzak S, Rinaldi L, Gregorio S, et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer[J]. Nat Cell Biol, 2018, 20(2): 211-221.
[114] Bichsel C A, Wang L, Froment L, et al. Increased PD-L1 expression and IL-6 secretion characterize human lung tumor-derived perivascular-like cells that promote vascular leakage in a perfusable microvasculature model[J]. Sci Rep, 2017, 7(1): 10636.
[115] Barney L E, Hall C L, Schwartz A D, et al. Tumor cell-organized fibronectin maintenance of a dormant breast cancer population[J]. Sci Adv, 2020, 6(11): eaaz4157.
[116] Bragado P, Estrada Y, Parikh F, et al. TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling[J]. Nat Cell Biol, 2013, 15(11): 1351-61.
[117] Milanovic M, Fan D N Y, Belenki D, et al. Senescence-associated reprogramming promotes cancer stemness[J]. Nature, 2018, 553(7686): 96-100.
[118] Borriello L, Coste A, Traub B, et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells[J]. Nat Commun, 2022, 13(1): 626.
[119] Bliss S A, Sinha G, Sandiford O A, et al. Mesenchymal Stem Cell-Derived Exosomes Stimulate Cycling Quiescence and Early Breast Cancer Dormancy in Bone Marrow[J]. Cancer Res, 2016, 76(19): 5832-5844.
[120] Qin R S, Zhang Z H, Zhu N P, et al. Enhanced antitumor and anti-angiogenic effects of metronomic Vinorelbine combined with Endostar on Lewis lung carcinoma[J]. BMC Cancer, 2018, 18(1): 967.
[121] Panigrahy D, Edin M L, Lee C R, et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice[J]. J Clin Invest, 2012, 122(1): 178-91.
[122] Carcereri De Prati A, Butturini E, Rigo A, et al. Metastatic Breast Cancer Cells Enter Into Dormant State and Express Cancer Stem Cells Phenotype Under Chronic Hypoxia[J]. J Cell Biochem, 2017, 118(10): 3237-3248.
[123] Fluegen G, Avivar-Valderas A, Wang Y, et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments[J]. Nat Cell Biol, 2017, 19(2): 120-132.
[124] Neophytou C M, Kyriakou T C, Papageorgis P. Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy[J]. Int J Mol Sci, 2019, 20(24).
[125] Semenza G L. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer, 2003, 3(10): 721-32.
[126] Koebel C M, Vermi W, Swann J B, et al. Adaptive immunity maintains occult cancer in an equilibrium state[J]. Nature, 2007, 450(7171): 903-7.
[127] Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape[J]. Nat Rev Clin Oncol, 2017, 14(3): 155-167.
[128] Pantel K, Schlimok G, Kutter D, et al. Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells[J]. Cancer Res, 1991, 51(17): 4712-5.
[129] Wu M S, Li C H, Ruppert J G, et al. Cytokeratin 8-MHC class I interactions: a potential novel immune escape phenotype by a lymph node metastatic carcinoma cell line[J]. Biochem Biophys Res Commun, 2013, 441(3): 618-23.
[130] Hall C L, Yao M, Hill L L, et al. Essential role for hematopoietic Fas ligand (FasL) in the suppression of melanoma lung metastasis revealed in bone marrow chimeric mice[J]. Clin Exp Metastasis, 2004, 21(3): 251-6.
[131] Placke T, Orgel M, Schaller M, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells[J]. Cancer Res, 2012, 72(2): 440-8.
[132] Wang B, Wang Q, Wang Z, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells[J]. Cancer Res, 2014, 74(20): 5746-57.
[133] Barsoum I B, Hamilton T K, Li X, et al. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide[J]. Cancer Res, 2011, 71(24): 7433-41.
[134] Feuerer M, Rocha M, Bai L, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients[J]. Int J Cancer, 2001, 92(1): 96-105.
[135] Di Mitri D, Toso A, Chen J J, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer[J]. Nature, 2014, 515(7525): 134-7.
[136] Semesiuk N I, Zhylchuk A, Bezdenezhnykh N, et al. Disseminated tumor cells and enhanced level of some cytokines in bone marrow and peripheral blood of breast cancer patients as predictive factors of tumor progression[J]. Exp Oncol, 2013, 35(4): 295-302.
[137] Yan B, Wang J, Liu L. Chemotherapy promotes tumour cell hybridization in vivo[J]. Tumour Biol, 2016, 37(4): 5025-30.
[138] Xu M H, Gao X, Luo D, et al. EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells[J]. PLoS One, 2014, 9(2): e87893.
[139] Wang R, Chen S, Li C, et al. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells[J]. BMC Cancer, 2016, 16: 56.
[140] Xue J, Zhu Y, Sun Z, et al. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness[J]. BMC Cancer, 2015, 15: 793.
[141] Wang Z, Yuan Y, Zhang L, et al. Impact of cell fusion in myeloma marrow microenvironment on tumor progression[J]. Oncotarget, 2018, 9(57): 30997-31006.
[142] Zhou X, Merchak K, Lee W, et al. Cell Fusion Connects Oncogenesis with Tumor Evolution[J]. Am J Pathol, 2015, 185(7): 2049-60.
[143] Gasent Blesa J, Candel V. Cell-cell fusion as a potential target in cancer therapy[J]. Ecancermedicalscience, 2009, 3: 145.
[144] Rappa G, Mercapide J, Lorico A. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity[J]. Am J Pathol, 2012, 180(6): 2504-15.
[145] Huang C M, Yan T L, Xu Z, et al. Hypoxia Enhances Fusion of Oral Squamous Carcinoma Cells and Epithelial Cells Partly via the Epithelial-Mesenchymal Transition of Epithelial Cells[J]. Biomed Res Int, 2018, 2018: 5015203.
[146] Mercapide J, Rappa G, Lorico A. The intrinsic fusogenicity of glioma cells as a factor of transformation and progression in the tumor microenvironment[J]. Int J Cancer, 2012, 131(2): 334-43.
[147] Seyfried T N, Huysentruyt L C. On the origin of cancer metastasis[J]. Crit Rev Oncog, 2013, 18(1-2): 43-73.
[148] Rastaldi M P. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis[J]. J Nephrol, 2006, 19(4): 407-12.
[149] Gast C E, Silk A D, Zarour L, et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival[J]. Sci Adv, 2018, 4(9): eaat7828.
[150] Shabo I, Olsson H, Sun X F, et al. Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time[J]. Int J Cancer, 2009, 125(8): 1826-31.
[151] De Baetselier P, Roos E, Brys L, et al. Nonmetastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells[J]. Cancer Metastasis Rev, 1984, 3(1): 5-24.
[152] Podsypanina K, Du Y C, Jechlinger M, et al. Seeding and propagation of untransformed mouse mammary cells in the lung[J]. Science, 2008, 321(5897): 1841-4.
[153] Levin T G, Powell A E, Davies P S, et al. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract[J]. Gastroenterology, 2010, 139(6): 2072-2082 e5.
[154] Mansoori B, Mohammadi A, Davudian S, et al. The Different Mechanisms of Cancer Drug Resistance: A Brief Review[J]. Adv Pharm Bull, 2017, 7(3): 339-348.
[155] Miller F R, Mohamed A N, Mceachern D. Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations[J]. Cancer Res, 1989, 49(15): 4316-21.
[156] Duelli D, Lazebnik Y. Cell fusion: a hidden enemy?[J]. Cancer Cell, 2003, 3(5): 445-8.
[157] Yang J Y, Ha S A, Yang Y S, et al. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance[J]. BMC Cancer, 2010, 10: 388.
[158] Carloni V, Mazzocca A, Mello T, et al. Cell fusion promotes chemoresistance in metastatic colon carcinoma[J]. Oncogene, 2013, 32(21): 2649-60.
[159] Dittmar T, Schwitalla S, Seidel J, et al. Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells[J]. Clin Exp Metastasis, 2011, 28(1): 75-90.
[160] Nagler C, Hardt C, Zanker K S, et al. Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells[J]. Cancer Cell Int, 2011, 11(1): 21.
[161] Song K, Song Y, Zhao X P, et al. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential[J]. Exp Cell Res, 2014, 328(1): 156-163.
[162] Dittmar T, Nagler C, Schwitalla S, et al. Recurrence cancer stem cells--made by cell fusion?[J]. Med Hypotheses, 2009, 73(4): 542-7.
[163] Rizvi A Z, Swain J R, Davies P S, et al. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells[J]. Proc Natl Acad Sci U S A, 2006, 103(16): 6321-5.
[164] Zhou B B, Zhang H, Damelin M, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery[J]. Nat Rev Drug Discov, 2009, 8(10): 806-23.
[165] Phillips T M, Mcbride W H, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation[J]. J Natl Cancer Inst, 2006, 98(24): 1777-85.
[166] Woodward W A, Chen M S, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells[J]. Proc Natl Acad Sci U S A, 2007, 104(2): 618-23.
[167] Noubissi F K, Ogle B M. Cancer Cell Fusion: Mechanisms Slowly Unravel[J]. Int J Mol Sci, 2016, 17(9).
[168] Browning M J. Antigen presenting cell/ tumor cell fusion vaccines for cancer immunotherapy[J]. Hum Vaccin Immunother, 2013, 9(7): 1545-8.
[169] Hu Z, Chen J, Zhou S, et al. Mouse IP-10 Gene Delivered by Folate-modified Chitosan Nanoparticles and Dendritic/tumor Cells Fusion Vaccine Effectively Inhibit the Growth of Hepatocellular Carcinoma in Mice[J]. Theranostics, 2017, 7(7): 1942-1952.
[170] Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy[J]. J Cell Mol Med, 2018, 22(12): 5776-5786.
[171] Zhao F, Wang J, Chen M, et al. Sites of synchronous distant metastases and prognosis in prostate cancer patients with bone metastases at initial diagnosis: a population-based study of 16,643 patients[J]. Clin Transl Med, 2019, 8(1): 30.
[172] Kfoury Y, Baryawno N, Severe N, et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment[J]. Cancer Cell, 2021, 39(11): 1464-1478 e8.
[173] Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cell Mol Life Sci, 2020, 77(9): 1745-1770.
[174] Oshi M, Patel A, Le L, et al. G2M checkpoint pathway alone is associated with drug response and survival among cell proliferation-related pathways in pancreatic cancer[J]. Am J Cancer Res, 2021, 11(6): 3070-3084.
[175] Hernandez Borrero L J, El-Deiry W S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188556.
[176] Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis[J]. Annu Rev Pathol, 2018, 13: 395-412.
[177] Liu X, Li J, Cadilha B L, et al. Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis[J]. Sci Adv, 2019, 5(6): eaav4275.
[178] Nagano M, Hoshino D, Koshikawa N, et al. Turnover of focal adhesions and cancer cell migration[J]. Int J Cell Biol, 2012, 2012: 310616.
[179] Webb D J, Parsons J T, Horwitz A F. Adhesion assembly, disassembly and turnover in migrating cells -- over and over and over again[J]. Nat Cell Biol, 2002, 4(4): E97-100.
[180] Broussard J A, Webb D J, Kaverina I. Asymmetric focal adhesion disassembly in motile cells[J]. Curr Opin Cell Biol, 2008, 20(1): 85-90.
[181] Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1): 52-67.
[182] Johnson D E, O'keefe R A, Grandis J R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018, 15(4): 234-248.
[183] Wang L, Liu Y, Dai Y, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment[J]. Gut, 2022.
[184] Noy R, Pollard J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61.
[185] Ugel S, Cane S, De Sanctis F, et al. Monocytes in the Tumor Microenvironment[J]. Annu Rev Pathol, 2021, 16: 93-122.

所在学位评定分委会
生物学
国内图书分类号
R73-37
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544988
专题南方科技大学医学院
推荐引用方式
GB/T 7714
叶鑫宇. 骨髓来源的髓样肿瘤融合细胞对前列腺癌骨转移进展的影响[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930901-叶鑫宇-南方科技大学医(30387KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[叶鑫宇]的文章
百度学术
百度学术中相似的文章
[叶鑫宇]的文章
必应学术
必应学术中相似的文章
[叶鑫宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。