[1] MONTINARO N, EPASTO G, CERNIGLIA D, et al. Laser ultrasonics for defect evaluation on coated railway axles[J]. NDT & E International, 2020, 116: 102321.
[2] NI C Y, LV J C, ZHANG Y Y, et al. Laser ultrasonic monitoring of reversible /irreversible modification of a real crack under photothermal loading[J]. Structural Health Monitoring, 2021, 20(1): 173-187.
[3] 孙延军. 航空器复合材料无损检测技术及评价[J]. 科技创新导报, 2020, 17(03): 2-3.
[4] 韩俊霞. 探析无损检测在航空工业中的问题与对策[J]. 内燃机与配件, 2021, 03: 129-130.
[5] 刘松平, 刘菲菲, 李乐刚, 等. 航空复合材料无损检测与评估技术研究进展回顾[J]. 航空制造技术, 2019, 62(14): 14-27.
[6] 张德强. 新时期金属材料焊接中超声无损检测技术的应用探究[J]. 中国金属通报, 2022, 1074(08): 153-155.
[7] PARK S H, KIM J, SONG D G, et al. Measurement of absolute acoustic nonlinearity parameter using laser-ultrasonic detection[J]. Applied Sciences, 2021, 11(9): 4145.
[8] 裘进浩, 张超, 季宏丽, 等. 面向航空复合材料结构的激光超声无损检测技术[J]. 航空制造技术, 2020, 63(19): 14-23.
[9] GUO S F, CHEN S T, ZHANG L, et al. Design and fabrication of direct-write piezoelectric ultrasonic transducers for determining yielding of aluminum alloy[J]. NDT & E International, 2018, 98: 186-194.
[10] KOU X, PEI C, CHEN Z. Fully noncontact inspection of closed surface crack with nonlinear laser ultrasonic testing method[J]. Ultrasonics, 2021, 114: 106426.
[11] 胡婷萍, 高丽敏, 杨海楠. 激光超声技术在航空复合材料无损检测中的应用[J]. 航空制造技术, 2018, 61(19): 50-57.
[12] 曾伟, 杨先明, 王海涛, 等. 激光超声技术及其应用[J]. 无损检测, 2013, 35(12): 49-52.
[13] CHANG W Y, HUANG W B, KIM J, et al. Candle soot nanoparticles-poly-dimethylsiloxane composites for laser ultrasound transducers[J]. Applied Physics Letters, 2015, 107(16): 1713.
[14] ROGÉ B, FAHR A, GIGUERE J S R, et al. Nondestructive measurement of porosity in thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2003, 12(4): 530-535.
[15] WANG C Y, SUN A Y, YANG X Y, et al. Laser-generated Rayleigh wave for width gauging of subsurface lateral rectangular defects[J]. Journal of Applied Physics, 2018, 124(6): 065104.
[16] GEBREKIDAN S B, KANG T, KIM H J, et al. Nonlinear ultrasonic characterization of early degradation of fatigued Al6061-T6 with harmonic generation technique[J]. Ultrasonics, 2018, 85: 23-30.
[17] HUANG J, KRISHNASWAMY S, ACHENBACH J D. Laser generation of narrow-band surface waves[J]. The Journal of the Acoustical Society of America, 1992, 95(5): 2527-2531.
[18] LIU Y H, WU T T, LEE C K. Application of narrow band laser ultrasonics to the nondestructive evaluation of thin bonding layers[J]. The Journal of the Acoustical Society of America, 2002, 111(6): 2638-2643.
[19] DING L, WAN H P, LU Q B, et al. Using deep learning to identify the depth of metal surface defects with narrowband SAW signals[J]. Optics and Laser Technology, 2023, 157: 108758.
[20] CHOI S, JHANG K Y. Influence of slit width on harmonic generation in ultrasonic surface waves excited by masking a laser beam with a line arrayed slit[J]. NDT & E International, 2013, 57: 1-6.
[21] CHOI S, JHANG K. Initial second harmonic generation in narrowband surface waves by multi-line laser beams for two kinds of spatial energy profile modes: gaussian and square-like[J]. Journal of the Korean Society for Nondestructive Testing, 2013, 33(3): 257-263.
[22] SEO H, CHOI S, JHANG K. Influence of laser beam profiles on the frequency bandwidth of laser-generated surface acoustic waves [C]//2014 IEEE Far East Forum on Nondestructive Evaluation/Testing: New Technology & Application Increasingly perfect NDT/E. IEEE, 2014: 221-224.
[23] DAVIS G, KOODALIL D, PALANISAMY S, et al. Influence of duty ratio of a pattern source on laser generation of Lamb waves[J]. NDT and E International, 2022, 127: 102605.
[24] KIM T, CHANG W Y, KIM H, et al. Narrow band photoacoustic Lamb wave generation for nondestructive testing using candle soot nanoparticle patches[J]. Applied Physics Letters, 2019, 115(10): 102902.
[25] KIM T, KIM H, JIANG X N. Laser ultrasonic defect localization using an omni-arrayed candle soot nanoparticle patch[J]. Japanese Journal of Applied Physics, 2021, 60(10): 100903.
[26] KOU X, QIAN C, PEI C X, et al. A Bi-grating laser acoustic spectrum method for small surface-breaking crack imaging and depth evaluation[J]. NDT and E International, 2022, 126: 102593.
[27] CHOI S, SEO H, JHANG K. Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy[J]. Research in Nondestructive Evaluation, 2015, 26(1): 13-22.
[28] PEI C X, KOU X, LIU T H, et al. A new ultrasonic testing method for residual strain measurement with laser grating[J]. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2019, 2: 040903.
[29] JUN J, SEO H, JHANG K Y. Nondestructive evaluation of thermal aging in Al6061 alloy by measuring acoustic nonlinearity of laser-generated surface acoustic waves[J]. Metals, 2020, 10(1): 38-51.
[30] YUAN P L, SUNETCHIIEVA S, LIU S Y, et al. Remote in-line evaluation of acousto-elastic effects during elastic-plastic transition in an aluminum plate under uniaxial tensile and dynamic fatigue loading by laser generated, optically detected surface acoustic waves[J]. AIP Advances, 2022, 12(5): 055227.
[31] QIAN C, KOU X, PEI C X, et al. Topcoat thickness measurement of thermal barrier coating using grating laser acoustic spectrum method[J]. Ceramics International, 2022, 48(3): 3676-3684.
[32] WU N, TIAN Y, ZOU X T, et al. High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite[J]. Journal of the Optical Society of America B, 2012, 29(8): 2016-2020.
[33] BUMA T, SPISAR M, O’DONNELL M. High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film[J]. Applied Physics Letters, 2001, 79(4): 548-550.
[34] HSIEH B Y, KIM J, ZHU J D, et al. A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film[J]. Applied Physics Letters, 2015, 106: 021902.
[35] HWAN LEE S, PARK M, YOH J J, et al. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation[J]. Applied Physics Letters, 2012, 101(24): 241909.
[36] NOIMARK S, COLCHESTER R J, BLACKBURN B J, et al. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging[J]. Advanced Functional Materials, 2016, 26(46): 8390-8396.
[37] CHANG W Y, ZHANG X A, KIM J, et al. Evaluation of photoacoustic transduction efficiency of candle soot nanocomposite transmitters[J]. IEEE Transactions on Nanotechnology, 2018, 17(5): 985-993.
[38] DU X Y, LI J P, NIU G D, et al. Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging[J]. Nature Communications, 2021, 12: 3348.
[39] LI C, LIU J, PENG X B. Error analysis in determination of density and temperature of saline solution using fiber optic photoacoustic transducer coated with MoS2-PDMS composite[J]. Polymers, 2019, 11(5): 762.
[40] KIM H, KIM K, GARCIA N, et al. Liquid metallic laser ultrasound transducer for high-temperature applications[J]. Applied Physics Letters, 2021, 118: 183502.
[41] 李琦. 基于MEMS技术的新型光声换能器研究[D]. 武汉: 华中科技大学, 2020.
[42] LI J P, LAN X K, LEI S, et al. Effects of carbon nanotube thermal conductivity on optoacoustic transducer performance[J]. Carbon, 2019, 145: 112-118.
[43] DING X X, LI W, XIONG J T, et al. A flexible laser ultrasound transducer for Lamb wave-based structural health monitoring[J]. Smart Materials and Structures, 2020, 29(7): 075006.
[44] LI Q, LI J P, ZHU H B, et al. Dynamic acoustic focusing in photoacoustic transmitter[J]. Photoacoustics, 2021, 21: 100224.
[45] 熊继涛. 激光超声换能器的导波检测应用研究[D]. 重庆: 重庆大学, 2019.
[46] DOYLE P A, SCALA C M. Near-field ultrasonic Rayleigh waves from a laser line source[J]. Ultrasonics, 1996, 34(1): 1-8.
[47] JOHNSTON I D, MCCLUSKEY D K, TAN C K L, et al. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering[J]. Journal of Micromechanics and Microengineering, 2014, 24(3): 035017.
[48] SAMPATH S, SOHN H. Non-contact microcrack detection via nonlinear Lamb wave mixing and laser line arrays[J]. International Journal of Mechanical Sciences, 2023, 237: 107769.
[49] ZHU H, NG C T, KOTOUSOV A. Low-frequency Lamb wave mixing for fatigue damage evaluation using phase-reversal approach[J]. Ultrasonics, 2022, 124: 106768.
[50] ZHU H, NG C T, KOTOUSOV A. The performance optimization of combinational harmonic generation for quasi-synchronous Lamb wave mixing[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2022. SPIE, 2022, 12046: 293-300.
[51] ZHU H, NG C T, KOTOUSOV A. Frequency selection and time shifting for maximizing the performance of low-frequency guided wave mixing[J]. NDT and E International, 2023, 133: 102735.
[52] ISHII Y, BIWA S, ADACHI T. Non-collinear interaction of guided elastic waves in an isotropic plate[J]. Journal of Sound and Vibration, 2018, 419: 390-404.
[53] JIAO J, MENG X, HE C, et al. Nonlinear Lamb wave-mixing technique for micro-crack detection in plates[J]. NDT and E International, 2017, 85: 63-71.
[54] CHEN H, FENG Z, DU Y, et al. Spectral finite element method for efficient simulation of nonlinear interactions between Lamb waves and breathing cracks within the bi-potential framework[J]. International Journal of Mechanical Sciences, 2022, 215: 106954.
修改评论