中文版 | English
题名

柔性光声换能器研制及其超声表面波调制与应用

其他题名
DESIGN AND FABRICATION OF FLEXIBLE PHOTOACOUSTIC TRANSDUCER FOR ULTRASONIC SURFACE WAVE MODULATION AND APPLICATION
姓名
姓名拼音
YAO Zhijun
学号
12132593
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
郭师峰
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2023-05-12
论文提交日期
2023-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       金属材料在服役过程中的载荷和环境因素作用下,容易产生各种微观缺陷,进而演化出宏观缺陷,最终导致材料失效。非线性超声检测技术具有精度高、对微观组织敏感的特点,是预防金属材料失效的一种重要检测技术。然而目前接触式非线性超声检测技术存在重复性差、无法适应恶劣工况等问题;非接触激光超声非线性检测技术存在低信噪比和材料烧蚀的问题,在应用中仍存在局限性。光声换能器可以在非烧蚀条件下产生高信噪比的超声信号,有望用于非线性超声检测;但其存在声阻抗失配、反射信号干扰的问题,因此在应用中必须对其结构和信号进行合理调制。

       为了解决以上问题,本文将光声换能器与阵列式激光结合,开展了基于光声换能器结构优化的窄带表面波信号调制研究,并对其非线性超声检测应用进行了探索。本文使用烛灰纳米颗粒和聚二甲基硅氧烷(Poly-dimethylsiloxane, PDMS)作为原材料制备了具有三层结构的光声换能器,并通过调整PDMS旋涂参数的方式实现了光声换能器结构的调制。本文将光声换能器与狭缝阵列掩膜调制的阵列式激光结合实现了窄带表面波的激励,并通过理论推导、有限元仿真、实验研究的方法,提出了光声换能器结构与表面波谐波幅值的理论模型。基于以上理论模型,本文通过优化光声换能器结构,成功将表面波的谐波成分抑制至噪声水平,并将信号幅值提高至超过10倍。利用优化后的光声换能器产生的窄带超声表面波与材料的非线性作用,本文实现了对铝板试样表面疲劳裂纹的检测。

其他摘要

       Under the influence of in-service load and environment conditions, metal materials are prone to produce various minute defects which may turn into macro defects, leading to material failure eventually. With the merits of high precision and sensitivity to microstructure, nonlinear ultrasonics is an important testing technique for preventing the failure of metal materials. However, current contact-based nonlinear ultrasonic techniques have drawbacks such as poor repeatability and inability to work in hostile environments, and non-contact nonlinear laser ultrasonic techniques have the problems of low signal-to-noise ratio and material ablation, which limit their application. Photoacoustic transducer can produce ultrasonic signals with high signal-to-noise under non-ablative condition and therefore has promising potential for nonlinear ultrasonic testing. But photo-acoustic transducer faces the problems of acoustic impedance mismatch and reflected signal interference, so its structure and signal must be modulated properly in application.

       To overcome these drawbacks, photoacoustic transducer and arrayed laser are combined in this work to study the narrowband surface wave modulation based on structural optimization of photoacoustic transducer and to explore their application on nonlinear ultrasonic testing. Three-layered photoacoustic transducers are fabricated with candle soot nanoparticles and polydimethyl-siloxane (PDMS). By adjusting the spin-coating parameters of PDMS layers, structural modulation of photoacoustic transducers is achieved. Narrowband surface waves are excited with the combination of photoacoustic transducers and arrayed laser modulated by arrayed slit masks. A theoretical model between the structure of photoacoustic transducer and the harmonic amplitudes of generated surface wave is proposed through theoretical analysis, finite element simulation and experimental investigation. Based on the proposed theoretical model, the harmonic components of the surface wave are successfully minimized to noise level by optimizing the structure of photoacoustic transducers, and the signal amplitude is increased to over 10 times. Utilizing the nonlinear interaction between the material and the narrowband surface waves generated by the optimized photoacoustic transducers, the detection of surface fatigue crack on an aluminum plate is realized.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] MONTINARO N, EPASTO G, CERNIGLIA D, et al. Laser ultrasonics for defect evaluation on coated railway axles[J]. NDT & E International, 2020, 116: 102321.
[2] NI C Y, LV J C, ZHANG Y Y, et al. Laser ultrasonic monitoring of reversible /irreversible modification of a real crack under photothermal loading[J]. Structural Health Monitoring, 2021, 20(1): 173-187.
[3] 孙延军. 航空器复合材料无损检测技术及评价[J]. 科技创新导报, 2020, 17(03): 2-3.
[4] 韩俊霞. 探析无损检测在航空工业中的问题与对策[J]. 内燃机与配件, 2021, 03: 129-130.
[5] 刘松平, 刘菲菲, 李乐刚, 等. 航空复合材料无损检测与评估技术研究进展回顾[J]. 航空制造技术, 2019, 62(14): 14-27.
[6] 张德强. 新时期金属材料焊接中超声无损检测技术的应用探究[J]. 中国金属通报, 2022, 1074(08): 153-155.
[7] PARK S H, KIM J, SONG D G, et al. Measurement of absolute acoustic nonlinearity parameter using laser-ultrasonic detection[J]. Applied Sciences, 2021, 11(9): 4145.
[8] 裘进浩, 张超, 季宏丽, 等. 面向航空复合材料结构的激光超声无损检测技术[J]. 航空制造技术, 2020, 63(19): 14-23.
[9] GUO S F, CHEN S T, ZHANG L, et al. Design and fabrication of direct-write piezoelectric ultrasonic transducers for determining yielding of aluminum alloy[J]. NDT & E International, 2018, 98: 186-194.
[10] KOU X, PEI C, CHEN Z. Fully noncontact inspection of closed surface crack with nonlinear laser ultrasonic testing method[J]. Ultrasonics, 2021, 114: 106426.
[11] 胡婷萍, 高丽敏, 杨海楠. 激光超声技术在航空复合材料无损检测中的应用[J]. 航空制造技术, 2018, 61(19): 50-57.
[12] 曾伟, 杨先明, 王海涛, 等. 激光超声技术及其应用[J]. 无损检测, 2013, 35(12): 49-52.
[13] CHANG W Y, HUANG W B, KIM J, et al. Candle soot nanoparticles-poly-dimethylsiloxane composites for laser ultrasound transducers[J]. Applied Physics Letters, 2015, 107(16): 1713.
[14] ROGÉ B, FAHR A, GIGUERE J S R, et al. Nondestructive measurement of porosity in thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2003, 12(4): 530-535.
[15] WANG C Y, SUN A Y, YANG X Y, et al. Laser-generated Rayleigh wave for width gauging of subsurface lateral rectangular defects[J]. Journal of Applied Physics, 2018, 124(6): 065104.
[16] GEBREKIDAN S B, KANG T, KIM H J, et al. Nonlinear ultrasonic characterization of early degradation of fatigued Al6061-T6 with harmonic generation technique[J]. Ultrasonics, 2018, 85: 23-30.
[17] HUANG J, KRISHNASWAMY S, ACHENBACH J D. Laser generation of narrow-band surface waves[J]. The Journal of the Acoustical Society of America, 1992, 95(5): 2527-2531.
[18] LIU Y H, WU T T, LEE C K. Application of narrow band laser ultrasonics to the nondestructive evaluation of thin bonding layers[J]. The Journal of the Acoustical Society of America, 2002, 111(6): 2638-2643.
[19] DING L, WAN H P, LU Q B, et al. Using deep learning to identify the depth of metal surface defects with narrowband SAW signals[J]. Optics and Laser Technology, 2023, 157: 108758.
[20] CHOI S, JHANG K Y. Influence of slit width on harmonic generation in ultrasonic surface waves excited by masking a laser beam with a line arrayed slit[J]. NDT & E International, 2013, 57: 1-6.
[21] CHOI S, JHANG K. Initial second harmonic generation in narrowband surface waves by multi-line laser beams for two kinds of spatial energy profile modes: gaussian and square-like[J]. Journal of the Korean Society for Nondestructive Testing, 2013, 33(3): 257-263.
[22] SEO H, CHOI S, JHANG K. Influence of laser beam profiles on the frequency bandwidth of laser-generated surface acoustic waves [C]//2014 IEEE Far East Forum on Nondestructive Evaluation/Testing: New Technology & Application Increasingly perfect NDT/E. IEEE, 2014: 221-224.
[23] DAVIS G, KOODALIL D, PALANISAMY S, et al. Influence of duty ratio of a pattern source on laser generation of Lamb waves[J]. NDT and E International, 2022, 127: 102605.
[24] KIM T, CHANG W Y, KIM H, et al. Narrow band photoacoustic Lamb wave generation for nondestructive testing using candle soot nanoparticle patches[J]. Applied Physics Letters, 2019, 115(10): 102902.
[25] KIM T, KIM H, JIANG X N. Laser ultrasonic defect localization using an omni-arrayed candle soot nanoparticle patch[J]. Japanese Journal of Applied Physics, 2021, 60(10): 100903.
[26] KOU X, QIAN C, PEI C X, et al. A Bi-grating laser acoustic spectrum method for small surface-breaking crack imaging and depth evaluation[J]. NDT and E International, 2022, 126: 102593.
[27] CHOI S, SEO H, JHANG K. Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy[J]. Research in Nondestructive Evaluation, 2015, 26(1): 13-22.
[28] PEI C X, KOU X, LIU T H, et al. A new ultrasonic testing method for residual strain measurement with laser grating[J]. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2019, 2: 040903.
[29] JUN J, SEO H, JHANG K Y. Nondestructive evaluation of thermal aging in Al6061 alloy by measuring acoustic nonlinearity of laser-generated surface acoustic waves[J]. Metals, 2020, 10(1): 38-51.
[30] YUAN P L, SUNETCHIIEVA S, LIU S Y, et al. Remote in-line evaluation of acousto-elastic effects during elastic-plastic transition in an aluminum plate under uniaxial tensile and dynamic fatigue loading by laser generated, optically detected surface acoustic waves[J]. AIP Advances, 2022, 12(5): 055227.
[31] QIAN C, KOU X, PEI C X, et al. Topcoat thickness measurement of thermal barrier coating using grating laser acoustic spectrum method[J]. Ceramics International, 2022, 48(3): 3676-3684.
[32] WU N, TIAN Y, ZOU X T, et al. High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite[J]. Journal of the Optical Society of America B, 2012, 29(8): 2016-2020.
[33] BUMA T, SPISAR M, O’DONNELL M. High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film[J]. Applied Physics Letters, 2001, 79(4): 548-550.
[34] HSIEH B Y, KIM J, ZHU J D, et al. A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film[J]. Applied Physics Letters, 2015, 106: 021902.
[35] HWAN LEE S, PARK M, YOH J J, et al. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation[J]. Applied Physics Letters, 2012, 101(24): 241909.
[36] NOIMARK S, COLCHESTER R J, BLACKBURN B J, et al. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging[J]. Advanced Functional Materials, 2016, 26(46): 8390-8396.
[37] CHANG W Y, ZHANG X A, KIM J, et al. Evaluation of photoacoustic transduction efficiency of candle soot nanocomposite transmitters[J]. IEEE Transactions on Nanotechnology, 2018, 17(5): 985-993.
[38] DU X Y, LI J P, NIU G D, et al. Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging[J]. Nature Communications, 2021, 12: 3348.
[39] LI C, LIU J, PENG X B. Error analysis in determination of density and temperature of saline solution using fiber optic photoacoustic transducer coated with MoS2-PDMS composite[J]. Polymers, 2019, 11(5): 762.
[40] KIM H, KIM K, GARCIA N, et al. Liquid metallic laser ultrasound transducer for high-temperature applications[J]. Applied Physics Letters, 2021, 118: 183502.
[41] 李琦. 基于MEMS技术的新型光声换能器研究[D]. 武汉: 华中科技大学, 2020.
[42] LI J P, LAN X K, LEI S, et al. Effects of carbon nanotube thermal conductivity on optoacoustic transducer performance[J]. Carbon, 2019, 145: 112-118.
[43] DING X X, LI W, XIONG J T, et al. A flexible laser ultrasound transducer for Lamb wave-based structural health monitoring[J]. Smart Materials and Structures, 2020, 29(7): 075006.
[44] LI Q, LI J P, ZHU H B, et al. Dynamic acoustic focusing in photoacoustic transmitter[J]. Photoacoustics, 2021, 21: 100224.
[45] 熊继涛. 激光超声换能器的导波检测应用研究[D]. 重庆: 重庆大学, 2019.
[46] DOYLE P A, SCALA C M. Near-field ultrasonic Rayleigh waves from a laser line source[J]. Ultrasonics, 1996, 34(1): 1-8.
[47] JOHNSTON I D, MCCLUSKEY D K, TAN C K L, et al. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering[J]. Journal of Micromechanics and Microengineering, 2014, 24(3): 035017.
[48] SAMPATH S, SOHN H. Non-contact microcrack detection via nonlinear Lamb wave mixing and laser line arrays[J]. International Journal of Mechanical Sciences, 2023, 237: 107769.
[49] ZHU H, NG C T, KOTOUSOV A. Low-frequency Lamb wave mixing for fatigue damage evaluation using phase-reversal approach[J]. Ultrasonics, 2022, 124: 106768.
[50] ZHU H, NG C T, KOTOUSOV A. The performance optimization of combinational harmonic generation for quasi-synchronous Lamb wave mixing[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2022. SPIE, 2022, 12046: 293-300.
[51] ZHU H, NG C T, KOTOUSOV A. Frequency selection and time shifting for maximizing the performance of low-frequency guided wave mixing[J]. NDT and E International, 2023, 133: 102735.
[52] ISHII Y, BIWA S, ADACHI T. Non-collinear interaction of guided elastic waves in an isotropic plate[J]. Journal of Sound and Vibration, 2018, 419: 390-404.
[53] JIAO J, MENG X, HE C, et al. Nonlinear Lamb wave-mixing technique for micro-crack detection in plates[J]. NDT and E International, 2017, 85: 63-71.
[54] CHEN H, FENG Z, DU Y, et al. Spectral finite element method for efficient simulation of nonlinear interactions between Lamb waves and breathing cracks within the bi-potential framework[J]. International Journal of Mechanical Sciences, 2022, 215: 106954.

所在学位评定分委会
材料与化工
国内图书分类号
TB552
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544991
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
姚智君. 柔性光声换能器研制及其超声表面波调制与应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132593-姚智君-中国科学院深圳(6473KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[姚智君]的文章
百度学术
百度学术中相似的文章
[姚智君]的文章
必应学术
必应学术中相似的文章
[姚智君]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。