中文版 | English
题名

电解质对石墨/锂金属杂化负极全电池性能的影响机制研究

其他题名
INFLUENCE MECHANISMOFELECTROLYTE ONTHEELECTROCHEMICAL PERFORMANCEOFBATTERIES WITH GRAPHITE/LI METALHYBRID ANODE
姓名
姓名拼音
GAO Tingsong
学号
12132036
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李英芝
导师单位
材料科学与工程系
论文答辩日期
2023-05-12
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  着电动交通工具以及储能电站技术的发展,人们对高能量密度和高安全锂离子电池的需求日益迫切。石墨容量已接近理论极限,难以大幅提升锂离子电池的能量密度。锂金属负极比容量高和电化学电位低,但是,锂金属电池存在库伦效率低、制备成本高和安全性差的问题。采用石墨表面析锂可以提升锂离子电池的能量密度,降低成本,可作为锂金属电池现实应用的折中方案。目前,学术界对石墨/锂金属杂化负极的研究较少,其电化学性能仍然不能满足现实需求,其中的电化学机制尚未完全搞清。本论文主要研究了氟代碳酸乙烯酯(FEC)添加剂优化电解液和固态聚合物电解质提升石墨/锂金属杂化负极全电池的循环性能和安全性能

  通过调节负极与正极的面容量比(N/P),全电池在满电情况下负极侧析出锂金属。电解液中添加FEC可以提升石墨/锂金属杂化负极全电池的循环性能、安全性能以及高温性能。FEC使锂金属表面形成富含氟化锂且均匀致密的固态电解质界面相(SEI),全电池循环后阻抗由50.1 Ω降低至26.6 Ω,提升了界面离子扩散速度,有效抑制锂枝晶的形成。同时,富含氟化锂的SEI高温稳定性提升,有效抑制了高温条件下锂金属与电解液之间的副反应,提高了全电池的库伦效率与循环性能。富含氟化锂的SEI有效抑制了短路状态下负极表面的寄生反应,减少反应热量的释放,提高了电池的安全性能。

  通过原位聚合方案制备了一类添加丁二腈作为增塑剂的聚酯类固态电解质。该电解质在50°C离子电导率可达0.87×10-3 S cm-1,氧化电位超过5.5 V,锂离子迁移数达到0.52,同时具有优良的机械强度和热稳定性。固态电解质可以明显地提高库伦效率,抑制锂金属与电解质之间的副反应。匹配石墨/锂金属杂化负极和NCM811正极的全固态电池在25°C50°C0.5C的倍率循环120次后可分别释放90.3 mAh g-1125.3 mAh g-1的比容量。50°C条件下,固态石墨/锂金属杂化电池的放电能量密度相对于基于电解液的电池提升2.7

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 万钢. 《新能源汽车产业发展规划(2021-2035年)》为新能源汽车产业发展制定路线[J]. 变频器世界, 2020, 4: 27-28.
[2] BRADLEY, D. Building better batteries[J]. Education in Chemistry, 2010, 47: 124-125.
[3] MEGAHED S, SCROSATI B. Lithium-ion rechargeable batteries[J]. Journal of Power Sources, 1994, 51: 79-104.
[4] 黄彦瑜. 锂电池发展简史[J]. 物理, 2007, 36: 9.
[5] 戴燕珊, 冼巧妍, 黄振茂. 锂离子电池性能研究[J]. 电池工业, 2002, 7: 258-261.
[6] BOUCHET R, MEZIANE R, ABOULAICH A, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials, 2013, 12: 452-457.
[7] ZHANG B, METZGER M, SOLCHENBACH S, et al. Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation[J]. The Journal of Physical Chemistry C, 2015, 119: 11337-11348.
[8] PETIBON R, XIA J, MA L, et al. Electrolyte system for high voltage li-ion cells[J]. Journal of the Electrochemical Society, 2016, 163: A2571-A2578.
[9] FANG W Q, WEN Z X, CHEN L, et al. Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes[J]. Nano Energy, 2022, 107881: 2211-2855.
[10] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 4: 331-341.
[11] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103.
[12] LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries [J]. Nature Review Materials, 2019, 4(5): 312-30.
[13] NISHI Y. Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources, 2001, 100: 101-106.
[14] VICTOR A, AGUBRA, JEFFREY W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162.
[15] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science, 2011, 4: 3243-3262.
[16] MEISTER P, JIA H P, LI J, et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J]. Chemistry of Materials, 2016, 28: 7203-7217.
[17] XU J T, DOU Y H, WEI Z X, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)‐ion batteries[J]. Advanced Science, 2017, 4, 8: 1700146.
[18] JACHE B, ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium on batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53: 10169-10173.
[19] ZHAO X X, WANG W H, HOU Z, et al. SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode[J]. Chemical Engineering Journal, 2019, 370: 677-683.
[20] BORDET F, AHLBRECHT K, TÜBKE J, et al. Anion intercalation into graphite from a sodium-containing electrolyte[J]. Electrochimica Acta, 2015, 174: 1317-1323.
[21] SOLE C, DREWETT N E, HARDWICK L J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite[J]. Faraday Discussions, 2014, 172: 223-237.
[22] PLACKE T, SCHMUELLING G, KLOEPSCH R, et al. In situ X‐ray Diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2015, 640: 1996-2006.
[23] DEY A N, SULLIVAN B P. The electrochemical decomposition of propylene carbonate on graphite[J]. Journal of the Electrochemical Society, 1970, 117: 563-571.
[24] AURBACH D, ZABAN A, EIN-ELI Y. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems[J]. Journal of Power Sources, 1997, 68: 91-98.
[25] GONG X H, ZHENG Y B, ZHENG J, et al. Surface-Functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem, 2020, 7: 1465-1472.
[26] KLEIN S, WICKEREN S V, RSER S, et al. Understanding the outstanding high‐voltage performance of NCM523||Graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte[J]. Advanced Energy Materials, 2021, 11: 2003738-2003747.
[27] YUE G, RAN Y, LI Y C, et al. A general method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes[J]. Journal of the American Chemical Society, 2017, 139: 17359-17367.
[28] JIN Y, LI S, KUSHIMA A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017, 10: 580-592.
[29] LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1: 15029.
[30] LUO F, LIU B N, ZENG J Y, et al. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162: A2509-A2528.
[31] LUO W, CHEN X Q, XIA Y, et al. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries[J]. Advanced Energy Materials, 2017, 24: 7.
[32] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Materials, 2017, 16: 2-17.
[33] PARK S H, KING P J, TIAN R, et al. High areal capacity battery electrodes enabled by segregated nanotube networks[J]. Nature Energy, 2019, 4(7): 560-567.
[34] ZHANG L, WANG C R, DOU Y H, et al. A unique yolk-shell structured silicon anode with superior conductivity and high tap density for full Li-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58: 8824-8828.
[35] MCDOWELL M T, LEE S W, HARRIS J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13: 758-764.
[36] GUANG Y, SARAH F, RUNMING T, et al. Robust solid/electrolyte interphase (SEI) formation on Si anodes using Glyme-Based electrolytes[J]. ACS Energy Letters, 2021, 6: 1684-1693.
[37] HUANG Q Q, SONG J X, GAO Y, et al. Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes[J]. Nature Communication, 2019, 10: 5586.
[38] CHAE S, KO M, KIM K, et al. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries[J]. Joule 2017, 1: 47-60.
[39] CHAE S, KIM N, MA J, et al. One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7: 1700071.
[40] LI X L, YAN P F, XIAO X C, et al. Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling[J]. Energy Environ Science, 2017, 10: 1039.
[41] WETJEN M, JUNG R, PRITZL D, et al. Silicon-graphite composite electrodes for high energy density Li-ion battery applications[J]. The Electrochemical Society, 2016, 2: 280.
[42] CHAE S, CHOI S H, KIM N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie, 2020, 59: 110-135.
[43] SUH S S, YOON W Y, KIM D H, et al. Electrochemical behavior of SiOx anodes with variation of oxygen ratio for Li-ion batteries[J]. Electrochimica Acta, 2014, 148: 111-117.
[44] YOON Y S, JEE S H, LEE S H, et al. Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries[J]. Surface & Coatings Technology, 2011, 206: 553-558.
[45] WU X, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7: 513-537.
[46] ZHANG Q, CHENG X B. Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries[J]. Journal of Materials Chemistry A, 2015, 3: 7207-7209.
[47] JEPPSON D W, BALLIF J L, YUAN W W. Lithium literature review: lithium's properties and interactions[J]. Plasma Physics & Fusion Technology, 1978.
[48] WU H P, JIA H, WANG C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2020, 10, 1022: 2003092-2003102
[49] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117: 10403-10473
[50] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2: 17119.
[51] LIN D, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12: 194-206.
[52] BHATTACHARYYA R, KEY B, CHEN H L, et al. In situ NMR Observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9: 504-510.
[53] ZOU P C, SUI Y M, ZHAN H C, et al. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields[J]. Chemical Reviews, 2021, 121: 5986-6056.
[54] DORNBUSCH D A, HILTON R, LOHMAN S D, et al. Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries[J]. Journal of the Electrochemical Society, 2014, 162: A262-A268.
[55] LÓPEZ C M, VAUGHEY J T, DEES D W, et al. Morphological transitions on lithium metal anodes[J]. Journal of the Electrochemical Society, 2009, 156: A726-A729.
[56] LU D P, SHAO Y Y, LOZANO T, et al. Failure mechanism for fast-charged lithium metal batteries with Liquid electrolytes[J]. Advanced Energy Materials, 2015, 5: 1400993.
[57] REHNLUND D, LINDGREN F, BHME S, et al. Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries[J]. Energy Environ Science, 2017, 10: 1350-1357.
[58] XU K. Electrolytes and interphases in Li-Ion batteries and beyond[J]. Chemical Reviews, 2014, 114: 11503-11618.
[59] LIU Y, TAO X, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science, 2022, 375: 739-745.
[60] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5: 1-24.
[61] XIE J, WANG J, LEE H R, et al. Engineering stable interfaces for three-dimensional lithium metal anodes[J]. Science Advances, 2018, 4: 1-8.
[62] LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274.
[63] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
[64] PLIETH, WALFRIED. Electrochemistry for materials science[M]. Elsevier LTD, Oxford, 2008.
[65] ELY D R, GARCIA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. Journal of the Electrochemical Society, 2013, 160: A662-A668.
[66] PEI A, ZHENG G Y, SHI F F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal[J]. Nano Letters, 2017, 17: 1132-1139.
[67] CHEN S, NIU C, LEE H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-Metal batteries[J]. Joule, 2019, 3: 1094-1105.
[68] MARTIN C, GENOVESE M, LOULI A J, et al. Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells [J]. Joule, 2020, 4: 1294-1310.
[69] SUN Y, ZHENG G, SEH Z W, et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries[J]. Chem, 2016, 1: 287-297.
[70] KANG H K, WOO S G, KIM J H, et al. Few-layer graphene island seeding for dendrite-free Li metal electrodes[J]. Acs Appl Mater Interfaces, 2016, 8: 26895-26901.
[71] XING X, LI Y, WANG S, et al. Graphite-Based Lithium-Free 3D hybrid anodes for high energy density All-Solid-State batteries[J]. ACS Energy Letters, 2021, 6: 1831-1838.
[72] BLECHER H, BLECHER R, RUDOLF MÜLLER, et al. The solid electrolyte interphase – The most important and the least understood solid Electrolyte in rechargeable Li batteries[J]. International Journal of Research in Physical Chemistry & Chemical Physics, 2009, 223: 1395-1406.
[73] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126: 2047-2051.
[74] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55: 6332-6341.
[75] WANG A, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. Npj Computational Materials, 2018, 1: 26.
[76] KIM G Y. Challenges for rechargeable Li batteries[J]. American Chemical Society, 2009, 22: 587-603.
[77] FU A, LIN J D, ZHANG Z F, et al. Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li||LiCoO2 batteries by potassium selenocyanate (KSeCN) additive[J]. ACS Energy Letters 2022, 7: 1364-1373.
[78] CRESCE A, RUSSELL S, BAKER D, et al. In situ and quantitative characterization of solid electrolyte interphases[J]. Nano Letters, 2014, 14: 1405-1412.
[79] ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of SEI on silicon anode for lithium-Ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16: 13229.
[80] ZHAO H J, YU X Q, LI J D, et al. Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook[J]. Journal of Materials Chemistry A, 2019, 7: 8700-8722.
[81] MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2: 1337-1345.
[82] SCHRODER K, ALVARADO J, YERSAK T A, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chemistry of Materials, 2015, 27: 5531-5542.
[83] ZHOU M, JIN C, CAO Z, et al. Effects and attenuation mechanism analysis of a fluoroethylene carbonate additive on SiOx/graphite anode-based pouch cells[J]. Energy Fuels, 2022, 36: 1114-1120.
[84] HL A, WEN L A, XY A, et al. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition[J]. Chemical Engineering Journal, 2020, 408: 127454.
[85] HOU W B, ZHU D L, MA S D, et al. High-voltage nickel-rich layered cathodes in lithium metal batteries enabled by a sulfolane/fluorinated ether/fluoroethylene carbonate-based electrolyte design[J]. Journal of Power Sources, 2022, 230683: 517.
[86] XUE Q Z, XIN B C, XIANG C, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Function Materials, 2017, 27: 1605989.
[87] PRITZL D, SOLCHENBACH S, WETJEN M, et al. Analysis of vinylene carbonate (VC) as additive in graphite/LiNi0.5Mn1.5O4 cells[J]. Journal of the Electrochemical Society, 2017, 164: A2625-A2635.
[88] WANG D Y, SINHA N N, BURNS J C, et al. A high precision study of the electrolyte additives vinylene carbonate, vinyl ethylene carbonate and lithium bis(oxalate)borate in LiCoO2/graphite pouch cells[J]. Journal of Power Sources, 2014, 270: 68-78.
[89] MICHAN A L, PARIMALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-Ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016, 28: 02282.
[90] MOGI R, INABA M, JEONG S K, et al. Effects of some organic additives on lithium deposition in propylene carbonate[J]. Journal of the Electrochemical Society, 2002, 149: A1578-A1583.
[91] PAN J, CHENG Y T, QI Y. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes[J]. Physical Review B, 2015, 91: 1773-1783.
[92] LORGER S, MAIER J. Transport and charge carrier chemistry in lithium oxide[J]. Journal of the Electrochemical Society, 2019, 166: A2215-A2220.
[93] MA X, SHEN X, CHEN X, et al. The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes[J]. Small Struct, 2022, 3: 2200071.
[94] HIDEKI N, TADAHIKO K, AKINORI K, et al. Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes[J]. Journal of the Electrochemical Society, 2011, 158: A798.
[95] MICHAN A L, PARIMALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016, 28, 22: A-J.
[96] YS A, DL A, MMA B, et al. Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery[J]. Energy Storage Materials, 2022, 44: 156-167.
[97] XIAO Y H, WANG Y, BO S-H, et al. Understanding interface stability in solid-state batteries [J]. Nature Reviews Materials, 2020, 5: 105-26.
[98] CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via coble creep [J]. Nature, 2020, 578: 251.
[99] TAKAHASHI T, IWAHARA H. Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell[J]. Energy Conversion, 1971, 11: 105-111.
[100] HARADA Y, ISHIGAKI T, KAWAI H, et al. Lithium ion conductivity of polycrystalline perovskite La0.67-xLi3xTiO3 with ordered and disordered arrangements of the A-site ions[J]. Solid State Ionics, 1998, 108: 407-413.
[101] DEVIANNAPOORANI C, DHIVYA L, RAMAKUMAR S, et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. Journal of Power Sources, 2013, 240: 18-25.
[102] ZHANG D M, ZHUANG Z, GAO Y X, et al. Electrical properties and microstructure of nanocrystalline La(2-x)A(x)Mo(2)O(9-δ) (A = Ca, Sr, Ba, K) films[J].Solid State Ionics, 2010.181: 1510-1515.
[103] DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition optimization of the lithium-rich Li3OCl1–xBrx anti-perovskite superionic conductors[J]. Chemistry of Materials, 2015, 27(10): 3749.
[104] LI S, ZHU J, WANG Y, ET AL. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br)[J]. Solid State Ionics, 2016, 284: 14.
[105] LU X J, WU G, HOWARD J W, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity[J]. Chemical Communications, 2014, 50(78): 11520-11522.
[106] HUANG B X, YAO X Y, HUANG Z, et al. Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries[J]. Journal of Power Sources, 2015, 284: 206-211.
[107] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030.
[108] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5: 1-24.
[109] SUN C W, LIU J, GONG Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386.
[110] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589.
[111] ARMAND M, CHABAGNO J, DUCLOT M. Second international meeting on solid electrolytes [C]. Andrews, 1978: 1-15.
[112] WEI L, LIU Q H, GAO Y W, et al. Phase structure and helical jump motion of poly(ethylene oxide)/LiCF3SO3 crystalline complex: A high-resolution solid-state 13C NMR approach[J]. Macromolecules, 2013, 46: 4447-4453.
[113] KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136: 7395-7402.
[114] FU K, GONG Y H, DAI J Q, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 26.
[115] SUN J, STONE G M, BALSARA N P, et al. Structure–conductivity relationship for Peptoid-based PEO–mimetic polymer electrolytes[J]. Macromolecules, 2012, 45: 5151-5156.
[116] CHAI J C, LIU Z H, MA J, et al. In situ generation of Poly (Vinylene Carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4: 1-9.
[117] ZHAO Q, LIU X T, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4: 365-373.
[118] LIU C, ZHU F Y, HUANG Z H, et al. An integrate and ultra-flexible solid-state lithium battery enabled by in situ polymerized solid electrolyte[J]. Chemical Engineering Journal, 2022, 434: 134644.
[119] FENG X, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2017: 246-267.
[120] Zhang Z Z, Nazar L F. Exploiting the paddle-wheel mechanism for the design of fast ion conductors[J]. Nature Reviews Materials, 2022, 7: 389-405.
[121] LEE M J, HAN J H, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601: 217-222.
[122] Lin R Q, He Y B, Wang C Y, et al. Author correction: Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J]. Nature Nanotechnology, 2022, 17: 768-776.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM911
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544993
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
高廷松. 电解质对石墨/锂金属杂化负极全电池性能的影响机制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132036-高廷松-材料科学与工程(3995KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[高廷松]的文章
百度学术
百度学术中相似的文章
[高廷松]的文章
必应学术
必应学术中相似的文章
[高廷松]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。