中文版 | English
题名

有机催化硅-碳键断裂合成轴手性联芳基硅氧烷

其他题名
THE SYNTHESIS OF AXIALLY CHIRAL BIARYL SILOXANES VIA ORGANOCATALYTIC SI-C BOND CLEAVAGE
姓名
姓名拼音
WU Ming
学号
12032074
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
谭斌
导师单位
化学系
论文答辩日期
2023-05-24
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

轴手性联芳基化合物广泛存在于天然产物,生物活性分子、手性催化剂和手性配体中。其中 1,1’-联萘-2,2’-二酚(BINOL)等优势平台分子可通过简单转化实现多种轴手性化合物的高效合成,这使得新型轴手性平台分子的开发具有重要意义。碳-硅键的丰富化学转化使得轴手性联芳基硅化合物具有成为优势平台分子的潜力,因此开发其高效合成方法具有重要的科学意义和广阔的应用前景。然而目前合成轴手性联芳基硅化合物主要依赖金属催化的方法,活化模式和反应类型较少。本文的研究目标是通过活化模式的创新,即利用有机催化断裂 Si-C 键,实现轴手性联芳基硅化合物的催化不对称合成,从而推动有机催化的发展并为轴手性化学领域提供新的平台分子。

本文以手性布朗斯特酸为催化剂,通过芳环亲电活化的方式实现了二萘并噻咯类化合物的 Si-C 键断裂,高效完成了轴手性联芳基硅氧烷类化合物的催化不对称合成,收率最高可达 88%,对映体过量(ee)值最高可达 97%。借助控制实验和动力学同位素效应实验等机理验证手段,提出了反应可能经历不对称质子化/Si-C 键断裂/硅醇解的反应过程。目标产物可以作为手性平台分子,进一步转化为基于联芳基骨架的酚、四取代硅烷、碘代物、膦或膦氧化合物、胺或硫醚化合物,进一步拓展了该方法的应用场景。

另一方面,本文利用手性季铵盐/氟化铯催化体系,通过亲核活化的方式实现 Si-C 键断裂,完成了轴手性联芳基硅氧烷的高效不对称合成。为提高反应的效率和立体选择性,设计合成了一种基于联萘-1-氨基-2-茚醇骨架的手性季铵盐催化剂,催化剂在该反应中表现出优异的催化活性和立体控制效果,反应的产率最高可达 96%,非对映体比例(dr)值最高可达 91:9ee 值最高可达 99%。该方法将传统的氟脱硅基化反应用于构建轴手性骨架,为通过有机催化合成轴手性硅化合物提供了新策略。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] RENZI P. Organocatalytic synthesis of axially chiral atropisomers[J]. Organic & Biomolecular Chemistry, 2017, 15(21): 4506-4516.
[2] YAMANAKA K, RYAN K S, GULDER T A, et al. Flavoenzyme-catalyzed atropo-selective N,C-bipyrrole homocoupling in marinopyrrole biosynthesis[J]. Journal of the American Chemical Society, 2012, 134(30): 12434-12437.
[3] BRINGMANN G, GULDER T, GULDER T A M, et al. Atroposelective total synthesis of axially chiral biaryl natural products[J]. Chemical Reviews, 2011, 111(2): 563-639.
[4] BRINGMANN G, MENCHE D. Stereoselective total synthesis of axially chiral natural products via biaryl lactones[J]. Accounts of Chemical Research, 2001, 34(8): 615-624.
[5] COLLINS B S L, KISTEMAKER J C M, OTTEN E, et al. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle[J]. Nature Chemistry, 2016, 8(9): 860-866.
[6] SAPOTTA M, SPENST P, SAHA-MöLLER C R, et al. Guest-mediated chirality transfer in the host–guest complexes of an atropisomeric perylene bisimide cyclophane host[J]. Organic Chemistry Frontiers, 2019, 6(7): 892-899.
[7] CHENG J K, XIANG S H, LI S, et al. Recent advances in catalytic asymmetric construction of atropisomers[J]. Chemical Reviews, 2021, 121(8): 4805-4902.
[8] WANG Y B, TAN B. Construction of axially chiral compounds via asymmetric organocatalysis[J]. Accounts of Chemical Research, 2018, 51(2): 534-547.
[9] MIYASHITA A, YASUDA A, TAKAYA H, et al. Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids[J]. Journal of the American Chemical Society, 1980, 102(27): 7932–7934.
[10] AKIYAMA T, ITOH J, YOKOTA K, et al. Enantioselective mannich-type reaction catalyzed by a chiral Brønsted acid[J]. Angewandte Chemie International Edition, 2004, 43(12): 1566-1568.
[11] URAGUCHI D, TERADA M. Chiral Brønsted acid-catalyzed direct mannich reactions via electrophilic activation[J]. Journal of the American Chemical Society, 2004, 126(17): 5356–5357.
[12] NAKASHIMA D, YAMAMOTO H. Design of chiral N-triflyl phosphoramide as a strong chiral Brønsted acid and its application to asymmetric Diels-Alder reaction[J]. Journal of the American Chemical Society, 2006, 126(17): 5356–5357.
[13] PENG B, MA J, GUO J, et al. A powerful chiral super Brønsted C-H acid for asymmetric catalysis[J]. Journal of the American Chemical Society, 2022, 144(7): 2853-2860.66参考文献
[14] XU L W, LI L, LAI G Q, et al. The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis[J]. Chemical Society Reviews, 2011, 40: 1777-1790.
[15] BEEMELMANNS C, HUSMANN R, WHELLIGAN D K, et al. Planar-chiral bis-silanols and diols as H-bonding asymmetric organocatalysts[J]. European Journal of Organic Chemistry, 2012, (18): 3373-3376.
[16] SCHAFER A G, WIETING J M, FISHER T J, et al. Chiral silanediols in anion -binding catalysis[J]. Angewandte Chemie International Edition, 2013, 52: 11321-11324.
[17] GE Y, HUANG X, KE J, et al. Transition-metal-catalyzed enantioselective C-H silylation[J]. Chem Catalysis, 2022, 2: 2898-2928.
[18] SHINTANI R. Recent progress in catalytic enantioselective desymmetrization of prochiral organosilanes for the synthesis of silicon-stereogenic compounds[J]. Synlett, 2017, 29(04): 388-396.
[19] AHRENDT K A, BORTHS C J, MACMILLAN D W C. New strategies for organic catalysis:  The first highly enantioselective organocatalytic Diels-Alder reaction[J]. Journal of the American Chemical Society, 2000, 122(17): 4243–4244.
[20] REYES E, PRIETO L, MILELLI A. Asymmetric organocatalysis: A survival guide to medicinal chemists[J]. Molecules, 2022, 28(1).
[21] YANG H, YANG X, TANG W. Transition-metal catalyzed asymmetric carbon–carbon cross￾coupling with chiral ligands[J]. Tetrahedron, 2016, 72(41): 6143-6174.
[22] TANAKA K. Transition-metal-catalyzed enantioselective
[2+2+2] cycloadditions for the synthesis of axially chiral biaryls[J]. Chemistry-A Asian Journal, 2009, 4(4): 508-518.
[23] LIAO G, ZHANG T, LIN Z K, et al. Transition metal-catalyzed enantioselective C-Hfunctionalization via chiral transient directing group strategies[J]. Angewandte Chemie International Edition, 2020, 59(45): 19773-19786.
[24] LIU C X, ZHANG W W, YIN S Y, et al. Synthesis of atropisomers by transition-metal￾catalyzed asymmetric C-H functionalization reactions[J]. Journal of the American Chemical Society, 2021, 143(35): 14025-14040.
[25] ZHANG X, ZHAO K, GU Z. Transition metal-catalyzed biaryl atropisomer synthesis via a torsional strain promoted ring-opening reaction[J]. Accounts of Chemical Research, 2022, 55(12): 1620-1633.
[26] WENCEL-DELORD J, PANOSSIAN A, LEROUX F R, et al. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls[J]. Chemical Society Reviews, 2015, 44(11): 3418-3430.
[27] LI G Q, GAO H, KEENE C, et al. Organocatalytic aryl-aryl bond formation: An atroposelective
[3,3]-rearrangement approach to BINAM derivatives[J]. Journal of the American Chemical Society, 2013, 135(20): 7414-7417.
[28] DE C K, PESCIAIOLI F, LIST B. Catalytic asymmetric benzidine rearrangement[J]. Angewandte Chemie International Edition, 2013, 52(35): 9293-9295.67参考文献
[29] CHEN Y H, CHENG D J, ZHANG J, et al. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols[J]. Journal of the American Chemical Society, 2015, 137(48): 15062-15065.
[30] MOLITERNO M, CARI R, PUGLISI A, et al. Quinine-catalyzed asymmetric synthesis of 2,2'-binaphthol-type biaryls under mild reaction conditions[J]. Angewandte Chemie International Edition, 2016, 55(22): 6525-6529.
[31] COOMBS G, SAK M H, MILLER S J. Peptide-catalyzed fragment couplings that form axially chiral non-C2-symmetric biaryls[J]. Angewandte Chemie International Edition, 2020, 59(7): 2875-2880.
[32] WANG J Z, ZHOU J, XU C, et al. Symmetry in cascade chirality-transfer processes: A catalytic atroposelective direct arylation approach to BINOL derivatives[J]. Journal of the American Chemical Society, 2016, 138(16): 5202-5205.
[33] CHEN Y H, QI L W, FANG F, et al. Organocatalytic atroposelective arylation of 2 -naphthylamines as a practical approach to axially chiral biaryl amino alcohols[J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.
[34] LINK A, SPARR C. Organocatalytic atroposelective aldol condensation: Synthesis of axially chiral biaryls by arene formation[J]. Angewandte Chemie International Edition, 2014, 53(21): 5458-5461.
[35] LOTTER D, NEUBURGER M, RICKHAUS M, et al. Stereoselective arene -forming aldol condensation: Synthesis of configurationally stable oligo-1,2-naphthylenes[J]. Angewandte Chemie International Edition, 2016, 55(8): 2920-2923.
[36] WITZIG R M, FäSEKE V C, HäUSSINGER D, et al. Atroposelective synthesis of tetra -ortho-substituted biaryls by catalyst-controlled non-canonical polyketide cyclizations[J]. Nature Catalysis, 2019, 2(10): 925-930.
[37] GUSTAFSON J L, LIM D, MILLER S J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination[J]. Science, 2010, 328(5983): 1251 -1255.
[38] SHIRAKAWA S, WU X, MARUOKA K. Kinetic resolution of axially chiral 2-amino-1,1'-biaryls by phase-transfer-catalyzed N-allylation[J]. Angewandte Chemie International Edition, 2013, 52(52): 14200-14203.
[39] CHENG D J, YAN L, TIAN S K, et al. Highly enantioselective kinetic resolution of axially chiral BINAM derivatives catalyzed by a Brønsted acid[J]. Angewandte Chemie International Edition, 2014, 53(14): 3684-3687.
[40] LU S, POH S B, ZHAO Y. Kinetic resolution of 1,1'-biaryl-2,2'-diols and amino alcohols through NHC-catalyzed atroposelective acylation[J]. Angewandte Chemie International Edition, 2014, 53(41): 11041-11045.
[41] YANG G, GUO D, MENG D, et al. NHC-catalyzed atropoenantioselective synthesis of axially chiral biaryl amino alcohols via a cooperative strategy[J]. Nature Communications, 2019, 10(1): 3062.68参考文献
[42] LU S, POH S B, RONG Z Q, et al. NHC-catalyzed atroposelective acylation of phenols: Access to enantiopure NOBIN analogs by desymmetrization[J]. Organic Letters, 2019, 21(15): 6169-6172.
[43] BRINGMANN G, WALTER R, WEIRICH R. The directed synthesis of biaryl compounds: Modern concepts and strategies[J]. Angewandte Chemie International Edition, 1990, 29(9): 977-991.
[44] YU C, HUANG H, LI X, et al. Dynamic kinetic resolution of biaryl lactones v ia a chiral bifunctional amine thiourea-catalyzed highly atropo-enantioselective transesterification[J]. Journal of the American Chemical Society, 2016, 138(22): 6956-6959.
[45] WANG G, SHI Q, HU W, et al. Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids[J]. Nature Communications, 2020, 11(1): 946-954.
[46] CORRIU R J P, MOREAU J J E. Synthese asymetrique d'alcoxysilanes catalysee par des complexes du rhodium[J]. Tetrahedron Letters, 1973, 14(45): 4469-4472.
[47] OHTA T, ITO M, TSUNETO A, et al. Asymmetric synthesis of silanes with a stereogenic centre at silicon via hydrosilylation of symmetric ketones with prochiral diaryl silanes catalysed by BINAP–RhI complexes[J]. Journal of the Chemical Society, Chemical Communications,, 1994: 2525-2526.
[48] ZHU J, CHEN S, HE C. Catalytic enantioselective dehydrogenative Si-O coupling to access chiroptical silicon-stereogenic siloxanes and alkoxysilanes[J]. Journal of the American Chemical Society, 2021, 143(14): 5301-5307.
[49] YANG W, LIU L, GUO J, et al. Enantioselective hydroxylation of dihydrosilanes to Si￾chiral silanols catalyzed by in situ generated copper(II) species[J]. Angewandte Chemie International Edition, 2022, 61(32): e202205743.
[50] TAMAO K N, K. HIROYUKI, I. YAMAGUCHI, S. SHIRO, M. Axially chiral spirosilanes via catalytic asymmetric intramolecular hydrosilation[J]. Journal of the American Chemical Society, 1996, 118: 12469-12470.
[51] CHANG X, MA P L, CHEN H C, et al. Asymmetric synthesis and application of chiral spirosilabiindanes[J]. Angewandte Chemie International Edition, 2020, 59(23): 8937-8940.
[52] HUANG Y H, WU Y, ZHU Z, et al. Enantioselective synthesis of silicon-stereogenic monohydrosilanes by rhodium-catalyzed intramolecular hydrosilylation[J]. Angewandte Chemie International Edition, 2022, 61(1): e202113052.
[53] ZHAN G, TENG H L, LUO Y, et al. Enantioselective construction of silicon -stereogenic silanes by scandium-catalyzed intermolecular alkene hydrosilylation[J]. Angewandte Chemie International Edition, 2018, 57(38): 12342-12346.
[54] MU D, YUAN W, CHEN S, et al. Streamlined construction of silicon-stereogenic silanes by tandem enantioselective C-H silylation/alkene hydrosilylation[J]. Journal of the American Chemical Society, 2020, 142(31): 13459-13468.69参考文献
[55] YANG B, YANG W, GUO Y, et al. Enantioselective silylation of aliphatic C-H bonds for the synthesis of silicon-stereogenic dihydrobenzosiloles[J]. Angewandte Chemie International Edition, 2020, 59(49): 22217-22222.
[56] GUO Y, LIU M M, ZHU X, et al. Catalytic asymmetric synthesis of silicon -stereogenic dihydrodibenzosilines: Silicon central-to-axial chirality relay[J]. Angewandte Chemie International Edition, 2021, 60(25): 13887-13891.
[57] YASUTOMI Y, SUEMATSU H, KATSUKI T. Iridium(III)-catalyzed enantioselective Si−Hbond insertion and formation of an enantioenriched silicon center[J]. Journal of the American Chemical Society, 2010, 132: 4510-4511.
[58] IGAWA K, YOSHIHIRO D, ICHIKAWA N, et al. Catalytic enantioselective synthesis of alkenylhydrosilanes[J]. Angewandte Chemie International Edition, 2012, 51(51): 12745-12748.
[59] WEN H, WAN X, HUANG Z. Asymmetric synthesis of silicon-stereogenic vinylhydrosilanes by cobalt-catalyzed regio- and enantioselective alkyne hydrosilylation with dihydrosilanes[J]. Angewandte Chemie International Edition, 2018, 57(21): 6319-6323.
[60] KURIHARA Y, NISHIKAWA M, YAMANOI Y, et al. Synthesis of optically active tertiary silanes via Pd-catalyzed enantioselective arylation of secondary silanes[J]. Chemical Communications, 2012, 48(94): 11564-11566.
[61] CHEN L, HUANG J B, XU Z, et al. Palladium-catalyzed Si–C bond-forming silylation of aryl iodides with hydrosilanes: An enhanced enantioselective synthesis of silicon -stereogenic silanes by desymmetrization[J]. RSC Advances, 2016, 6(71): 67113-67117.
[62] KUNINOBU Y, YAMAUCHI K, TAMURA N, et al. Rhodium-catalyzed asymmetric synthesis of spirosilabifluorene derivatives[J]. Angewandte Chemie International Edition, 2013, 52(5): 1520-1522.
[63] MA W, LIU L C, AN K, et al. Rhodium-catalyzed synthesis of chiral monohydrosilanes by intramolecular C-H functionalization of dihydrosilanes[J]. Angewandte Chemie International Edition, 2021, 60(8): 4245-4251.
[64] ZENG Y, FANG X J, TANG R H, et al. Rhodium-catalyzed dynamic kinetic asymmetric hydrosilylation to access silicon-stereogenic center[J]. Angewandte Chemie International Edition, 2022, 61(51): e202214147.
[65] SHINTANI R, MORIYA K, HAYASHI T. Palladium-catalyzed enantioselective desymmetrization of silacyclobutanes: Construction of silacycles possessing a tetraorganosilicon stereocenter[J]. Journal of the American Chemical Society, 2011, 133(41): 16440-16443.
[66] SHINTANI R, MORIYA K, HAYASHI T. Palladium-catalyzed desymmetrization of silacyclobutanes with alkynes: Enantioselective synthesis of silicon-stereogenic 1-sila-2-cyclohexenes and mechanistic considerations[J]. Organic Letters, 2012, 14: 2902-2905.70参考文献
[67] CHEN H, CHEN Y, TANG X, et al. Rhodium-catalyzed reaction of silacyclobutanes with unactivated alkynes to afford silacyclohexenes[J]. Angewandte Chemie International Edition, 2019, 58(14): 4695-4699.
[68] ZHANG Q W, AN K, LIU L C, et al. Construction of chiral tetraorganosilicons by tandem desymmetrization of silacyclobutanes/intermolecular dehydrogenative silylation[J]. Angewandte Chemie International Edition, 2017, 56(4): 1125-1129.
[69] ZHANG J, YAN N, JU C W, et al. Nickel(0)-catalyzed asymmetric ring expansion toward enantioenriched silicon-stereogenic benzosiloles[J]. Angewandte Chemie International Edition, 2021, 60(49): 25723-25728.
[70] AN K, MA W, LIU L C, et al. Rhodium hydride enabled enantioselective intermolecular C￾H silylation to access acyclic stereogenic Si-H[J]. Nature Communications, 2022, 13(1): 847-856.
[71] SHINTANI R, MACIVER E E, TAMAKUNI F, et al. Rhodium-catalyzed asymmetric synthesis of silicon-stereogenic dibenzooxasilines via enantioselective transmetalation[J].Journal of the American Chemical Society, 2012, 134(41): 16955-16958.
[72] ONOE M, BABA K, KIM Y, et al. Rhodium-catalyzed carbon-silicon bond activation for synthesis of benzosilole derivatives[J]. Journal of the American Chemical Society, 2012, 134(47): 19477-19488.
[73] SHINTANI R, KURATA H, NOZAKI K. Rhodium-catalyzed intramolecular alkynylsilylation of alkynes[J]. Chemical Communications, 2015, 51(57): 11378-11381.
[74] KUMAR R, HOSHIMOTO Y, YABUKI H, et al. Nickel(0)-catalyzed enantio- and diastereoselective synthesis of benzoxasiloles: Ligand-controlled switching from inter- to intramolecular aryl-transfer process[J]. Journal of the American Chemical Society, 2015, 137(36): 11838-11845.
[75] FENG J, BI X, XUE X, et al. Catalytic asymmetric C-Si bond activation via torsional strain￾promoted Rh-catalyzed aryl-Narasaka acylation[J]. Nature Communications, 2020, 11(1): 4449-4460.
[76] BI X, FENG J, XUE X, et al. Construction of axial chirality and silicon -stereogenic center via Rh-catalyzed asymmetric ring-opening of silafluorenes[J]. Organic Letters, 2021, 23(8): 3201-3206.
[77] ZHOU H, HAN J T, NOTHLING N, et al. Organocatalytic asymmetric synthesis of Si￾stereogenic silyl ethers[J]. Journal of the American Chemical Society, 2022, 144(23): 10156-10161.
[78] ZHOU H, PROPERZI R, LEUTZSCH M, et al. Organocatalytic DYKAT of Si-stereogenic silanes[J]. Journal of the American Chemical Society, 2023, 145(9): 4994-5000.
[79] ISEKI K, NAGAI T, KOBAYASHI Y. Asymmetric trifluoromethylation of aldehydes and ketones with trifluoromethyltrimethylsilane catalyzed by chiral quaternary ammonium fluorides[J]. Tetrahedron Letters, 1994, 35(19): 3137-3138.71参考文献
[80] MIZUTA S, SHIBATA N, AKITI S, et al. Cinchona alkaloids/TMAF combination-catalyzed nucleophilic enantioselective trifluoromethylation of aryl ketones[J]. Organic Letters, 2007, 9(18): 3707–3710.
[81] CAO W, TAN D, LEE R, et al. Enantioselective 1,2-anionotropic rearrangement of acylsilane through a bisguanidinium silicate ion pair[J]. Journal of the American Chemical Society, 2018, 140(5): 1952-1955.
[82] DENMARK S E, CULLEN L R. Catalytic conjugate addition of acyl anion equivalents promoted by fluorodesilylation[J]. Organic Letters, 2014, 16(1): 70-73.
[83] LUO J, DENG Y, DENG T, et al. Catalytic enantioconvergent conjugate addition of organosilanes via a strategy of fluorodesilylation[J]. Journal of the American Chemical Society, 2022, 144(51): 23264-23270.
[84] CHEON C H, YAMAMOTO H. Super Brønsted acid catalysis [J]. Chemical Communications, 2011, 47(11): 3043-3056.
[85] BOTT R W, EABORN C, GREASLEY P M. Aromatic reactivity. Part XXVIII. The mechanism of acid cleavage of aryl-silicon, -germanium, -tin, and -lead bonds[J]. Journal of the Chemical Society, 1964: 4804-4806.
[86] WANG K, ZHOU J, JIANG Y, et al. Selective manganese-catalyzed oxidation of hydrosilanes to silanols under neutral reaction conditions[J]. Angewandte Chemie International Edition, 2019, 58(19): 6380-6384.
[87] LIU W, JIANG Q, YANG X. A versatile method for kinetic resolution of protecting -group￾free BINAMs and NOBINs through chiral phosphoric acid catalyzed triazane formation[J]. Angewandte Chemie International Edition, 2020, 59(52): 23598-23602.
[88] USANOV D L, YAMAMOTO H. Asymmetric nozaki-hiyama propargylation of aldehydes: Enhancement of enantioselectivity by cobalt co-catalysis[J]. Angewandte Chemie International Edition, 2010, 49(44): 8169-8172.
[89] WANG X, LI C, WANG X, et al. Metal-free etherification of aryl methyl ether derivatives by C-OMe bond cleavage [J]. Organic Letters, 2018, 20(14): 4267-4272.
[90] MOLLOY J J, SEATH C P, WEST M J, et al. Interrogating Pd(II) anion metathesis using a bifunctional chemical probe: A transmetalation switch[J]. Journal of the American Chemical Society, 2018, 140(1): 126-130.
[91] KE J, ZU B, GUO Y, et al. Hexafluoroisopropanol-enabled copper-catalyzed asymmetric halogenation of cyclic diaryliodoniums for the synthesis of axially chiral 2,2'-dihalobiaryls[J]. Organic Letters, 2021, 23(2): 329-333.
[92] SUN X, LI W, HOU G, et al. Axial chirality control by 2,4-pentanediol for the alternative synthesis of C3*-tunephos chiral diphosphine ligands and their applications in highly enantioselective ruthenium-catalyzed hydrogenation of β-keto esters[J]. Advanced Synthesis & Catalysis, 2009, 351(16): 2553-2557.72参考文献
[93] JIANG J, CHEN X, WANG J, et al. Chiral biphenylamide derivative: An efficient organocatalyst for the enantioselective synthesis of α-hydroxy phosphonates[J]. Organic & Biomolecular Chemistry, 2009, 7(21): 4355-4357.
[94] XU F, HUANG D, HAN C, et al. SPINOL-derived phosphoric acids: Synthesis and application in enantioselective Friedel-Crafts reaction of indoles with imines[J]. Journal of Organic Chemistry, 2010, 75(24): 8677-8680.
[95] LI Y P, ZHU S F, ZHOU Q L. Chiral spiro phosphoramide-catalyzed sulfa-michael addition/enantioselective protonation of exocyclic enones[J]. Organic Letters, 2019, 21(23): 9391-9395.

所在学位评定分委会
化学
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544994
专题理学院_化学系
推荐引用方式
GB/T 7714
伍铭. 有机催化硅-碳键断裂合成轴手性联芳基硅氧烷[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032074-伍铭-化学系.pdf(10896KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[伍铭]的文章
百度学术
百度学术中相似的文章
[伍铭]的文章
必应学术
必应学术中相似的文章
[伍铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。