[1] WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
[2] 汪品先. 大洋钻探五十年:回顾与前瞻[J]. 科学通报, 2018, 63(36): 9.
[3] ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[4] COXALL H K, PEARSON, P. N. The Eocene-Oligocene transition[M]. London: The Geological Society, 2007.
[5] LIU Y, CHEN W, FOLEY S F, et al. The largest negative carbon isotope excursions in Neoproterozoic carbonates caused by recycled carbonatite volcanic ash[J]. Science Bulletin, 2021, 66(18): 1925-1931.
[6] ZHISHENG A, GUOXIONG W, JIANPING L, et al. Global Monsoon Dynamics and Climate Change[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 29-77.
[7] 石广玉, 刘玉芝. 地球气候变化的米兰科维奇理论研究进展[J]. 地球科学进展, 2006, 21(3): 278-285.
[8] 田军,吴怀春,黄春菊,李明松,马超,汪品先. 从40万年长偏心率周期看米兰科维奇理论[J]. 地球科学, 2022, 47(10): 3543-3568.
[9] SUN Y B, CLEMENS S C, AN Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1-2): 33-48.
[10] CHENG H, LI H Y, SHA L J, et al. Milankovitch theory and monsoon[J]. The Innovation, 2022, 3(6): 1-13.
[11] 田军. 新生代的气候节律:赤道太平洋IODP 320/321航次[J]. 地球科学进展, 2009, 24(12): 1357-1360.
[12] ENGELBRECHT J P, DERBYSHIRE E. Airborne Mineral Dust[J]. Elements, 2010, 6(4): 241-246.
[13] WAN S, SUN Y, NAGASHIMA K. Asian dust from land to sea: processes, history and effect from modern observation to geological records[J]. Geological Magazine, 2020, 157(5): 701-706.
[14] TAGLIABUE A, BOWIE A R, BOYD P W, et al. The integral role of iron in ocean biogeochemistry[J]. Nature, 2017, 543(7643): 51-59.
[15] MAHOWALD N M, BAKER A R, BERGAMETTI G, et al. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochem Cycles, 2005, 19: GB4025.
[16] NISHIOKA J, OBATA H, HIRAWAKE T, et al. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production[J]. Journal of Oceanography, 2021, 77(4): 561-587.
[17] JAKOB K A, HO S L, MECKLER A N, et al. Stable Biological Production in the Eastern Equatorial Pacific Across the Plio-Pleistocene Transition (∼3.35–2.0 Ma)[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA003965.
[18] FOGWILL C J, TURNEY C S M, MENVIEL L, et al. Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal[J]. Nature Geoscience, 2020, 13(7): 489-497.
[19] MARTIN J H, FITZWATER S E. Iron deficiency limits phytoplankton growth in the north-east pacific subarctic[J]. Nature, 1988, 331(28): 341-343.
[20] GRIFFITH E M, PAYTAN A, EISENHAUER A, et al. Seawater calcium isotope ratios across the Eocene-Oligocene transition[J]. geology, 2011, 39(7): 683-686.
[21] RAYMO M E, RUDDIMAN W F. Tectonic forcing of late cenozoic climate[J]. Nature, 1992, 359(6391): 117-122.
[22] ISSON T T, PLANAVSKY N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J]. Nature, 2018, 560(7719): 471-475.
[23] 周自江., 章国材. 中国北方的典型强沙尘暴事件(1954~2002年)[J]. 科学通报, 2022, 48(11): 1224-1228.
[24] GRIFFIN D W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health[J]. Clinical Microbiology Reviews, 2007, 20(3): 459-477.
[25] KNIPPERTZ P, STUUT J. Mineral dust: A key player in the earth system[M]. London: Springer, 2014.
[26] WANG D, JIN C, JIN A, et al. Characterization of Fe(III)-reducing enrichment cultures and isolation of enterobacter sp. Nan-1 from the deep-sea sediment, South China Sea[J]. Journal of Ocean University of China, 2020, 19(4): 818-826.
[27] JICKELLS A, ANDERSEN, BAKER, BERGAMETTI, BROOKS, CAO. Global iron connections between desert dust, Ocean Biogeochemistry, and Climate[J]. Science, 2005, 308(1): 67-71.
[28] MARTINEZ A, ROSELL-MELE A, JACCARD S L, et al. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 2011, 476(7360): 312-315.
[29] LIU Z, ALEXANDER M. Atmospheric bridge oceanic tunnel and global climatic teleconnections[J]. Reviews of Geophysics 2007, 45(2): RG2005.
[30] ZHU R, HOU Z, GUO Z, et al. Summary of “the past, present and future of the habitable Earth: Development strategy of Earth science”[J]. Chinese Science Bulletin, 2021, 66(35): 4485-4490.
[31] HYEONG K, KIM J, PETTKE T, et al. Lead, Nd and Sr isotope records of pelagic dust: Source indication versus the effects of dust extraction procedures and authigenic mineral growth[J]. Chemical Geology, 2011, 286(3-4): 240-251.
[32] SEO I, LEE Y I, YOO C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11492-11504.
[33] JIANG F Q, ZHU X, LI T G, et al. Increased dust deposition in the Parece Vela Basin since the mid- Pleistocene inferred from radiogenic Sr and Nd isotopes[J]. Global and Planetary Change, 2019, 173: 83-95.
[34] SEO I, KIM M G, YOO C M, et al. Geochemically defined mean position of the Intertropical Convergence Zone in the central Pacific[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094432.
[35] LI Y, SHI W, AYDIN A, et al. Loess genesis and worldwide distribution[J]. Earth-Science Reviews, 2020, 201: 102947.
[36] 陈骏, 杨杰东, 李春雷. 大陆风化与全球气候变化[J]. 地球科学进展, 2001(3): 399-405.
[37] CHEN J, LI G J. Geochemical studies on the source region of Asian dust[J]. Science China: Earth Sciences, 2011, 54(9): 1279-1301.
[38] GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
[39] SUN Y, YAN Y, NIE J, et al. Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene[J]. Earth-Science Reviews, 2020, 200: 102963.
[40] ERHARDT A M, DOUGLAS G, JACOBSON A D, et al. Assessing sedimentary detrital Pb Isotopes as a dust tracer in the Pacific Ocean[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004144.
[41] STANCIN A, GLEASON J, REA D, et al. Radiogenic isotopic mapping of late Cenozoic eolian and hemipelagic sediment distribution in the east-central Pacific[J]. Earth and Planetary Science Letters, 2006, 248(3-4): 840-850.
[42] WU F, FANG X, YANG Y, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 684-700.
[43] 孙继敏,刘卫国,柳中辉,等. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊, 2017, 32(9): 951-958.
[44] BULLARD J E, HARRISON S P, BADDOCK M C, et al. Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models[J]. Journal of Geophysical Research-Earth Suface, 2011, 116: F04034.
[45] AO H, DUPONT-NIVET G, ROHLING E J, et al. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene-Oligocene transition[J]. Nature Communications, 2020, 11(1): 5249.
[46] ZHENG H, WEI X, TADA R, et al. Late Oligocene-early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences of the United States America, 2015, 112(25): 7662-7667.
[47] BLAKEY R. Global paleogeography[Z]. 2022-08-30
[48] NAKAI S, HALLIDAY A N, REA D. Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 119(1-2): 143-157.
[49] LIU Z, WEI G, WANG X, et al. Quantifying paleoprecipitation of the Luochuan and Sanmenxia Loess on the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 121-130.
[50] 汪品先. 古环境研究的新篇章[J]. 科学通报, 2015, 60(12): 1079-1080.
[51] DUCE R A, LISS P S, MERRILL J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochem Cycles, 1991, 5(3): 193-259.
[52] GAI C, LIU Q, ROBERTS A, et al. East Asian monsoon evolution since the late Miocene from the South China Sea[J]. Earth and Planetary Science Letters, 2019, 530: 115960.
[53] REA D K, SNOECKX H, JOSEPH L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224.
[54] REA D K, LEINEN M, JANECEK T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4688): 721-725.
[55] REA D K. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind[J]. Reviews of Geophysics, 1994, 32(2): 159-195.
[56] ABELL J T, WINCKLER G, ANDERSON R F, et al. Poleward and weakened westerlies during Pliocene warmth[J]. Nature, 2021, 589(7840): 70-75.
[57] ZHANG Q, LIU Q, ROBERTS A P, et al. Magnetotactic bacterial activity in the north Pacific Ocean and its relationship to Asian dust inputs and primary productivity since 8.0 Ma[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094687.
[58] GAI C, LIU Y, SHI X, et al. Recording fidelity of relative paleointensity characteristics in the North Pacific Ocean[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2021JB022068.
[59] ZHANG Q, LIU Q, ROBERTS A P, et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asian interior?[J]. geology, 2020, 48(1): 77-81.
[60] CHEN T, LIU Q, ROBERTS A, et al. A test of the relative importance of iron fertilization from aeolian dust and volcanic ash in the stratified high-nitrate low-chlorophyll subarctic Pacific Ocean[J]. Quaternary Science Reviews, 2020, 248: 106577.
[61] ZHANG Q, LIU Q, LI J, et al. An Integrated study of the eolian dust in pelagic sediments from the north Pacific Ocean based on environmental magnetism, transmission electron microscopy, and diffuse reflectance spectroscopy[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3358-3376.
[62] 张亚南., 仲义, 陈艇, 等. 北太平洋大洋钻探研究进展[J]. 海洋地质与第四纪地质, 2022, 42(5): 17-32.
[63] TANG Y, WAN S, CLIFT P D, et al. Northward shift of the northern hemisphere westerlies in the early to late Miocene and its links to Tibetan uplift[J]. Geophysical Research Letters, 2022, 49(18): e2022GL099311.
[64] HYEONG K, KURODA J, SEO I, et al. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition[J]. Scientific Reports, 2016, 6: 30647.
[65] YAO Z, SHI X, GUO Z, et al. Weakening of the South Asian summer monsoon linked to interhemispheric ice-sheet growth since 12 Ma[J]. Nature Communications, 2023, 14(829): 1-9.
[66] 秦蕴珊, 陈丽蓉, 石学法. 西菲律宾海风成沉积物的研究[J]. 科学通报, 1995, 40(17): 3.
[67] WAN S, YU Z, CLIFT P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326: 152-159.
[68] REGNIER P, RESPLANDY L, NAJJAR R G, et al. The land-to-ocean loops of the global carbon cycle[J]. Nature, 2022, 603(7901): 401-410.
[69] BERGER A L. Support for the astronomical theory of climate change[J]. Nature, 1977, 269: 44-45.
[70] JIAN Z M, WANG Y, DANG H W, et al. Warm pool ocean heat content regulates ocean-continent moisture transport[J]. Nature, 2022, 612(7938): 92-103.
[71] JIAN Z, DANG H, YU J, et al. Changes in deep Pacific circulation and carbon storage during the Pliocene-Pleistocene transition[J]. Earth and Planetary Science Letters, 2023, 605: 118020.
[72] GOUDIE A S, VILES H A. Weathering and the global carbon cycle: Geomorphological perspectives[J]. Earth-Science Reviews, 2012, 113(1-2): 59-71.
[73] KASHIWAGI H. Global climate change and weathering during the Phanerozoic[J]. Journal of Geography, 2017, 126(4): 513-531.
[74] GERNON T M, HINCKS T K, MERDITH A S, et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic[J]. Nature Geoscience, 2021, 14(9): 690-696.
[75] JACCARD S L, GALBRAITH E D, SIGMAN D M, et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 156-165.
[76] ALDAMA‐CAMPINO A, FRANSNER F, ÖDALEN M, et al. Meridional ocean carbon transport[J]. Global Biogeochemical Cycles, 2020, 34(9): e2019GB006336.
[77] OSCHLIES A, BRANDT P, STRAMMA L, et al. Drivers and mechanisms of ocean deoxygenation[J]. Nature Geoscience, 2018, 11(7): 467-473.
[78] MARZOCCHI A, JANSEN M F. Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice[J]. Nature Geoscience, 2019, 12(12): 1001-1005.
[79] RAE J W B, ZHANG Y G, LIU X, et al. Atmospheric CO2 over the past 66 million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 609-641.
[80] WANG D, ROBERTS A P, ROHLING E J, et al. Equatorial Pacific dust fertilization and source weathering influences on Eocene to Miocene global CO2 decline[J]. Communications Earth & Environment, 2023, 4(1): 37.
[81] TURNER J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130: 205-248.
[82] LE MOIGNE F A C. Pathways of organic carbon downward transport by the oceanic biological carbon pump[J]. Frontiers in Marine Science, 2019, 6: 634.
[83] 汪品先,田军,黄恩清,等. 地球系统与演变[M]. 北京: 科学出版社, 2018.
[84] TURNER J T, FERRANTE J G. Zooplankton fecal pellets in aquatic ecosystems[J]. BioScience, 1979, 29(11): 670–677.
[85] TURNER J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms[J]. Aquatic Microbial Ecology, 2002, 27(1): 57-102.
[86] BUESSELER K O, BOYD P W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean[J]. Limnology and Oceanography, 2009, 54(4): 1210-1232.
[87] PASSOW U, CARLSON C A. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249-271.
[88] VOLK T, HOFFERT M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]//SUNDQUIST E T, BROECKER W S. The Carbon Cycle and Atmospheric CO2: Natural variations Archaean to Present. USA; American Geophysical Union. 1985: 99-110.
[89] ROCHA C L, PASSOW U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(5-7): 639-658.
[90] MARTIN J H, KNAUER G A, KARL D M, et al. VERTEX: carbon cycling in the northeast Pacific[J]. Deep-Sea Research Part A-Oceanographic Research Papers, 1987, 34(2): 267–285.
[91] GRIFFITH E M, THOMAS E, LEWIS A R, et al. Bentho-Pelagic decoupling: the marine biological carbon pump during Eocene hyperthermals[J]. Paleoceanography and Paleoclimatology, 2021, 36(3): e2020PA004053.
[92] KOLBER Z S, BARBER R T, COALE K H, et al. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean[J]. Nature, 1994, 371(6493): 145-149.
[93] STOLL H. 30 years of the iron hypothesis of ice ages[J]. Nature, 2020, 578(7795): 370-371.
[94] POULTON S W, RAISWELL R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition[J]. American Journal of Science, 2002, 302(9): 774-805.
[95] HOMOKY W B. Deep ocean iron balance[J]. Nature Geoscience, 2017, 10(3): 162-163.
[96] EADCZEWSKI O E. Eolian deposits in marine sediments, in Recent Marine Sediments[M]. Tulsa, Okla: American Association of Petroleum Geologists, 1939.
[97] 刘喜停, 颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
[98] TORTELL P D, MALDONADO M T, GRANGER J, et al. Marine bacteria and biogeochemical cycling of iron in the oceans[J]. FEMS Microbiology ecology, 1999, 29(1): 1-11.
[99] BUCHAN A, LECLEIR G R, GULVIK C A, et al. Master recyclers: features and functions of bacteria associated with phytoplankton blooms[J]. Nature Reviews Microbiology, 2014, 12(10): 686-698.
[100] COALE K H, JOHNSON K S, FITZWATER S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J]. Nature, 1996, 383(6600): 495-501.
[101] MARTIN J H. Glacial-interglacial CO2 change: The Iron Hypothesis[J]. Paleoceanography, 1990, 5(1): 1-13.
[102] ARCHER D, WINGUTH A, LEA D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles?[J]. Reviews of Geophysics, 2000, 38(2): 159-189.
[103] RTHLISBERGER R, BIGLER M, WOLFF E W, et al. Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation[J]. Geophysical Research Letters, 2004, 31(16): L16207.
[104] LAURENT, BOPP, KAREN, et al. Dust impact on marine biota and atmospheric CO2 during glacial periods[J]. Paleoceanography, 2003, 18(2): 1046.
[105] BUESSELER K O. The great iron dump[J]. Nature, 2012, 487: 305–306.
[106] SHOENFELT E M, WINCKLER G, LAMY F, et al. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11180-11185.
[107] MURRAY R W. Terrigenous Fe input and biogenicsedimentationin the glacial and interglacial equatorial Pacific Ocean[J]. Global Biogeochem Cycles, 1995, 9(4): 667-684.
[108] YAMASHITA Y, TANOUE E. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior[J]. Nature Geoscience, 2008, 1(9): 579-582.
[109] DE LA FUENTE M, CALVO E, SKINNER L, et al. The evolution of deep ocean chemistry and respired carbon in the eastern Equatorial pacific over the last deglaciation[J]. Paleoceanography, 2017, 32(12): 1371-1385.
[110] JACOBEL A W, MCMANUS J F, ANDERSON R F, et al. Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles[J]. Nature Communications, 2017, 8(1): 1727.
[111] BRADTMILLER L I, ANDERSON R F, SACHS J P, et al. A deeper respired carbon pool in the glacial equatorial Pacific Ocean[J]. Earth and Planetary Science Letters, 2010, 299(3-4): 417-425.
[112] KHATIWALA S, SCHMITTNER A, MUGLIA J. Air-sea disequilibrium enhances ocean carbon storage during glacial periods[J]. Science Advances, 2019, 5(6): eaaw4981.
[113] RICHARDSON P L. On the history of meridional overturning circulation schematic diagrams[J]. Progress in Oceanography, 2008, 76(4): 466-486.
[114] TALLEY L D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports[J]. Oceanography, 2013, 26(1): 80-97.
[115] EAGLES G, JOKAT W. Tectonic reconstructions for paleobathymetry in Drake Passage[J]. Tectonophysics, 2014, 611: 28-50.
[116] SCHER H. Carbon–ocean gateway links[J]. Nature Geoscience, 2017, 10(3): 164-165.
[117] KATZ M E, CRAMER B S, TOGGWEILER J R, et al. Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure[J]. Science, 2011, 332(6033): 1076-1079.
[118] TOUMOULIN A, DONNADIEU Y, LADANT J B, et al. Quantifying the effect of the Drake passage opening on the Eocene ocean[J]. Paleoceanography and Paleoclimatology, 2020, 35(8): e2020PA003889.
[119] BROECKER W S. The biggest chill[J]. Natural History, 1987, 96(10): 74-82.
[120] BROECKER W S, PEACOCK S L, WALKER S, et al. How much deep water is formed in the Southern Ocean?[J]. Journal of Geophysical Research: Oceans, 1998, 103(8): 15833-15843.
[121] KEY R M, KOZYR A, SABINE C L, et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP)[J]. Global Biogeochemical Cycles, 2004, 18(4): 1-23.
[122] KROOPNICK P M. The distribution of C13 of Sigma CO2 in the world oceans[J]. Deep-Sea Research Part A-Oceanographic Research Papers, 1985, 32(1): 57-84.
[123] FIEDLER P C, TALLEY L D. Hydrography of the eastern tropical Pacific: A review[J]. Progress in Oceanography, 2006, 69(2-4): 143-180.
[124] JACCARD S L, GALBRAITH E D, MARTINEZ A, et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age[J]. Nature, 2016, 530(7589): 207-210.
[125] 谢树成, 黄咸雨, 黄俊华, 等. 重大地质突变期生物与环境事件的分子化石记录[J]. 地学前缘, 2006, 13(6): 208-217.
[126] XIE S, YIN H. Progress and perspective on frontiers of geobiology[J]. Science China Earth Sciences, 2013, 57(5): 855-868.
[127] LIN W, PATERSON G A, ZHU Q Y, et al. Origin of microbial biomineralization and magnetotaxis during the Archean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2171-2176.
[128] 车遥, 孙振亚, 陈敬中. 现代沉积环境中铁的微生物矿化作用[J]. 高校地质学报, 2000, 6(2): 278-281.
[129] LI J, LIU P, TAMAXIA A, et al. Diverse intracellular inclusion types within magnetotactic bacteria: implications for biogeochemical cycling in aquatic environments[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(7): e2021JG006310.
[130] 谢树成, 杨欢, 党心悦, et al. 地质微生物响应地质环境变化的若干问题—兼论环境代用指标的应用[J]. 地质评论, 2018, 64(1): 183-189.
[131] AMSLER H E, THÖLE L M, STIMAC I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the past, 2022, 18(8): 1797-1813.
[132] XIE S, JIAO N, LUO G, et al. Evolution of biotic carbon pumps in Earth history: microbial roles as a carbon sink in oceans[J]. Chinese Science Bulletin, 2021, 67(15): 1715-1726.
[133] LYLE M. Bloom without fertilizer[J]. Nature Geoscience, 2008, 1(9): 576-578.
[134] XIE S, JIAO N, WANG P. Promoting studies on the geological evolution of marine biological carbon pumps[J]. Chinese Science Bulletin, 2022, 67(15): 1597-1599.
[135] ROBERTS A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151: 1-47.
[136] BECKLER J S, JONES M E, TAILLEFERT M. The origin, composition, and reactivity of dissolved iron(III) complexes in coastal organic- and iron-rich sediments[J]. Geochimica et Cosmochimica Acta, 2015, 152: 72-88.
[137] JIMENEZ-LOPEZ C, ROMANEK C S, BAZYLINSKI D A. Magnetite as a prokaryotic biomarker: A review[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115: G00G03.
[138] WU W, LI B, HU J, et al. Iron reduction and magnetite biomineralization mediated by a deep-sea iron-reducing bacterium Shewanella piezotolerans WP3[J]. Journal of Geophysical Research, 2011, 116: G04034.
[139] KOPP R E, KIRSCHVINK J L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria[J]. Earth-Science Reviews, 2008, 86(1-4): 42-61.
[140] 潘永信, 邓成龙, 刘青松, 等. 趋磁细菌磁小体的生物矿化作用和磁学性质研究进展[J]. 科学通报, 2004, 49(24): 2505-2510.
[141] UEBE R, SCHULER D. Magnetosome biogenesis in magnetotactic bacteria[J]. Nature Reviews Microbiology, 2016, 14(10): 621-637.
[142] AMOR M, MATHON F P, MONTEIL C L, et al. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples[J]. Environ Microbiol, 2020, 22(9): 3611-3632.
[143] LI J H, LIU P Y, MENGUY N, et al. Intracellular silicification by early-branching magnetotactic bacteria[J]. Science Advances, 2022, 8(19): eabn6045.
[144] LI J, MENGUY N, ROBERTS A P, et al. Bullet-shaped magnetite biomineralization within a magnetotactic deltaproteobacterium: implications for magnetofossil identification[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(7): e2020JG005680.
[145] KIRSCHVINK J L, CHANG S B R. Ultrafine-grained magnetite in deep-sea sediments: possible bacterial magnetofossils[J]. geology, 1984, 12(9): 559-562.
[146] EGLI R. Characterization of individual rock magnetic components by analysis of remanence curves1. Unmixing Natural Sediments[J]. Studia Geophysica et Geodaetica, 2004, 48(2): 391-446.
[147] ROBERTS A P, PIKE C R, VEROSUB K L. First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B12): 28461-28475.
[148] LIU Q S, ROBERTS A P, LARRASOAÑA J C, et al. Environmental magnetism: Principles and applications[J]. Reviews of Geophysics, 2012, 50(4): 1-50.
[149] LARRASOANA J C, LIU Q S, HU P X, et al. Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain[J]. Frontiers in Microbiology, 2014, 5: 71.
[150] CHANG L, ROBERTS A P, WILLIAMS W, et al. Giant magnetofossils and hyperthermal events[J]. Earth and Planetary Science Letters, 2012, 351: 258-269.
[151] YAMAZAKI T, SHIMONO T. Abundant bacterial magnetite occurrence in oxic red clay[J]. geology, 2013, 41(11): 1191-1194.
[152] ROBERTS A P, HU P, HARRISON R J, et al. Domain state diagnosis in rock magnetism: Evaluation of potential alternatives to the Day diagram[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5286-5314.
[153] ROBERTS A P, FLORINDO F, VILLA G, et al. Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron[J]. Earth and Planetary Science Letters, 2011, 310(3-4): 441-452.
[154] CHANG L, HARRISON R J, ZENG F, et al. Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene-Eocene Thermal Maximum[J]. Nature Communications, 2018, 9(1): 4007.
[155] LI J H, PAN Y X. Environmental factors affect magnetite magnetosome synthesis in magnetospirillum magneticum AMB-1: Implications for biologically controlled mineralization[J]. Geomicrobiology Journal, 2012, 29(4): 362-373.
[156] YAMAZAKI T, FU W, SHIMONO T, et al. Unmixing biogenic and terrigenous magnetic mineral components in red clay of the Pacific Ocean using principal component analyses of first-order reversal curve diagrams and paleoenvironmental implications[J]. Earth, Planets and Space, 2020, 72(1): 120.
[157] YAMAZAKI T, KAWAHATA H. Organic carbon flux controls the morphology of magnetofossils in marine sediments[J]. geology, 1998, 26(12): 1064-1066.
[158] SHAO Y, WYRWOLL K H, CHAPPELL A, et al. Dust cycle: An emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204.
[159] SUN Y B, AN Z S, CLEMENS S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2010, 297(3-4): 525-535.
[160] LI J X, YUE L P, ROBERTS A P, et al. Global cooling and enhanced Eocene Asian mid-latitude interior aridity[J]. Nature Communications, 2018, 9(1): 3026.
[161] BYRNE M P, PENDERGRASS A G, RAPP A D, et al. Response of the intertropical convergence zone to climate change: Location, width, and strength[J]. Current Climate Change Reports, 2018, 4(4): 355-370.
[162] ERHARDT A. Tropical ties[J]. Nature Geoscience, 2017, 10(10): 714-715.
[163] WALSH J J. Herbivory as a factor in patterns of nutrient utilization in the sea[J]. Limnology and Oceanography, 1976, 21(1): 1-13.
[164] ZIEGLER C L, MURRAY R W, PLANK T, et al. Sources of Fe to the equatorial Pacific Ocean from the Holocene to Miocene[J]. Earth and Planetary Science Letters, 2008, 270(3-4): 258-270.
[165] MURRAY R W, LEINEN M, KNOWLTON C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean[J]. Nature Geoscience, 2012, 5(4): 270-274.
[166] LOVELEY M R, MARCANTONIO F, WISLER M M, et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years[J]. Nature Geoscience, 2017, 10(10): 760-764.
[167] COALE K H, FITZWATER S E, GORDON R M, et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean[J]. Nature, 1996, 379(6566): 621-624.
[168] WELLS M L, VALLIS G K, SILVER E A. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean[J]. Nature, 1999, 398(6728): 601-604.
[169] WINCKLER G, ANDERSON R F, JACCARD S L, et al. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6119-6124.
[170] COSTA K M, MCMANUS J F, ANDERSON R F, et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age[J]. Nature, 2016, 529(7587): 519-522.
[171] JACOBEL A W, ANDERSON R F, WINCKLER G, et al. No evidence for equatorial Pacific dust fertilization[J]. Nature Geoscience, 2019, 12(3): 154-155.
[172] CESSI P. The global overturing circulation[J]. Annual Review of Marine Science, 2019, 11: 249-270.
[173] MARCANTONIO F, HOSTAK R, HERTZBERG J E, et al. Deep equatorial Pacific Ocean oxygenation and atmospheric CO2 over the Last Ice Age[J]. Scientific Reports, 2020, 10(1): 6606.
[174] JACCARD S L, GALBRAITH E D, FROLICHER T L, et al. Ocean (de)oxygenation across the last deglaciation insights for the future[J]. Oceanography, 2014, 27(1): 26-35.
[175] GOTTSCHALK J, SKINNER L C, LIPPOLD J, et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes[J]. Nature Communications, 2016, 7: 11539.
[176] TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II-Topical Studies in Oceanography, 2009, 56(8-10): 554-577.
[177] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240.
[178] MARCANTONIO F, LOVELEY M R, SCHMIDT M W, et al. Reply to: No evidence for equatorial Pacific dust fertilization[J]. Nature Geoscience, 2019, 12(3): 156-156.
[179] LICHT A, VAN CAPPELLE M, ABELS H A, et al. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513(7519): 501-506.
[180] 李三忠, 曹现志, 王光增, 等. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677.
[181] PARÉS J M, MOORE T C. New evidence for the Hawaiian hotspot plume motion since the Eocene[J]. Earth and Planetary Science Letters, 2005, 237(3-4): 951-959.
[182] PÄLIKE H, LYLE M W, AHAGON N, et al. Pacific equatorial age transect[J]. Integrated Ocean Drilling Program Scientific Prospectus 320/321, 2008.
[183] MURRAY J W, BARBER R T. Physical and biological controls on carbon cycling in the equatorial Pacific[J]. Science, 1994, 266(5182): 58-65.
[184] PÄLIKE H, NISHI H, LYLE M, et al. Expedition 320/321 summary[R]. Tokyo, 2010.
[185] 周恩济, 钱步东. 水文气候学研究的一部重要著作—《水文循环的大气过程》[J]. 水科学进展, 1989, 9(2): 98-99.
[186] MCGEE D, FERREIRA D, MARSHALL J, et al. The Relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum[J]. Journal of Climate, 2013, 26(11): 3597-3618.
[187] GEEN R, BORDONI S, BATTISTI D S, et al. Monsoons, ITCZs, and the concept of the global monsoon[J]. Reviews of Geophysics, 2020, 58(4): 1-45.
[188] TOGGWEILER J. Shifting westerlies[J]. Science, 2009, 323(5920): 1434-1435.
[189] NICHOLSON S E. The ITCZ and the seasonal cycle over equatorial africa[J]. Bulletin of the American Meteorological Society, 2018, 99(2): 337-348.
[190] SCHNEIDER T, BISCHOFF T, HAUG G H. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513(7516): 45-53.
[191] MCGEE D, DONOHOE A, MARSHALL J, et al. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene[J]. Earth and Planetary Science Letters, 2014, 390: 69-79.
[192] TALLEY L D, FEELY R A, SLOYAN B M, et al. Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography[J]. Annual Review of Marine Science, 2016, 8: 185-215.
[193] MCPHADEN M, SANTOSO A, CAI W. El Nino Southern Oscillation in a changing climate[M]. American: Wiley, 2020.
[194] ZHAO S, COOK K H. Influence of Walker circulations on East African rainfall[J]. Climate Dynamics, 2021, 56(7-8): 2127-2147.
[195] CAI W J, SANTOSO A, COLLINS M, et al. Changing El Nino-Southern Oscillation in a warming climate[J]. Nature Reviews Earth and Environment, 2021, 2(9): 628-644.
[196] HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299-308.
[197] NAN F, XUE H J, YU F. Kuroshio intrusion into the South China Sea: A review[J]. Progress in Oceanography, 2015, 137: 314-333.
[198] DUGDALE R C, WISCHMEYER A G, WILKERSON F P, et al. Meridional asymmetry of source nutrients to the equatorial Pacific upwelling ecosystem and its potential impact on ocean–atmosphere CO2 flux; a data and modeling approach[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 49: 2513-2531.
[199] HALUNEN A J, VONHERZE.R. P. Heat flow in the western Equatorial Pacific Ocean[J]. Journal of Geophysical Research, 1973, 78(23): 5195-5208.
[200] FIRING E, WIJFFELS S E, HACKER P. Equatorial subthermocline currents across the Pacific[J]. Journal of Geophysical Research-Oceans, 1998, 103(C10): 21413-21423.
[201] CRAVATTE S, KESSLER W S, MARIN F. Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats[J]. Journal of Physical Oceanography, 2012, 42(9): 1475-1485.
[202] RYAN J P, UEKI I, CHAO Y, et al. Western Pacific modulation of large phytoplankton blooms in the central and eastern equatorial Pacific[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111(G2): 1-14.
[203] RAFTER P A, SIGMAN D M. Spatial distribution and temporal variation of nitrate nitrogen and oxygen isotopes in the upper equatorial Pacific Ocean[J]. Limnology and Oceanography, 2016, 61(1): 14-31.
[204] SARMIENTO J L, GRUBER N, BRZEZINSKI M A, et al. High-latitude controls of thermocline nutrients and low latitude biological productivity[J]. Nature, 2004, 427(6969): 56-60.
[205] SCHER H D, MARTIN E E. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes[J]. Earth and Planetary Science Letters, 2004, 228(3-4): 391-405.
[206] ZIEGLER C L, MURRAY R W, HOVAN S A, et al. Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean[J]. Earth and Planetary Science Letters, 2007, 254(3-4): 416-432.
[207] OLIVAREZ A M, OWEN R M, REA D K. Geochemistry of eolian dust in Pacific pelagic sediments: Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2147-2158.
[208] 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6): 1208-1219.
[209] 万世明, 李安春. 海洋风尘沉积的古气候学研究进展[J]. 地球科学进展, 2004, 19(6): 955-962.
[210] 万世明, 蒋恒毅, 李安春. 海洋沉积物中石英单矿物的化学分离[J]. 海洋地质与第四纪地质, 2003, 23(3): 123-128.
[211] ZIEGLER C L, MURRAY R W. Geochemical evolution of the central Pacific Ocean over the past 56 Myr[J]. Paleoceanography, 2007, 22(2): 1-22.
[212] WINCKLER G, ANDERSON R F, FLEISHER M Q, et al. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica[J]. Science, 2008, 320(5872): 93-96.
[213] SERNO S, WINCKLER G, ANDERSON R F, et al. Change in dust seasonality as the primary driver for orbital-scale dust storm variability in East Asia[J]. Geophysical Research Letters, 2017, 44(8): 3796-3805.
[214] THOMPSON R, OLDFIELD F. Environmental magnetism[M]. London: Springer, 1986.
[215] SHIMONO T, YAMAZAKI T. Environmental rock-magnetism of Cenozoic red clay in the South Pacific gyre[J]. Geochemistry Geophysics Geosystems, 2015, 17(4): 1296-1311.
[216] MOSKOWITZ B M, BAZYLINSKI D A, EGLI R, et al. Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA)[J]. Geophysical Journal International, 2008, 174(1): 75-92.
[217] AMOR M, WAN J, EGLI R, et al. Key signatures of magnetofossils elucidated by mutant magnetotactic bacteria and micromagnetic calculations[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): 1-30.
[218] DUNLOP D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc):1. Theoretical curves and tests using titanomagnetite data[J]. Journal of Geophysical Research-Solid Earth, 2002, 107(B3):1-22.
[219] TAUXE L. Sedimentary records of relative paleointensity of the geomagnetic field theory and practice[J]. Reviews of Geophysics, 1993, 31(3): 319-354.
[220] EGLI R. VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams[J]. Global and Planetary Change, 2013, 110: 302-320.
[221] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(04): 1041-1048.
[222] DUAN Z Q, GAO X, LIU Q S. Anhysteretic remanent magnetization (ARM)and its application to geoscience (in Chinese)[J]. Progress in Geophys, 2012, 27(5): 1929-1938.
[223] HESLOP D, DILLON M. Unmixing magnetic remanence curves without a prior knowledge[J]. Geophysical Journal International, 2007, 170(2): 556-566.
[224] KRUIVER P P, DEKKERS M J, HESLOP D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation[J]. Earth & Planetary Science Letters, 2001, 189(3-4): 269-276.
[225] LI J, LIU Y, LIU S, et al. Classification of a complexly mixed magnetic mineral assemblage in Pacific Ocean surface sediment by electron microscopy and supervised magnetic unmixing[J]. Frontiers in Earth Science, 2020, 8: 609058.
[226] LYLE M, WILSON P A. Leg 199 Synthesis: Evolution of the Equatorial Pacific in the early Cenozoic[M]. Proceedings of the Ocean Drilling Program, 199 Scientific Results. 2006.
[227] WESTERHOLD T, RÖHL U, WILKENS R, et al. Revised composite depth scales and integration of IODP Sites U1331-U1334 and ODP Sites 1218-1220[J]. proceedings of the integrated ocean drilling program, 2012, 145: 1-286.
[228] JIANG Z X, LIU Q S, COLOMBO C, et al. Quantification of Al-goethite from diffuse reflectance spectroscopy and magnetic methods[J]. Geophysical Journal International, 2014, 196(1): 131-144.
[229] MORTLOCK R A. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research, 1989, 36: 1415-1426.
[230] TAYLOR S R, MCLENNAN S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
[231] GROUSSET F E, BISCAYE P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes[J]. Chemical Geology, 2005, 222(3-4): 149-167.
[232] FAURE G. The Sm-Nd method of dating[J]. Principles of Isotope Geology, 1986, 35: 239-248.
[233] YOKOO Y, NAKANO T, NISHIKAWA M, et al. Mineralogical variation of Sr–Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific[J]. Chemical Geology, 2004, 204(1-2): 45-62.
[234] 濮巍, 高剑峰, 赵葵东, 等. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J]. 南京大学学报, 2005(4): 445-450.
[235] NESBITT H W, YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
[236] MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology, 1993, 101: 295-303.
[237] JIANG X D, ZHAO X Y, ZHAO X, et al. Quantifying contributions of magnetic inclusions within silicates to marine sediments: A dissolution approach to isolating volcanic signals for improved paleoenvironmental reconstruction[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): 1-18.
[238] ANDERSON R, FLEISHER M, LAO Y. Glacial–interglacial variability in the delivery of dust to the central equatorial Pacific Ocean[J]. Earth and Planetary Science Letters, 2006, 242(3-4): 406-414.
[239] XIONG S, DING Z, ZHU Y, et al. A ∼6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess–red clay deposit[J]. Quaternary Science Reviews, 2010, 29(15-16): 1911-1922.
[240] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEP–DOE AMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11): 1631-1643.
[241] RIPPERT N, MAX L, MACKENSEN A, et al. Alternating Influence of northern versus southern-sourced water masses on the equatorial Pacific subthermocline during the past 240 ka[J]. Paleoceanography, 2017, 32(11): 1256-1274.
[242] YAMAZAKI T. Magnetostatic interactions in deep-sea sediments inferred from first-order reversal curve diagrams: Implications for relative paleointensity normalization[J]. Geochemistry Geophysics Geosystems, 2008, 9(2): 1-12.
[243] HESLOP D. Numerical strategies for magnetic mineral unmixing[J]. Earth-Science Reviews, 2015, 150: 256-284.
[244] HU P X, JIANG Z X, LIU Q S, et al. Estimating the concentration of aluminum-substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4180-4194.
[245] EGLI R. Characterization of individual rock magnetic components by analysis of remanence curves: 2. Fundamental properties of coercivity distributions[J]. Physics and Chemistry of the Earth, 2004, 29(13-14): 851-867.
[246] EGLI R, CHEN A P, WINKLHOFER M, et al. Detection of noninteracting single domain particles using first-order reversal curve diagrams[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): 1-22.
[247] CHANG L, ROBERTS A P, HESLOP D, et al. Widespread occurrence of silicate-hosted magnetic mineral inclusions in marine sediments and their contribution to paleomagnetic recording[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 8415-8431.
[248] SNOECKX H, REA D K, JONES C E, et al. Eolian and silica deposition in the central North Pacific: Results from Sites 885/886, in Rea D K. et al., Proceedings of the Ocean Drilling Program, Scientific Results, Volume 145: College Station, Texas, Ocean Drilling Program, [J]. 1995: 219-230.
[249] LIU Q, ROBERTS A P. What do the HIRM and S-ration really measure in environmental magnetism?[J]. Geochemistry Geophysics Geosystems, 2007, 8: 1-10.
[250] DEATON B C, BALSAM W L. Visible spectroscopy: a rapid method for determining hematite and goethite concentration in geological materials[J]. Journal of Sedimentary Petrology, 1991, 61(4): 628-632.
[251] FLOHN H. A hemispheric circulation asymmetry during late Tertiary[J]. Geologische Rundschau, 1981, 70(2): 725–736.
[252] ZHENG H B. Asia dust production ramped up since latest Oligocene driven by Tibetan Plateau uplift[J]. National Science Review, 2016, 3(3): 271-274.
[253] ZHANG J, XING F, KRIJGSMAN W, et al. Palaeogeographic reconstructions of the Eocene-Oligocene Tarim Basin (NW China): Sedimentary response to late Eocene sea retreat[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587: 1-17.
[254] SUN J, WINDLEY B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. geology, 2015, 43(11): 1015-1018.
[255] LIU Z H, MARK P, DAVID Z, et al. Global cooling during the Eocene-Oligocene climate transition[J]. Science, 2009, 323(5918): 1187-1190.
[256] NESBITT H W, MARKOVICS G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
[257] GOSWAMI P, HE K, LI J, et al. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications[J]. NPJ Biofilms Microbiomes, 2022, 8(1): 43.
[258] HUTCHINSON D K, COXALL H K, LUNT D J, et al. The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model data comparisons[J]. Climate of the past, 2021, 17(1): 269-315.
[259] YAO W, MARKOVIC S, PAYTAN A, et al. Quantifying pyrite oxidation on continental shelves during the onset of Antarctic glaciation in the Eocene-Oligocene transition[J]. Earth and Planetary Science Letters, 2021, 568: 1-10.
[260] MA X, TIAN J, MA W, et al. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion[J]. Earth and Planetary Science Letters, 2018, 484: 253-263.
[261] STUDER A S, SIGMAN D M, MARTÍNEZ-GARCÍA A, et al. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise[J]. Nature Geoscience, 2018, 11(10): 756-760.
[262] RONGE T A, FRISCHE M, FIETZKE J, et al. Southern Ocean contribution to both steps in deglacial atmospheric CO2 rise[J]. Scientific Reports, 2021, 11(1): 22117.
[263] FARMER J R, HÖNISCH B, HAYNES L L, et al. Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles[J]. Nature Geoscience, 2019, 12(5): 355-360.
[264] SCHER H A M E. Timing and climatic consequences of the opening of Drake passage[J]. Science, 2006, 312: 428-430.
[265] HODEL F, GRESPAN R, DE RAFÉLIS M, et al. Drake passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: The message of foraminifera and reconsideration of the neodymium isotope record[J]. Chemical Geology, 2021, 570: 1-14.
[266] AMENÁBAR C R, GUERSTEIN G R, ALPERIN M I, et al. Eocene palaeoenvironments and palaeoceanography of areas adjacent to the Drake passage: insights from dinoflagellate cyst analysis[J]. Palaeontology, 2022, 65(3): 1-22.
[267] SARKAR S, BASAK C, FRANK M, et al. Late Eocene onset of the Proto-Antarctic circumpolar current[J]. Scientific Reports, 2019, 9(1): 1-10.
[268] EGAN K E, RICKABY R E M, HENDRY K R, et al. Opening the gateways for diatoms primes Earth for Antarctic glaciation[J]. Earth and Planetary Science Letters, 2013, 375: 34-43.
[269] HE K, PAN Y. Magnetofossil abundance and diversity as paleoenvironmental proxies: A case study from southwest Iberian margin sediments[J]. Geophysical Research Letters, 2020, 47(8): 1-10.
[270] EHRMANN W U. Implications of sediment composition on the southern kerguelen plateau for paleoclimate and depositional environment[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1991, 119: 185-210.
[271] SALAMY K A, ZACHOS J C. Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 145(1-3): 61-77.
[272] LU Y, WANG D, JIANG X, et al. Paleoenvironmental significance of magnetofossils in pelagic sediments in the equatorial Pacific Ocean before and after the Eocene/Oligocene boundary[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): 1-18.
[273] HERNDL G J, REINTHALER T. Microbial control of the dark end of the biological pump[J]. Nature Geoscience, 2013, 6(9): 718-724.
[274] DUNNE J P. Fall and rise of the phytoplankton[J]. Nature Climate Change, 2022, 12(8): 708-709.
[275] MORAN M A, KUJAWINSKI E B, SCHROER W F, et al. Microbial metabolites in the marine carbon cycle[J]. Nature Microbiology, 2022, 7(4): 508-523.
[276] RAE J W B, BURKE A, ROBINSON L F, et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales[J]. Nature, 2018, 562(7728): 569-573.
[277] MARCHETTI A, VARELA D E, LANCE V P, et al. Iron and silicic acid effects on phytoplankton productivity, diversity, and chemical composition in the central equatorial Pacific Ocean[J]. Limnology and Oceanography, 2010, 55(1): 11-29.
[278] PAYTAN A, KASTNER M, CHAVEZ F P. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite[J]. Science, 1996, 274(5291): 1355-1357.
[279] USUI Y, YAMAZAKI T, OKA T, et al. Inverse magnetic susceptibility fabrics in pelagic sediment: Implications for magnetofossil abundance and alignment[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 10672–10686.
[280] SAVIAN J F, JOVANE L, GIORGIONI M, et al. Environmental magnetic implications of magnetofossil occurrence during the Middle Eocene Climatic Optimum (MECO) in pelagic sediments from the equatorial Indian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 212-222.
[281] KATZMANN E, EIBAUER M, LIN W, et al. Analysis of Magnetosome Chains in Magnetotactic Bacteria by Magnetic Measurements and Automated Image Analysis of Electron Micrographs[J]. Applied and Environmental Microbiology, 2013, 79(24): 7755-7762.
[282] USUI Y, YAMAZAKI T, SAITOH M. Changing abundance of magnetofossil morphologies in pelagic red clay around minamitorishima, western North Pacific[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4558-4572.
[283] ROBERTS A P, FLORINDO F, CHANG L, et al. Magnetic properties of pelagic marine carbonates[J]. Earth-Science Reviews, 2013, 127: 111-139.
[284] BOSTOCK H C, SUTTON P J, WILLIAMS M J M, et al. Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2013, 73: 84-98.
修改评论