中文版 | English
题名

醌亚胺参与的有机催化不对称合成轴手性吲哚化合物

其他题名
ORGANOCATALYTIC ASYMMETRIC SYNTHESIS OF AXIALLY CHIRAL INDOLE COMPOUNDS INVOLVING IMINOQUINONES
姓名
姓名拼音
LIU Yuwei
学号
12032874
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
向少华
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-24
论文提交日期
2023-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

轴手性吲哚是一类普遍存在于天然产物、药物和生物活性分子中的核心骨架,在不对称催化领域具有广泛应用。目前,尽管已经报道了一些合成方法,但其不对称合成仍然面临着反应体系复杂、底物类型受限、需要特定的活化基团等挑战。因此,开发简单高效的轴手性吲哚骨架构建策略具有重要的现实意义。醌亚胺作为一类高效的合成砌块,能够参与到多种功能化合物的不对称合成中。本文旨在以醌亚胺和吲哚为反应底物,在手性磷酸的催化下,通过引入不同的保护基来调节亚胺氮上电子云密度,从而调控反应的化学选择性,高效构建出三种轴手性吲哚骨架。

首先,以手性磷酸为催化剂,通过 N-酰基保护的醌亚胺与叔丁基吲哚
进行不对称偶联反应,高效构建轴手性 3-芳基吲哚骨架(共 27 个例子)。
该方法具有原料易得、底物范围广、反应产率高(最高达 94%)和对映选择性优异(ee 最高达 95%)等优点。对产物进行了多种衍生化实验,成功合成了同时具有中心手性和轴手性的吲哚化合物以及轴手性二酚化合物。实验证实了醌亚胺氮上保护基种类是控制化学选择性的关键因素。

其次,通过在醌亚胺的氮上引入磺酰基来改变氮的电子云密度,使氮由亲核位点变为亲电位点。在手性磷酸的催化下,其与吲哚发生不对称亲电胺化反应,以最高达 90%的收率和 94% ee 构建了一系列轴手性磺酰胺吲哚骨架(共 30 个例子)。实验结果表明:相较于酰基,引入的磺酰基使亚胺氮更具亲电性,从而实现了亚胺的极性反转。该反应底物范围广,官能团的兼容性好,为不对称合成轴手性磺酰胺吲哚提供了一种高效简便的方法。

最后,在手性磷酸的催化下,磺酰基取代的双亚胺与 2-芳基吲哚发生不对称亲电胺化反应,高效构建了轴手性 2-芳基吲哚骨架(14 个例子,收率最高达 95%,ee 最高达 94%)。该反应为轴手性 2-芳基吲哚化合物的催化不对称合成提供了一种新策略。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] JACOBSEN E N, MACMILLAN D W. Organocatalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48): 20618 -20619.
[2] LIST B, YANG J Y. The organic approach to asymmetric catalysis[J]. Science, 2006, 313(5793): 1584-1586.
[3] ITOH T, HANEFELD U. Enzyme catalysis in organic synthesis[J]. Green Chemistry, 2017, 19(2): 331-332.
[4] HALL M. Enzymatic strategies for asymmetric synthesis[J]. RSC Chemical Biology, 2021, 2(4): 958-989.
[5] ITOH T. Ionic liquids as tool to improve enzymatic organic synthesis[J]. Chemical Reviews, 2017, 117(15): 10567-10607.
[6] BLIECK R, TAILLEFER M, MONNIER F. Metal-catalyzed intermolecular hydrofunctionalization of allenes: easy access to allylic structures via the selective formation of C-N, C-C, and C-O bonds[J]. Chemical Reviews, 2020, 120(24): 13545-13598.
[7] CABRE A, VERDAGUER X, RIERA A. Recent advances in the enantioselective synthesis of chiral amines via transition metal-catalyzed asymmetric hydrogenation[J]. Chemical Reviews, 2022, 122(1): 269-339.
[8] NATTE K, NEUMANN H, BELLER M, et al. Transition-metal-catalyzed utilization of methanol as a C1 source in organic synthesis[J]. Angewandte Chemie International Edition, 2017, 56(23): 6384-6394.
[9] MACMILLAN D W. The advent and development of organocatalysis[J]. Nature, 2008, 455(7211): 304-308.
[10] HOUK K N, LIST B. Asymmetric organocatalysis[J]. Accounts of Chemical Research, 2004, 37(8):487.
[11] REYES E, PRIETO L, MILELLI A. Asymmetric organocatalysis: a survival guide to medicinal chemists[J]. Molecules, 2022, 28(1):271-294.
[12] BERTELSEN S, JØRGENSEN K A. Organocatalysis-after the gold rush[J]. Chemical Society Reviews, 2009, 38(8): 2178-2189.
[13] GIACALONE F, GRUTTADAURIA M, AGRIGENTO P, et al. Low-loading asymmetric organocatalysis[J]. Chemical Society Reviews, 2012, 41(6): 2406 -2447.
[14] DA B C, XIANG S H, LI S, et al. Chiral phosphoric acid catalyzed asymmetric synthesis of axially chiral compounds†[J]. Chinese Journal of Chemistry, 2021, 39(7): 1787-1796.参考文献65
[15] REYES-RODRIGUEZ G J, REZAYEE N M, VIDAL-ALBALAT A, et al. Prevalence of diarylprolinol silyl ethers as catalysts in total synthesis and patents[J]. ChemicalReviews, 2019, 119(6): 4221-4260.
[16] SINIBALDI A, NORI V, BASCHIERI A, et al. Organocatalysis and beyond: activating reactions with two catalytic species[J]. Catalysts, 2019, 9(11): 928-962.
[17] BRINGMANN G, Tasler S, ENDRESS H, et al. Murrastifoline -F: first total synthesis, atropo-enantiomer resolution, and stereoanalysis of an axially chiral N,C-coupled biaryl alkaloid†[J]. Journal of the American Chemical Society, 2001, 123(12): 2703 -2711.
[18] LI T Z, LIU S J, TAN W, et al. Catalytic asymmetric construction of axially chiral indole-based frameworks: an emerging area[J]. Chemistry-A European Journal, 2020, 26(68): 15779-15792.
[19] ZHANG H H, SHI F. Organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality: strategies and applications[J]. Accounts of Chemical Research, 2022, 55(18): 2562-2580.
[20] WANG L, ZHONG J, LIN X. Atroposelective phosphoric acid catalyzed threecomponent cascade reaction: enantioselective synthesis of axially chiral Narylindoles[J]. Angewandte Chemie International Edition, 2019, 58(44): 15824 -15828.
[21] NORTON R S, WELLS R J. A series of chiral polybrominated biindoles from the marine blue-green alga rivularia firma. Application of 13C NMR spin-lattice relaxation data and 13C1H coupling constants to structure elucidation[J]. Journal of the American Chemical Society, 1982, 104(13): 3628-3635.
[22] LUZ J G, CARSON M W, CONDON B, et al. Indole glucocorticoid receptor antagonists active in a model of dyslipidemia act via a unique association with an agonist binding site[J]. Journal of Medicinal Chemistry, 2015, 58(16): 6607 -6618.
[23] JIN E, LI H, LIU Z, et al. Antibiotic dixiamycins from a cold-seep-derived streptomyces olivaceus[J]. Journal of Natural Products, 2021, 84(9): 2606 -2611.
[24] SHARMA K, BARAL E R, AKHTAR M S, et al. 3-naphthylindoles as new promising candidate antioxidant, antibacterial, and antibiofilm agents[J]. Research on Chemical Intermediates, 2016, 43(4): 2387-2399.
[25] ANILKUMAR G N, LESBURG C A, SELYUTIN O, et al. I. novel HCV NS5B polymerase inhibitors: discovery of indole 2-carboxylic acids with C3-heterocycles[J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21(18): 5336-5341.
[26] JIANG F, LUO G Z, ZHU Z Q, et al. Application of naphthylindole -derived phosphines as organocatalysts in
[4+1] cyclizations of o-quinone methides with Morita-Baylis-Hillman carbonates[J]. Journal of Organic Chemistry, 2018, 83(17): 10060-10069.
[27] BAUMANN T, BRUCKNER R. Atropselective dibrominations of a 1,1'-disubstituted 2,2'-biindolyl with diverging point-to-axial asymmetric inductions. Deriving 2,2'-参考文献66biindolyl-3,3'-diphosphane ligands for asymmetric catalysis[J]. Angewandte Chemie International Edition, 2019, 58(14): 4714-4719.
[28] HU Y L, WANG Z, YANG H, et al. Conversion of two stereocenters to one or two chiral axes: atroposelective synthesis of 2,3-diarylbenzoindoles[J]. Chemical Science,2019, 10(28): 6777-6784.
[29] ABRAHAM I, JOSHI R, PARDASANI P, et al. Recent advances in 1,4-benzoquinone chemistry[J]. Journal of the Brazilian Chemical Society, 2011, 22(3): 385 -421.
[30] HILLARD E A, DE ABREU F C, FERREIRA D C, et al. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds[J]. Chemical Communications, 2008, (23): 2612-2628.
[31] KUMAGAI Y, SHINKAI Y, MIURA T, et al. The chemical biology of naphthoquinones and its environmental implications[J]. Annual Review of Pharmacology and Toxicology, 2012, 52: 221-247.
[32] ZHU S, CHEN Y H, WANG Y B, et al. Organocatalytic atroposelective construction of axially chiral arylquinones[J]. Nature Communications, 2019, 10(1): 4268 -4277.
[33] ZHANG Y C, JIANG F, WANG S L, et al. Organocatalytic chemo- and regioselective oxyarylation of styrenes via a cascade reaction: remote activation of hydroxyl groups[J]. Journal of Organic Chemistry, 2014, 79(13): 6143-6152.
[34] NAIR V, MENON R S, BIJU A T, et al. 1,2-benzoquinones in Diels-Alder reactions, dipolar cycloadditions, nucleophilic additions, multicomponent reactions and more[J]. Chemical Society Reviews, 2012, 41(3): 1050-1059.
[35] MOLITERNO M, CARI R, PUGLISI A, et al. Quinine-catalyzed asymmetric synthesis of 2,2'-binaphthol-type biaryls under mild reaction conditions[J]. Angewandte Chemie International Edition, 2016, 55(22): 6525-6529.
[36] HOSAMANI B, RIBEIRO M F, DA SILVA JUNIOR E N, et al. Catalytic asymmetric reactions and synthesis of quinones[J]. Organic & Biomolecular Chemistry, 2016, 14(29): 6913-6931.
[37] LIAO L, SHU C, ZHANG M, et al. Highly enantioselective
[3+2] coupling of indoles with quinone monoimines promoted by a chiral phosphoric acid[J]. Angewandte Chemie International Edition, 2014, 53(39): 10471-10475.
[38] WANG J Z, ZHOU J, XU C, et al. Symmetry in cascade chirality-transfer processes: a catalytic atroposelective direct arylation approach to BINOL derivatives[J]. Journal of the American Chemical Society, 2016, 138(16): 5202-5205.
[39] LIU H, YAN Y, ZHANG J, et al. Enantioselective dearomative
[3+2] annulation of 5 -amino-isoxazoles with quinone monoimines[J]. Chemical Communications, 2020, 56(88): 13591-13594.
[40] ZHANG Y C, ZHAO J J, JIANG F, et al. Organocatalytic asymmetric arylative dearomatization of 2,3-disubstituted indoles enabled by tandem reactions[J]. Angewandte Chemie International Edition, 2014, 53(50): 13912 -13915.参考文献67
[41] WU Y, HU L, LI Z, et al. Catalytic asymmetric umpolung reactions of imines[J]. Nature, 2015, 523(7561): 445-450.
[42] KATTAMURI P V, YIN J, SIRIWONGSUP S, et al. Practical singly and doubly electrophilic aminating agents: a new, more sustainable platform for carbon -nitrogen bond formation[J]. Journal of the American Chemical Society, 2017, 139(32): 11184-11196.
[43] ZHANG H H, WANG C S, LI C, et al. Design and enantioselective construction of axially chiral naphthyl-indole skeletons[J]. Angewandte Chemie International Edition, 2017, 56(1): 116-121.
[44] QI L W, MAO J H, ZHANG J, et al. Organocatalytic asymmetric arylation of indoles enabled by azo groups[J]. Nature Chemistry, 2018, 10(1): 58 -64.
[45] DING W Y, YU P, AN Q J, et al. DFT-guided phosphoric-acid-catalyzed atroposelective arene functionalization of nitrosonaphthalene[J]. Chemistry, 2020, 6(8): 2046-2059.
[46] LU D L, CHEN Y H, XIANG S H, et al. Atroposelective construction of arylindoles by chiral phosphoric acid-catalyzed cross-coupling of indoles and quinones[J]. Organic Letters, 2019, 21(15): 6000-6004.
[47] XI C C, ZHAO X J, TIAN J M, et al. Atroposelective synthesis of axially chiral 3-arylindoles by copper-catalyzed asymmetric cross-coupling of indoles with quinones and naphthoquinones[J]. Organic Letters, 2020, 22(13): 4995-5000.
[48] LIANG H, ZHU G, PU X, et al. Copper-catalyzed enantioselective C-H arylation between 2-arylindoles and hypervalent iodine reagents[J]. Organic Letters, 2021, 23(23): 9246-9250.
[49] HE C, HOU M, ZHU Z, et al. Enantioselective synthesis of indole -based biaryl atropisomers via palladium-catalyzed dynamic kinetic intramolecular C–H cyclization[J]. ACS Catalysis, 2017, 7(8): 5316-5320.
[50] MA C, JIANG F, SHENG F T, et al. Design and catalytic asymmetric construction of axially chiral 3,3'-bisindole skeletons[J]. Angewandte Chemie International Edition, 2019, 58(10): 3014-3020.
[51] SHENG F T, LI Z M, ZHANG Y Z, et al. Atroposelective synthesis of 3,3 '-bisindoles bearing axial and central chirality: using isatin-derived imines as electrophiles[J]. Chinese Journal of Chemistry, 2020, 38(6): 583-589.
[52] CHEN K W, WANG Z S, WU P, et al. Catalytic asymmetric synthesis of 3,3'-bisindoles bearing single axial chirality[J]. Journal of Organic Chemistry, 2020, 85(15): 10152-10166.
[53] JIANG F, CHEN K W, WU P, et al. A strategy for synthesizing axially chiral naphthylindoles: catalytic asymmetric addition reactions of racemic substrates[J]. Angewandte Chemie International Edition, 2019, 58(42): 15104-15110.
[54] HE X L, ZHAO H R, SONG X, et al. Asymmetric Barton–Zard reaction to access 3-参考文献68pyrrole-containing axially chiral skeletons[J]. ACS Catalysis, 2019, 9(5): 4374-4381.
[55] LU S, ONG J Y, YANG H, et al. Diastereo- and atroposelective synthesis of bridged biaryls bearing an eight-membered lactone through an organocatalytic cascade[J]. Journal of the American Chemical Society, 2019, 141(43): 17062-17067.
[56] BISAG G D, PECORARI D, MAZZANTI A, et al. Central-to-axial chirality conversion approach designed on organocatalytic enantioselective Povarov cycloadditions: first access to configurationally stable indole -quinoline atropisomers[J]. Chemistry-A European Journal, 2019, 25(68): 15694-15701.
[57] DEUR C, AGRAWAL A K, BAUM H, et al. N-(6,7-dichloro-2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-N-alkylsulfonamides as peripherally restricted N-methylD-aspartate receptor antagonists for the treatment of pain[J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17(16): 4599-4603.
[58] LIU P, LANZA T J, JR., CHIODA M, et al. Discovery of benzodiazepine sulfonamide -based bombesin receptor subtype 3 agonists and their unusual chirality[J]. ACS Medicinal Chemistry Letters, 2011, 2(12): 933-937.
[59] LIU H H, WANG Y, DENG G, et al. Transition metal-free regioselective C-3 amidation of indoles with N-fluorobenzenesulfonimide[J]. Advanced Synthesis & Catalysis, 2013, 355(17): 3369-3374.
[60] PRASAD P K, KALSHETTI R G, REDDI R N, et al. I 2-mediated regioselective C-3 azidation of indoles†[J]. Organic & Biomolecular Chemistry, 2016, 14(11): 3027 -3030.
[61] ORTIZ G X, JR, HEMRIC B N, et al. Direct and selective 3-amidation of indoles using electrophilic N-[(benzenesulfonyl)oxy]amides[J]. Organic Letters, 2017, 19(6): 1314 -1317.
[62] LAN W, LIU F, HU J, et al. Copper-catalyzed regiospecific amination of heteroarenes with quinoneimides[J]. Journal of Organic Chemistry, 2022, 87(9): 5592-5602.
[63] QIN J, ZHOU T, ZHOU T P, et al. Catalytic atroposelective electrophilic amination of indoles[J]. Angewandte Chemie International Edition, 2022, 61(31): e202205159.
[64] PENG L, LI K, XIE C, et al. Organocatalytic asymmetric annulation of orthoalkynylanilines: synthesis of axially chiral naphthyl-C2-indoles[J]. Angewandte Chemie International Edition, 2019, 58(48): 17199-17204.
[65] JIA S, TIAN Y, LI X, et al. Atroposelective construction of nine-membered carbonatebridged biaryls[J]. Angewandte Chemie International Edition, 2022, 61(31): e202206501.
[66] XU D, HUANG S, HU F, et al. Diversity-oriented enantioselective construction of atropisomeric heterobiaryls and N-aryl indoles via vinylidene ortho-quinone methides[J]. CCS Chemistry, 2022, 4(8): 2686-2697.
[67] HE Y P, WU H, WANG Q, et al. Palladium-catalyzed enantioselective Cacchi reaction: asymmetric synthesis of axially chiral 2,3-disubstituted indoles[J]. Angewandte Chemie International Edition, 2020, 59(5): 2105-2109.参考文献69
[68] YU L, LIU J, XIANG S, et al. Silver-catalyzed direct nucleophilic cyclization: enantioselective de novo synthesis of C-C axially chiral 2-arylindoles[J]. Organic Letters, 2023, 25(3): 522-527.
[69] SHAABAN S, LI H, OTTE F, et al. Enantioselective synthesis of five-membered-ring atropisomers with a chiral Rh(III) complex[J]. Organic Letters, 2020, 22(23): 9199 -9202.
[70] ZOU Y, WANG P, KONG L, et al. Rhodium-catalyzed atroposelective C-H arylation of (hetero)arenes using carbene precursors as arylating reagents[J]. Organic Letters, 2022, 24(17): 3189-3193.
[71] YIN S Y, PAN C, ZHANG W W, et al. Scprh(III)-catalyzed enantioselective synthesis of atropisomers by C2-arylation of indoles with 1-diazonaphthoquinones[J]. Organic Letters, 2022, 24(20): 3620-3625.
[72] LIU J, LI Q, SHAO Y, et al. Atroposelective synthesis of axially chiral C2 -arylindoles via rhodium-catalyzed asymmetric C-H bond insertion[J]. Organic Letters, 2022, 24(25): 4670-4674.
[73] JACOB N, ZAID Y, OLIVEIRA J C A, et al. Cobalt-catalyzed enantioselective C-H arylation of indoles[J]. Journal of the American Chemical Society, 2022, 144(2): 798 -806.
[74] TIAN M, BAI D, ZHENG G, et al. Rh(III)-catalyzed asymmetric synthesis of axially chiral biindolyls by merging C-H activation and nucleophilic cyclization[J]. Journal of the American Chemical Society, 2019, 141(24): 9527-9532.
[75] ZHANG J, LIU M, HUANG M, et al. Enantioselective
[3+2] annulation of 3 -hydroxymaleimides with quinone monoimines[J]. Organic Chemistry Frontiers, 2021, 8(10): 2268-2273.
[76] SUN X X, ZHANG H H, LI G H, et al. Diastereo- and enantioselective construction of an indole-based 2,3-dihydrobenzofuran scaffold via catalytic asymmetric
[3+2] cyclizations of quinone monoimides with 3-vinylindoles[J]. Chemical Communications, 2016, 52(14): 2968-2971.
[77] MA C, ZHANG T, ZHOU J Y, et al. Catalytic asymmetric chemodivergent arylative dearomatization of tryptophols[J]. Chemical Communications, 2017, 53(89): 12124 -12127.
[78] CHEN Y H, QI L W, FANG F, et al. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols[J]. Angewandte Chemie International Edition, 2017, 56(51): 16308 -16312.
[79] LIU J Y, YANG X C, LIU Z, et al. An atropo-enantioselective synthesis of benzolinked axially chiral indoles via hydrogen-bond catalysis[J]. Organic Letters, 2019, 21(13): 5219-5224.
[80] AVDEENKO A P, KONOVALOVA S A, LUDCHENKO O N. Halogenation of Nsubstituted p-quinone monoimines and p-quinone monooxime esters: X. Halogenation 参考文献70of N-aroyl-2,5(2,3)-dialkyl-1,4-benzoquinone monoimines and their reduction products[J]. Russian Journal of Organic Chemistry, 2009, 45(12): 1799 -1813.
[81] CHEN Y H, LI H H, ZHANG X, et al. Organocatalytic enantioselective synthe sis of atropisomeric aryl-p-quinones: platform molecules for diversity-oriented synthesis of biaryldiols[J]. Angewandte Chemie International Edition, 2020, 59(28): 11374 -11378.
[82] SO C M, YUEN O Y, NG S S, et al. General chemoselective Suzuki–Miyaura coupling of polyhalogenated aryl triflates enabled by an alkyl-heteroaryl-based phosphine ligand[J]. ACS Catalysis, 2021, 11(13): 7820-7827.
[83] ZHANG X, CHEN Y-H, TAN B. Organocatalytic enantioselective transformations involving quinone derivatives as reaction partners[J]. Tetrahedron Letters, 2018, 59(6): 473-486.
[84] Xu X H, TANIGUCHI M, AZUMA A. Remote anionic Fries rearrangement of sulfonates: regioselective synthesis of indole triflones[J]. 2013, 15(3): 686-689.

所在学位评定分委会
化学
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545002
专题理学院_化学系
推荐引用方式
GB/T 7714
刘宇巍. 醌亚胺参与的有机催化不对称合成轴手性吲哚化合物[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032874-刘宇巍-化学系.pdf(11979KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘宇巍]的文章
百度学术
百度学术中相似的文章
[刘宇巍]的文章
必应学术
必应学术中相似的文章
[刘宇巍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。