[1] WEN X G. Colloquium: Zoo of quantum-topological phases of matter[J]. Reviews of ModernPhysics, 2017, 89(4): 041004.
[2] WEN X G. Choreographed entanglement dances: Topological states of quantum matter[J].Science, 2019, 363(6429): eaal3099.
[3] KONG L, ZHENG H. Gapless edges of 2d topological orders and enriched monoidal categories[J]. Nuclear Physics B, 2018, 927: 140-165.
[4] MORRISON S, PENNEYS D. Monoidal categories enriched in braided monoidal categories[J]. International Mathematics Research Notices, 2019, 2019(11): 3527-3579.
[5] WEN X G. Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders[J]. Physical Review D, 2013, 88(4):045013.
[6] KONG L, WEN X G. Braided fusion categories, gravitational anomalies, and the mathematicalframework for topological orders in any dimensions[A]. 2014. arXiv preprint arXiv:1405.5858.
[7] JI W, WEN X G. A unified view on symmetry, anomalous symmetry and non-invertible gravitational anomaly[A]. 2021. arXiv preprint arXiv:2106.02069.
[8] KONG L, ZHENG H. A mathematical theory of gapless edges of 2d topological orders. Part I[J]. Journal of High Energy Physics, 2020, 2020(2): 1-62.
[9] KONG L, ZHENG H. A mathematical theory of gapless edges of 2d topological orders. Part II[J]. Nuclear Physics B, 2021, 966: 115384.
[10] KONG L, ZHENG H. Categories of quantum liquids I[J]. Journal of High Energy Physics,2022, 2022(8): 1-44.
[11] AASEN D, MONG R S, FENDLEY P. Topological defects on the lattice: I. The Ising model[J]. Journal of Physics A: Mathematical and Theoretical, 2016, 49(35): 354001.
[12] AASEN D, FENDLEY P, MONG R S. Topological defects on the lattice: dualities and degeneracies[A]. 2020. arXiv preprint arXiv:2008.08598.
[13] JI W, WEN X G. Categorical symmetry and noninvertible anomaly in symmetry-breaking andtopological phase transitions[J]. Physical Review Research, 2020, 2(3): 033417.
[14] WU X C, JI W, XU C. Categorical symmetries at criticality[J]. Journal of Statistical Mechanics:Theory and Experiment, 2021, 2021(7): 073101.
[15] LOOTENS L, DELCAMP C, ORTIZ G, et al. Dualities in one-dimensional quantum latticemodels: symmetric Hamiltonians and matrix product operator intertwiners[A]. 2021. arXivpreprint arXiv:2112.09091.
[16] KONG L, WEN X G, ZHENG H. One dimensional gapped quantum phases and enriched fusioncategories[J]. Journal of High Energy Physics, 2022, 2022(3): 1-32.
[17] CHATTERJEE A, WEN X G. Algebra of local symmetric operators and braided fusion 𝑛-category–symmetry is a shadow of topological order[A]. 2022. arXiv preprintarXiv:2203.03596.
[18] CHATTERJEE A, WEN X G. Holographic theory for the emergence and the symmetryprotection of gaplessness and for continuous phase transitions[A]. 2022. arXiv preprintarXiv:2205.06244.
[19] XU R, ZHANG Z H. Categorical descriptions of 1-dimensional gapped phases with abelianonsite symmetries[A]. 2022. arXiv preprint arXiv:2205.09656.
[20] MORADI H, MOOSAVIAN S F, TIWARI A. Topological holography: Towards a unificationof Landau and beyond-Landau physics[A]. 2022. arXiv preprint arXiv:2207.10712.
[21] LIU S, JI W. Towards Non-Invertible Anomalies from Generalized Ising Models[A]. 2022.arXiv preprint arXiv:2208.09101.
[22] BENINI F, COPETTI C, DI PIETRO L. Factorization and global symmetries in holography[A]. 2022. arXiv preprint arXiv:2203.09537.
[23] CHEN W Q, JIAN C M, KONG L, et al. Topological phase transition on the edge of twodimensional Z2 topological order[J]. Physical Review B, 2020, 102(4): 045139.
[24] KONG L. Anyon condensation and tensor categories[J]. Nuclear Physics B, 2014, 886: 436-482.
[25] LU Y, YANG H. A self-dual boundary phase transition of the 2d ZN topological order[A]. 2022.arXiv preprint arXiv:2208.01572.
[26] WEN X G. Topological orders in rigid states[J]. International Journal of Modern Physics B,1990, 4(02): 239-271.
[27] ZENG B, WEN X G. Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity[J]. Physical Review B, 2015, 91(12): 125121.
[28] SWINGLE B, MCGREEVY J. Renormalization group constructions of topological quantumliquids and beyond[J]. Physical Review B, 2016, 93(4): 045127.
[29] KITAEV A. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321(1): 2-111.
[30] KONG L, ZHANG Z H. An invitation to topological orders and category theory[A]. 2022.arXiv preprint arXiv:2205.05565.
[31] DRINFELD V, GELAKI S, NIKSHYCH D, et al. On braided fusion categories I[J]. SelectaMathematica, 2010, 16(1): 1-119.
[32] ETINGOF P, GELAKI S, NIKSHYCH D, et al. Tensor categories: volume 205[M]. AmericanMathematical Soc., 2016.
[33] JOYAL A, STREET R. Braided tensor categories[J]. Advances in Mathematics, 1993, 102(1):20-78.
[34] KITAEV A Y. Fault-tolerant quantum computation by anyons[J]. Annals of Physics, 2003, 303(1): 2-30.
[35] MÜGER M. From subfactors to categories and topology II: The quantum double of tensorcategories and subfactors[J]. Journal of Pure and Applied Algebra, 2003, 180(1-2): 159-219.
[36] BAKALOV B, KIRILLOV A A. Lectures on tensor categories and modular functors: volume 21[M]. American Mathematical Soc., 2001.
[37] BEIGI S, SHOR P W, WHALEN D. The quantum double model with boundary: condensationsand symmetries[J]. Communications in mathematical physics, 2011, 306(3): 663-694.
[38] MOORE G, SEIBERG N. Classical and quantum conformal field theory[J]. Communicationsin Mathematical Physics, 1989, 123(2): 177-254.
[39] HUANG Y Z. Rigidity and modularity of vertex tensor categories[J]. Communications incontemporary mathematics, 2008, 10(supp01): 871-911.
[40] ZAMOLODCHIKOV A, FATEEV V. Nonlocal (parafermion) currents in two-dimensionalconformal quantum field theory and self-dual critical points in ZN-symmetric statistical systems[J]. Sov. Phys. JETP, 1985, 62(2): 215-225.
[41] DONG C, LAM C H, WANG Q, et al. The structure of parafermion vertex operator algebras[J]. Journal of Algebra, 2010, 323(2): 371-381.
[42] DONG C, WANG Q. Parafermion vertex operator algebras[J]. Frontiers of Mathematics inChina, 2011, 6(4): 567-579.
[43] DONG C, LEPOWSKY J. Generalized vertex algebras and relative vertex operators: volume112[M]. Springer Science & Business Media, 2012.
[44] GODDARD P, KENT A, OLIVE D. Unitary representations of the Virasoro and super-Virasoroalgebras[J]. Communications in Mathematical Physics, 1986, 103(1): 105-119.
[45] FRANCESCO P, MATHIEU P, SÉNÉCHAL D. Conformal field theory[M]. Springer Science& Business Media, 2012.
[46] LEPOWSKY J, LI H. Introduction to vertex operator algebras and their representations: volume227[M]. Springer Science & Business Media, 2004.
[47] FRENKEL I B, ZHU Y. Vertex operator algebras associated to representations of affine andVirasoro algebras[J]. Duke Mathematical Journal, 1992, 66(1): 123-168.
[48] ARAKAWA T, LAM C H, YAMADA H. Parafermion vertex operator algebras and W-algebras[J]. Transactions of the American Mathematical Society, 2019, 371(6): 4277-4301.
[49] DONG C, REN L. Representations of the parafermion vertex operator algebras[J]. Advancesin Mathematics, 2017, 315: 88-101.
[50] DONG C, LIN X. Unitary vertex operator algebras[J]. Journal of algebra, 2014, 397: 252-277.
[51] AI C, DONG C, JIAO X, et al. The irreducible modules and fusion rules for the parafermionvertex operator algebras[J]. Transactions of the American Mathematical Society, 2018, 370(8):5963-5981.
[52] FRÖHLICH J, FUCHS J, RUNKEL I, et al. Algebras in tensor categories and coset conformalfield theories[J]. Fortschritte der Physik: Progress of Physics, 2004, 52(6-7): 672-677.
[53] DAVYDOV A, NIKSHYCH D, OSTRIK V. On the structure of the Witt group of braided fusioncategories[J]. Selecta Mathematica, 2013, 19(1): 237-269.
[54] HUANG Y Z, KONG L. Full field algebras[J]. Communications in mathematical physics,2007, 272(2): 345-396.
[55] KONG L. Full field algebras, operads and tensor categories[J]. Advances in Mathematics,2007, 213(1): 271-340.
[56] LEVIN M A, WEN X G. String-net condensation: A physical mechanism for topological phases[J]. Physical Review B, 2005, 71(4): 045110.
[57] BAIS F A, SCHROERS B J, SLINGERLAND J K. Broken quantum symmetry and confinementphases in planar physics[J]. Physical review letters, 2002, 89(18): 181601.
[58] BAIS A F, SCHROERS B J, SLINGERLAND J K. Hopf symmetry breaking and confinementin (2+1)-dimensional gauge theory[J]. Journal of High Energy Physics, 2003, 2003(05): 068.
[59] BAIS F, SLINGERLAND J. Condensate-induced transitions between topologically orderedphases[J]. Physical Review B, 2009, 79(4): 045316.
[60] BARKESHLI M, WEN X G. Anyon condensation and continuous topological phase transitions in non-Abelian fractional quantum hall states[J]. Physical review letters, 2010, 105(21):216804.
[61] DAVYDOV A, MÜGER M, NIKSHYCH D, et al. The Witt group of non-degenerate braidedfusion categories[J]. Journal für die reine und angewandte Mathematik (Crelles Journal), 2013,2013(677): 135-177.
[62] BÖCKENHAUER J, EVANS D E, KAWAHIGASHI Y. Chiral structure of modular invariantsfor subfactors[J]. Communications in Mathematical Physics, 2000, 210(3): 733-784.
[63] KIRILLOV A, OSTRIK V. On a q-analogue of the McKay correspondence and the ADE classification of sl2 conformal field theories[J]. Advances in Mathematics, 2002, 171(2): 183-227.
[64] KONG L, RUNKEL I. Cardy algebras and sewing constraints, I[J]. Communications in Mathematical Physics, 2009, 292(3): 871-912.
[65] MÜGER M. On the structure of modular categories[J]. Proceedings of the London Mathematical Society, 2003, 87(2): 291-308.
[66] BRAVYI S B, KITAEV A Y. Quantum codes on a lattice with boundary[A]. 1998. arXivpreprint quant-ph/9811052.
[67] KITAEV A, KONG L. Models for gapped boundaries and domain walls[J]. Communicationsin Mathematical Physics, 2012, 313(2): 351-373.
[68] HU Y, WAN Y, WU Y S. Boundary Hamiltonian theory for gapped topological orders[J].Chinese Physics Letters, 2017, 34(7): 077103.
[69] HU Y, LUO Z X, PANKOVICH R, et al. Boundary Hamiltonian theory for gapped topologicalphases on an open surface[J]. Journal of High Energy Physics, 2018, 2018(1): 1-41.
[70] POLCHINSKI J. Scale and conformal invariance in quantum field theory[J]. Nuclear PhysicsB, 1988, 303(2): 226-236.
[71] NAKAYAMA Y. Scale invariance vs conformal invariance[J]. Physics Reports, 2015, 569:1-93.
[72] BELAVIN A A, POLYAKOV A M, ZAMOLODCHIKOV A B. Infinite conformal symmetryin two-dimensional quantum field theory[J]. Nuclear Physics B, 1984, 241(2): 333-380.
[73] HUANG Y Z. Differential equations and intertwining operators[J]. Communications in Contemporary Mathematics, 2005, 7(03): 375-400.
[74] SCHWEIGERT C. Category theory for conformal boundary conditions[J]. Vertex operatoralgebras in mathematics and physics, 2003, 39: 25.
[75] FUCHS J, RUNKEL I, SCHWEIGERT C. TFT construction of RCFT correlators I: Partitionfunctions[J]. Nuclear Physics B, 2002, 646(3): 353-497.
[76] FRÖHLICH J, FUCHS J, RUNKEL I, et al. Duality and defects in rational conformal fieldtheory[J]. Nuclear Physics B, 2007, 763(3): 354-430.
[77] ZINATI R, ZANUSSO O. RG and logarithmic CFT multicritical properties of randomly dilutedIsing models[J]. Journal of High Energy Physics, 2020, 2020(12): 1-27.
[78] NIVESVIVAT R, RIBAULT S. Logarithmic CFT at generic central charge: from Liouvilletheory to the 𝑄-state Potts model[J]. SciPost Physics, 2021, 10(1): 021.
[79] HUANG Y Z. Vertex operator algebras and the Verlinde conjecture[J]. Communications inContemporary Mathematics, 2008, 10(01): 103-154.
[80] GAINUTDINOV A, RIDOUT D, RUNKEL I. Logarithmic conformal field theory[J]. Journalof Physics A: Mathematical and Theoretical, 2013, 46(49): 490301.
[81] HUANG Y Z, KONG L. Open-string vertex algebras, tensor categories and operads[J]. Communications in mathematical physics, 2004, 250(3): 433-471.
[82] GUI B. Unitarity of the modular tensor categories associated to unitary vertex operator algebras,I[J]. Communications in Mathematical Physics, 2019, 366(1): 333-396.
[83] GUI B. Unitarity of the modular tensor categories associated to unitary vertex operator algebras,II[J]. Communications in Mathematical Physics, 2019, 372(3): 893-950.
[84] GUI B. Energy bounds condition for intertwining operators of types B, C, and G2 unitary affinevertex operator algebras[J]. Transactions of the American Mathematical Society, 2019, 372(10): 7371-7424.
[85] KONG L, WEN X G, ZHENG H. Boundary-bulk relation in topological orders[J]. NuclearPhysics B, 2017, 922: 62-76.
[86] KONG L, YUAN W, ZHANG Z H, et al. Enriched monoidal categories I: centers[A]. 2021.arXiv preprint arXiv:2104.03121.
[87] MALDACENA J. The large-N limit of superconformal field theories and supergravity[J]. International journal of theoretical physics, 1999, 38(4): 1113-1133.
[88] HARTNOLL S A. Lectures on holographic methods for condensed matter physics[J]. Classicaland Quantum Gravity, 2009, 26(22): 224002.
[89] HERZOG C P. Lectures on holographic superfluidity and superconductivity[J]. Journal ofPhysics A: Mathematical and Theoretical, 2009, 42(34): 343001.
[90] SACHDEV S. Condensed matter and AdS/CFT[M]. Springer, 2011.
[91] WITTEN E. Quantum field theory and the Jones polynomial[J]. Communications in Mathematical Physics, 1989, 121(3): 351-399.
[92] RESHETIKHIN N, TURAEV V G. Invariants of 3-manifolds via link polynomials and quantumgroups[J]. Inventiones mathematicae, 1991, 103(1): 547-597.
[93] TURAEV V G. Quantum invariants of knots and 3-manifolds[M]//Quantum Invariants of Knotsand 3-Manifolds. de Gruyter, 2016.
[94] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of ModernPhysics, 2011, 83(4): 1057.
[95] HAN B, TIWARI A, HSIEH C T, et al. Boundary conformal field theory and symmetryprotected topological phases in 2+ 1 dimensions[J]. Physical Review B, 2017, 96(12): 125105.
[96] MOORE G, READ N. Nonabelions in the fractional quantum Hall effect[J]. Nuclear PhysicsB, 1991, 360(2-3): 362-396.
[97] READ N, MOORE G. Fractional quantum Hall effect and nonabelian statistics[J]. Progress ofTheoretical Physics Supplement, 1992, 107: 157-166.
[98] KONG L, ZHENG H. The center functor is fully faithful[J]. Advances in Mathematics, 2018,339: 749-779.
[99] GANNON T. Reconstruction I. The classical part of a vertex operator algebra[M]//OperatorAlgebras and Mathematical Physics: volume 80. Mathematical Society of Japan, 2019: 71-108.
[100] EVANS D, GANNON T. Reconstruction and local extensions for twisted group doubles, andpermutation orbifolds[J]. Transactions of the American Mathematical Society, 2022, 375(04):2789-2826.
[101] OSTRIK V. Module categories, weak Hopf algebras and modular invariants[J]. Transformationgroups, 2003, 8(2): 177-206.
修改评论