[1] SACHDEVA S, DAVIS R W, SAHA A K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8:e602659.
[2] DYE C. After 2015: infectious diseases in a new era of health and development[J]. Philosophical Transactions of the Royal Society of London, 2014, 369(1645): 20130426.
[3] SANDS P, TURABI A E, SAYNISCH P A, et al. Assessment of economic vulnerability to infectious disease crises[J]. Lancet, 2016, 388(10058): 2443-2448.
[4] ORGANIZATION W H. The top 10 causes of death[Z]. 2014.
[5] GHOLIZADEH P, üKRAN KSE, DAO S, et al. How CRISPR-Cas system could be used to combat antimicrobial resistance[J]. Infection and Drug Resistance, 2020, 13: 1111-1121.
[6] KEVIN N, NANCY A, PATRICIA R, et al. High-efficiency delivery of CRISPR-Cas9 by engineered probiotics enables precise microbiome editing[J]. Molecular systems biology, 2021,17: e10335.
[7] ZHANG M, WANG H, WANG H, et al. CRISPR/Cas12a-Assisted Ligation-Initiated LoopMediated Isothermal Amplification (CAL-LAMP) for Highly Specific Detection of microRNAs[J]. Analytical Chemistry, 2021, 93(22): 7942-7948.
[8] LI L, LI S, WU N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS Synthetic Biology, 2019, 8(10): 2228-2237.
[9] WANG B, WANG R, WANG D, et al. Cas12aVDet: a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection[J]. Analytical Chemistry, 2019, 91(19): 12156-12161.
[10] CHEN Y, MEI Y, ZHAO X, et al. Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test[J]. Analytical Chemistry, 2020, 92(21): 14846-14852.
[11] WAND N I V, BONNEY L C, WATSON R J, et al. Point-of-care diagnostic assay for the detection of Zika virus using the recombinase polymerase amplification method[J]. Journal of General Virology, 2018, 99(8): 1012-1026.
[12] LAW I L G, LOO J F C, KWOK H C, et al. Automated real-time detection of drug-resistant Mycobacterium tuberculosis on a lab-on-a-disc by Recombinase Polymerase Amplification[J].Analytical Biochemistry, 2018, 544: 98-107.
[13] LIU Q, LI X, WU R, et al. Development of an on-spot and rapid recombinase polymerase amplification assay for Aspergillus flavus detection in grains[J]. Food Control, 2021, 125(4):107957.
[14] TIAN B, MINERO A S, FOCK J, et al. CRISPR-Cas12a based internal negative control for nonspecific products of exponential rolling circle amplification[J]. Nucleic Acids Research,2020, 48(5): e30.
[15] OLE B, IRIS B, MARTIN S, et al. Rapid Detection of SARS-CoV-2 by Low Volume Real-Time Single Tube Reverse Transcription Recombinase Polymerase Amplification Using an Exo Probe with an Internally Linked Quencher (Exo-IQ)[J]. Clinical Chemistry, 2020(8): 8.
[16] LI J, MACDONALD J, STETTEN F V. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification[J]. Analyst, 2019, 144(1): 31-67.
[17] YANG, QINGZHEN, XU, et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications[J]. Biosensors Bioelectronics: The International Journal for the Professional Involved with Research, Technology and Applications of Biosensers and Related Devices, 2017, 90: 459-474.
[18] FEARS A C, HUANG Z, NING B, et al. Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection[J]. The Journal of clinical investigation, 2021, 131(7):e146031.
[19] LI R J, MAUK M G, SEOK Y, et al. Electricity-free chemical heater for isothermal nucleic acid amplification with applications in COVID-19 home testing[J]. The Analyst, 2021, 146(12): 4212-4218.
[20] RíO J D, LOBATO I M, MAYBORODA O, et al. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection[J]. Analytical Bioanalytical Chemistry,2017, 409(12): 1-9.
[21] WU Y D, ZHOU D H, ZHANG L X, et al. Recombinase polymerase amplification (RPA)combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp.oocysts in dairy cattle feces[J]. Parasitology Research, 2016, 115(9): 3551-3555.
[22] FERNANDO L, QIU X, MELITO P L, et al. Immune Response to Marburg Virus Angola Infection in Nonhuman Primates[J]. Journal of Infectious Diseases, 2015, 212: S234-S241.
[23] LI S Y, CHENG Q X, LIU J K, et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA.[J]. Nature Publishing Group, 2018, 28(4): 491-493.
[24] MOJICA F, DICZ-VILLASENOR C, GARCIA-MARTINCZ J, et al. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements[J]. The CRISPR Journal, 2018, 60(2): 174-182.
[25] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR Provides Acquired Resistance against Viruses in Prokaryotes[J]. American Association for the Advancement of Science, 2007,315(5819): 1709-1712.
[26] K. J, KRANZUSCH P J, NOESKE J, et al. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity[J]. Nature Structural Molecular Biology,2014, 21(6): 528-534.
[27] GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586.
[28] QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
[29] LI Y, LI S, WANG J, et al. CRISPR/Cas Systems towards Next-Generation Biosensing[J].Trends in Biotechnology, 2019, 37(7): 730-743.
[30] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPRCas13a/C2c2[J]. Science, 2017, 356(6336): 438-442.
[31] MA C J, LI G Y, CHENG Y Q, et al. Cis Association of Galectin-9 with Tim-3 Differentially Regulates IL-12/IL-23 Expressions in Monocytes via TLR Signaling[J]. Plos One, 2013, 8(8):e72488.
[32] TAUTVYDAS K, GRETA B, YOUNG J K, et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage[J]. Nucleic Acids Research, 2020, 48(9): 5016-5023.
[33] HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): eaav4294.
[34] CHERTOW D S. Next-generation diagnostics with CRISPR[J]. Science, 2018, 360(6387):381-382.
[35] LEONG S S, YEAP S P, LIM J K. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients[J]. Interface Focus, 2016, 6(6):e20160048.
[36] YUNLEI X, WANG Q, CHEN Y. Magnetic particles-enabled biosensors for point-of-care testing[J]. TrAC Trends in Analytical Chemistry, 2018, 106: S0165993618302243-.
[37] AHMED M A, JúLIA.ERDSSY, HORVATH V. Temperature-Responsive Magnetic Nanoparticles for Bioanalysis of Lysozyme in Urine Samples[J]. Nanomaterials (Basel, Switzerland),2021, 11(11): e3015.
[38] MARTIJN D R P, NICOLE L D T, SAMANTHA K, et al. Characterization of the Humoral Immune Response during Staphylococcus aureus Bacteremia and Global Gene Expression by Staphylococcus aureus in Human Blood[J]. Plos One, 2013, 8(1): e53391.
[39] LEBON A, VERKAIK N J, VOGEL C D, et al. The inverse correlation between Staphylococcus aureus and Streptococcus pneumoniae colonization in infants is not explained by differences in serum antibody levels in the Generation R Study.[J]. Clinical and Vaccine Immunology, 2011,18(1): 180-183.
[40] LIU H W, CHEN L, XU C, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging[J]. Chemical Society Reviews, 2018, 30(10): 1738-1744.
[41] KARTON-LIFSHIN N, ALBERTAZZI L, BENDIKOV M, et al. ’Donor-Two-Acceptor’ Dye Design: A Distinct Gateway to NIR Fluorescence[J]. Journal of the American Chemical Society,2012, 134(50): 20412-20420.
[42] OLIVEIRA B L, GUO Z, BERNARDES G J L. Inverse electron demand Diels–Alder reactions in chemical biology[J]. Chemical Society Reviews, 2017, 46(16): 4895.
[43] RAJAPAKSHA P, ELBOURNE A, GANGADOO S, et al. A review of methods for the detection of pathogenic microorganisms[J]. Analyst, 2019, 13: e1011399.
[44] XU Y, LI C, XU R, et al. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging[J]. Chemical Science, 2020, 11(31): 8157-8166.
[45] MITTAPALLI R R, NAMASHIVAYA S, OSHCHEPKOV A S, et al. Design of anion-selective PET probes based on azacryptands: the effect of pH on binding and fluorescence properties[J].Chemical Communications, 2017, 53(35): 4822-4825.
[46] SEDGWICK A C, WU L, HAN H H, et al. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents[J]. Chemical Society reviews, 2018, 47(23):8842.
[47] WU L, HUANG C, EMERY B P, et al. Forster resonance energy transfer (FRET)-based smallmolecule sensors and imaging agents[J]. Chemical Society Reviews, 2020, 49(15): 5110-5139.
[48] OUYANG C F G C S C C J Y, MiZhuo. Organogelator based on long alkyl chain attached excimer precursor: Two channels of TICT, highly efficient and switchable luminescence[J]. Dyes and Pigments, 2020, 180: e108433.
[49] WANG S, LIU J, CHI C G, et al. NIR‐II‐Excited Intravital Two‐Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIR‐I AIE Luminogen[J].Advanced Materials, 2019, 31(44): e1904447.
[50] FOURNIER P E, DRANCOURT M, COLSON P, et al. Modern clinical microbiology: new challenges and solutions[J]. Nature Reviews Microbiology, 2013, 11(8): 574-85.
[51] DOS SANTOS FERREIRA C N C J M L A M, Carlos EduardoFranca. Clinical correlation between a point-of-care testing system and laboratory automation for lipid profile[J]. Clinica chimica acta: International journal of clinical chemistry and applied molecular biology, 2015,446(263-266).
[52] NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12): E63.
[53] TOMITA N, MORI Y, KANDA H, et al. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products[J]. Nature protocols, 2008, 3(5):877-882.
[54] DHAMA K, KARTHIK K, CHAKRABORTY S, et al. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review.[J]. Pak J Biol, 2014, 17(2): 151-166.
[55] BLACK E M, LOWINGS J P, SMITH J, et al. A rapid RT-PCR method to differentiate six established genotypes of rabies and rabies-related viruses using TaqMan technology.[J]. Journal of Virological Methods, 2002, 105(1): 25-35.
[56] PARIDA M, SANNARANGAIAH S, DASH P K, et al. Loop mediated isothermal amplification(LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases[J]. Reviews in Medical Virology, 2010, 18(6): 407-421.
[57] GOOTENBERG, JONATHAN, S., et al. Nucleic acid detection with CRISPR-Cas13a/C2c2.[J]. Science, 2017, 356(6336): 438.
[58] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387):439.
[59] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection using Cas13[J]. Nature, 2020, 582(7811): 277-+.
[60] LI H, SHENG C, SHAN W, et al. Removal of Integrated Hepatitis B Virus DNA Using CRISPRCas9[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: e91.
[61] YUEN K S, WANG Z M, WONG N H M, et al. Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9[J]. Virus Research, 2017,244: 296-303.
[62] YIN D, LING S, WANG D, et al. Targeting herpes simplex virus with CRISPR–Cas9 cures herpetic stromal keratitis in mice[J]. Nature Biotechnology, 2021, 244: 296-303.
[63] PUIG H D, LEE R A, NAJJAR D, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants.[J].American Association for the Advancement of Science, 2021, 6(32): eabh2944.
[64] FENG W, PENG H, XU J, et al. Integrating Reverse Transcription Recombinase PolymeraseAmplification with CRISPR Technology for the One-Tube Assay of RNA[J]. Analytical Chemistry, 2021, 93(37): 12808-12816.
[65] WHITESIDES G M. Whitesides, G.M. The origins and the future of microfluidics. Nature 442,368-373[J]. Nature, 2006, 442(7101): 368-373.
[66] YAGER P, EDWARDS T, FU E, et al. Microfluidic diagnostic technologies for global public health[J]. Nature Publishing Group, 2006, 442(7101): 412-418.
[67] WIGZELL H, ANDERSSON B. CELL SEPARATION ON ANTIGEN-COATED COLUMNS [J]. Journal of Experimental Medicine, 1969, 129(1): 23-36.
[68] GONZALEZ R F, DOBBS L G. Purification and analysis of RTI40, a type I alveolar epithelial cell apical membrane protein. Biochim Biophys Acta[J]. Biochimica Et Biophysica Acta, 1999,1429(1): 208-216.
[69] MORO L, TUREMIS M, MARINI B, et al. Better together: Strategies based on magnetic particles and quantum dots for improved biosensing[J]. Biotechnology advances, 2016, 35(1):51.
[70] TELEANU D M, CHIRCOV C, GRUMEZESCU A M, et al. Neuronanomedicine: An Up-toDate Overview[J]. Pharmaceutics, 2019, 11(3): 101.
[71] AFRADI N, FOROUGHIFAR N, QOMI M. Folic acid-supported Fe3O4 magneticnanoparticles as a new,highly effective heterogeneous biocatalyst for the synthesis of 3,4-dihydropyrimidine thiones and their in vitro investigation as antibacterial active agents[J].Biointerface Research in Applied Chemistry, 2018, 8(6): 3661-3669.
[72] CUI F, RHEE M, SINGH A, et al. Microfluidic Sample Preparation for Medical Diagnostics [J]. Annual Review of Biomedical Engineering, 2015, 17(1): 267.
[73] AHMADI M, ELMONGY H, MADRAKIAN T, et al. Nanomaterials as sorbents for sample preparation in bioanalysis: A review[J]. Analytica Chimica Acta, 2017, 958: 1-21.
[74] NAZARIO C, FUMES B H, SILVA M, et al. New materials for sample preparation techniques in bioanalysis[J]. Journal of Chromatography B, 2017, 1043: 81-95.
[75] SHEN C H. Extraction and Purification of Nucleic Acids and Proteins[J]. Diagnostic Molecular Biology, 2019, 8(7): e228.
[76] SOBCZAK-KUPIEC A, VENKATESAN J, ALANEZI A A, et al. Magnetic nanomaterials and sensors for biological detection[J]. Nanomedicine: Nanotechnology, Biology and Medicine,2016, 12(8): 2459-2473.
[77] BOUGAS L, LANGENEGGER L D, MORA C A, et al. Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids[J]. Scientific Reports, 2018, 8(1): 3491.
[78] SCHRITTWIESER S, PELAZ B, PARAK W, et al. Homogeneous Biosensing Based on Magnetic Particle Labels[J]. Sensors, 2016, 16(6): e828.
[79] WU M, HUANG S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment (Review)[J]. Molecular Clinical Oncology, 2017, 7(5): 738.
[80] NOSRATI H, ADIBTABAR M, SHARAFI A, et al. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells.[J].Drug Development Industrial Pharmacy, 2018, 44(8): 1377-1384.
[81] SONG Q J, TAN Q H, ZHANG X, et al. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2: volume 93[Z]. 2016: e115409.
[82] DEY C, BAISHYA K, GHOSH A, et al. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2016, 427: 168-174.
[83] YANG Y, ZHAO Q, FENG W, et al. Luminescent chemodosimeters for bioimaging[J]. Chemical Reviews, 2013, 113(1): 192-270.
[84] ZHANG H, FAN J, WANG J, et al. An Off-On COX-2-Specifk Fluorescent Probe: Targeting the Golgi Apparatus of Cancer Cells[J]. Journal of the American Chemical Society, 2013, 135(31): 11663-11669.
修改评论