中文版 | English
题名

Transposable Elements Mediate 3D Genome Structure

其他题名
转座子调控三维基因组结构
姓名
姓名拼音
SHI Liyang
学号
12032170
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
Andrew Hutchins
导师单位
系统生物学系
论文答辩日期
2023-05-15
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Transposable elements (TEs) make up nearly half of the human genome and play a role in genetic innovation. Mounting evidence indicates that TEs harbor transcription factor (TF) binding sites and serve as a potent repertoire of cis regulatory elements. Many TEs have been found to be bound by cell-type-specific TFs and have been co-opted to contribute to the regulatory network and maintain cell identity. Proper gene expression requires precise regulatory information to be correctly transmitted through physical chromatin contacts, and the dynamics of which was found driven by transcription factors and epigenetic factors in a context-specific manner. Studies have shown TEs play an important role in shaping genome organization. However, the majority of them have focused on TEs in topologically associated domain boundaries or loop anchors from a more or less CTCF-centric perspective, precluding broader participation of TEs in mediating 3D genome structure through other factors. Furthermore, a full description of TE-bound TFs modulating 3D genome structure has not been elucidated, which can provide new insights into TEs underlying chromatin organization through their associated TFs.

To fill this gap, we used publicly available TF-DNA binding data and deeply sequenced Hi-C data in human pluripotent stem cells to examine the role of TEs in shaping 3D genome structure. We utilized specialized toolsets to include TE sequences in Hi-C data processing and build separate Hi-C matrices with and without TE reads, enabling the direct comparisons of different levels of 3D genome structure. Our data suggest that TEs play an essential role in dominating the 3D organization of the genome by supplying a narrow majority of 3D structure and are particularly responsible for finer-scale contacts. We also categorized TFs regarding their association with chromatin folding and discovered that contact-forming ability of a TF is positively correlated with the TE proportion. We identified that "contact-former" TFs tend to display insulating potential over nearby genes of their binding sites and bind to enhancer-like TEs. Furthermore, we selected four candidate TFs as examples to further support our observation. Taken together, our findings revealed a previously undermined role of TEs in dominating the 3D organization of the genome by in silico modeling and paved the ground for further exploration over TEs' broader function on the dark side of the genome organization.

其他摘要

转座子(transposable elements, TEs)占人类基因组的近一半,在遗传创新中发挥着关键作用。越来越多的证据表明,TEs 序列中含有转录因子(transcription factors, TFs)的结合位点,是一种有效的顺式调控元件。研究发现 TEs 与细胞类型特异性转录因子结合,参与调控网络并维持细胞特性。正确的基因表达需通过染色质的物理接触以传递精确的调控信息,前人研究表明,众多转录因子和表观遗传因子可能在这一动态过程中发挥精确作用。同时,TEs也在塑造基因组结构方面发挥着重要作用。然而,大部分研究关注于拓扑相关域或染色质环的边界中TEs的功能,即以CTCF为中心,从而忽略了TEs通过其他因子介导三维基因组结构中的作用。此外,关于结合TEs的TFs(TE-bound TFs)如何调节三维基因组结构尚未被完整描述,即TEs相关的TFs对染色质结构的影响,而这可为该领域提供新的见解。

为了填补这一空白,本研究整合了大量人类多能干细胞的TF-DNA结合数据与深度测序的Hi-C数据,来探究TEs在塑造三维基因组结构中的作用。本研究利用特殊工具将TE序列纳入Hi-C数据处理,并分别建立包括及不包括TE序列的Hi-C矩阵,从而对不同层次的三维基因组结构进行直接比较。本研究数据表明,TEs是绝大多数的三维染色质结构的基础,特别是更精细级别的结构,因此TEs在三维基因组中发挥着至关重要的作用。本研究进一步通过TFs与染色质折叠的相关程度将其分类,发现TF促进染色质互作结构形成的能力与互作位点中的TE比例呈正相关关系。分析结果表明被分类为可促进染色质互作结构的TFs (contact-former)可能对其结合位点临近基因发挥绝缘作用并偏好与具有增强子特性的TEs结合。此外,本研究筛选了出四个候选TFs作为例子进行下一步探究。综上所述,本研究通过计算机模拟揭示了TEs在构建三维基因组结构中的主导作用,并为进一步探索TEs在基因组结构的广泛功能奠定了基础。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] BOLZER A, KRETH G, SOLOVEI I, et al. Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes[J/OL]. PLoS biology, 2005, 3(5): e157. DOI: 10.1371/journal.pbio.0030157.
[2] VAN DRIEL R, FRANSZ P F, VERSCHURE P J. The Eukaryotic Genome: A System Regulated at Different Hierarchical Levels[J/OL]. Journal of Cell Science, 2003, 116 (20):4067-4075
[2023-02-12]. https://journals.biologists.com/jcs/article/116/20/4067/27418/Theeukaryotic-genome-a-system-regulated-at. DOI: 10.1242/jcs.00779.
[3] TRZASKOMA P, RUSZCZYCKI B, LEE B, et al. Ultrastructural Visualization of 3D Chromatin Folding Using Volume Electron Microscopy and DNA in Situ Hybridization[J/OL]. Nature Communications, 2020, 11(1): 2120
[2023-02-28]. https://www.nature.com/articles/s41467-020-15987-2. DOI: 10.1038/s41467-020-15987-2.
[4] NEGUEMBOR M V, MARTIN L, CASTELLS-GARCíA ff, et al. Transcription-Mediated Supercoiling Regulates Genome Folding and Loop Formation[J/OL]. Molecular Cell, 2021, 81 (15): 3065-3081.e12
[2021-11-03]. https://doi.org/10.1016/j.molcel.2021.06.009.
[5] DEKKER J, RIPPE K, DEKKER M, et al. Capturing Chromosome Conformation[J/OL]. Science, 2002, 295(5558): 1306. http://science.sciencemag.org/content/295/5558/1306.abstract. DOI: 10.1126/science.1067799.
[6] SIMONIS M, KLOUS P, SPLINTER E, et al. Nuclear Organization of Active and Inactive Chromatin Domains Uncovered by Chromosome Conformation Capture–on-Chip (4C)[J/OL]. Nature Genetics, 2006, 38(11): 1348-1354
[2023-02-28]. http://www.nature.com/articles/ng1896. DOI: 10.1038/ng1896.
[7] ZHAO Z, TAVOOSIDANA G, SJöLINDER M, et al. Circular Chromosome Conformation Capture (4C) Uncovers Extensive Networks of Epigenetically Regulated Intraand Interchro-mosomal Interactions[J/OL]. Nature Genetics, 2006, 38(11): 1341-1347
[2023-03-05]. http: //www.nature.com/articles/ng1891. DOI: 10.1038/ng1891.
[8] DOSTIE J, RICHMOND T A, ARNAOUT R A, et al. Chromosome Conformation Capture Carbon Copy (5C): A Massively Parallel Solution for Mapping Interactions between Genomic Elements[J/OL]. Genome Research, 2006, 16(10): 1299-1309
[2023-02-28]. http://genome.cshlp.org/lookup/doi/10.1101/gr.5571506.
[9] LIEBERMAN-AIDEN E, VAN BERKUM N L, WILLIAMS L, et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome[J/OL]. Science,2009, 326(5950): 289-293. DOI: 10.1126/science.1181369.
[10] BELTON J M, MCCORD R P, GIBCUS J H, et al. Hi–C: A Comprehensive Technique to Capture the Conformation of Genomes[J/OL]. Methods, 2012, 58(3): 268-276
[2023-02-28]. https://www.sciencedirect.com/science/article/pii/S1046202312001168. DOI: 10.1016/j.ymeth.2012.05.001.68
[11] KRIETENSTEIN N, ABRAHAM S, VENEV S V, et al. Ultrastructural Details of Mammalian Chromosome Architecture[J/OL]. Molecular Cell, 2020, 78(3): 554-565.e7
[2023-02-18]. https: //linkinghub.elsevier.com/retrieve/pii/S1097276520301519. DOI: 10.1016/j.molcel.2020.03.0 03.
[12] HUA P, BADAT M, HANSSEN L L P, et al. Defining Genome Architecture at Base-Pair Res-olution[J/OL]. Nature, 2021: 1-5
[2021-06-13]. https://www.nature.com/articles/s41586-021-0 3639-4. DOI: 10.1038/s41586-021-03639-4.
[13] NAGANO T, LUBLING Y, STEVENS T J, et al. Single-Cell Hi-C Reveals Cell-toCell Variability in Chromosome Structure[J/OL]. Nature, 2013, 502(7469): 59-64
[2023-02-13]. https://www.nature.com/articles/nature12593. DOI: 10.1038/nature12593.
[14] FULLWOOD M J, RUAN Y. ChIP-Based Methods for the Identification of Long-Range Chro-matin Interactions[J/OL]. Journal of Cellular Biochemistry, 2009, 107(1): 30-39
[2021-11-02]. https://onlinelibrary.wiley.com/doi/10.1002/jcb.22116.
[15] FANG R, YU M, LI G, et al. Mapping of Long-Range Chromatin Interactions by Proximity Ligation-Assisted ChIP-Seq[J/OL]. Cell Research, 2016, 26(12): 1345-1348
[2023-02-13]. http: //www.nature.com/articles/cr2016137. DOI: 10.1038/cr.2016.137.
[16] MUMBACH M R, RUBIN A J, FLYNN R A, et al. HiChIP: E icient and Sensitive Analysis of Protein-Directed Genome Architecture[J/OL]. Nature Methods, 2016, 13(11): 919-922
[2023-2-13]. http://www.nature.com/articles/nmeth.3999. DOI: 10.1038/nmeth.3999.
[17] KEMPFER R, POMBO A. Methods for Mapping 3D Chromosome Architecture[J/OL]. Nature Reviews Genetics, 2020, 21(4): 207-226
[2023-01-14]. https://www.nature.com/articles/s41576-019-0195-2. DOI: 10.1038/s41576-019-0195-2.
[18] BEAGRIE R A, SCIALDONE A, SCHUELER M, et al. Complex Multi-Enhancer Contacts Captured by Genome Architecture Mapping[J/OL]. Nature, 2017, 543(7646): 519-524. DOI: 10.1038/nature21411.
[19] QUINODOZ S A, OLLIKAINEN N, TABAK B, et al. Higher-Order Inter-Chromosomal Hubs Shape 3D Genome Organization in the Nucleus[J/OL]. Cell, 2018, 174(3): 744-757.e24. DOI: 10.1016/j.cell.2018.05.024.
[20] WU W, YAN Z, NGUYEN T C, et al. Mapping RNA-Chromatin Interactions by Sequencing with iMARGI[J/OL]. Nature Protocols, 2019, 14(11): 3243-3272. DOI: 10.1038/s41596-019-0229-4.
[21] GORONZY I N, QUINODOZ S A, JACHOWICZ J W, et al. Simultaneous Mapping of 3D Structure and Nascent RNAs Argues against Nuclear Compartments That Preclude Transcrip-tion[J/OL]. Cell Reports, 2022, 41(9)
[2022-11-30]. https://www.cell.com/cellreports/abstrac t/S2211-1247(22)01608-4. DOI: 10.1016/j.celrep.2022.111730.
[22] YARDIMCI G G, OZADAM H, SAURIA M E G, et al. Measuring the Reproducibility and Quality of Hi-C Data[J/OL]. Genome Biology, 2019, 20(1): 57
[2023-02-28]. https://doi.org/ 10.1186/s13059-019-1658-7.
[23] VAN STEENSEL B, FURLONG E E M. The Role of Transcription in Shap-ing the Spatial Organization of the Genome[J/OL]. Nature Reviews Molecular Cell Biology, 2019
[2023-02-15]. http://www.nature.com/articles/s41580-019-0114-6. DOI: 10.1038/s41580-019-0114-6.69
[24] LORAT Y, SCHANZ S, SCHULER N, et al. Beyond Repair Foci: DNA Double-Strand Break Repair in Euchromatic and Heterochromatic Compartments Analyzed by Transmission Electron Microscopy[J]. PLoS ONE, 2012, 7.
[25] BONEV B, CAVALLI G. Organization and Function of the 3D Genome[J/OL]. Nature Reviews Genetics, 2016, 17(11): 661-678
[2022-12-05]. http://www.nature.com/articles/nrg.2016.112. DOI: 10.1038/nrg.2016.112.
[26] ZHENG H, XIE W. The Role of 3D Genome Organization in Development and Cell Differentiation[J/OL]. Nature Reviews Molecular Cell Biology, 2019, 20(9): 535-550. http: //dx.doi.org/10.1038/s41580-019-0132-4.
[27] RAO S S, HUNTLEY M H, DURAND N C, et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping[J/OL]. Cell, 2014, 159(7): 1665-1680. DOI: 10.1016/j.cell.2014.11.021.
[28] DIXON J R, SELVARAJ S, YUE F, et al. Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions[J/OL]. Nature, 2012, 485(7398): 376-380. DOI: 10.1038/nature11082.
[29] BEAGAN J A, PHILLIPS-CREMINS J E. On the Existence and Functionality of Topologically Associating Domains[J/OL]. Nature Genetics, 2020, 52(1): 8-16
[2021-04-08]. https://www.nature.com/articles/s41588-019-0561-1. DOI: 10.1038/s41588-019-0561-1.
[30] DE WIT E, VOS E S, HOLWERDA S J, et al. CTCF Binding Polarity Determines Chromatin Looping[J/OL]. Molecular Cell, 2015, 60(4): 676-684. DOI: 10.1016/ j.molcel.2015.09.023.
[31] FUDENBERG G, IMAKAEV M, LU C, et al. Formation of Chromosomal Domains by Loop Extrusion[J/OL]. Cell reports, 2016, 15(9): 2038-2049
[2021-11-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889513/. DOI: 10.1016/j.celrep.2016.04.085.
[32] IBRAHIM D M, MUNDLOS S. The Role of 3D Chromatin Domains in Gene Regulation: A Multi-Facetted View on Genome Organization[J/OL]. Current Opinion in Genetics & Development, 2020, 61: 1-8
[2022-11-23]. https://www.sciencedirect.com/science/article/pii/S0959437X20300204. DOI: 10.1016/j.gde.2020.02.015.
[33] EMERSON D J, ZHAO P A, COOK A L, et al. Cohesin-Mediated Loop Anchors Confine the Locations of Human Replication Origins[J/OL]. Nature, 2022, 606(7915):812-819
[2023-02-15]. https://www.nature.com/articles/s41586-022-04803-0. DOI: 10.1038/s41586-022-04803-0.
[34] GABRIELE M, BRANDãO H B, GROSSE-HOLZ S, et al. Dynamics of CTCF- and CohesinMediated Chromatin Looping Revealed by Live-Cell Imaging[J/OL]. Science, 2022, 376(6592):496-501
[2022-11-28]. https://www.science.org/doi/10.1126/science.abn6583.
[35] Open2C, ABDENNUR N, ABRAHAM S, et al. Cooltools: Enabling High-Resolution Hi-C Analysis in Python[EB/OL]. Bioinformatics(2022-11-01)
[2022-11-24]. http://biorxiv.org/lookup/doi/10.1101/2022.10.31.514564.
[36] HNISZ D, DAY D S, YOUNG R A. Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control[J/OL]. Cell, 2016, 167(5): 1188-1200. http://dx.doi.org/10.1016 /j.cell.2016.10.024.70
[37] SCHOENFELDER S, FRASER P. Long-Range Enhancer–Promoter Contacts in Gene Expression Control[J/OL]. Nature Reviews Genetics, 2019, 20(8): 437-455
[2021-10-26]. http://www.nature.com/articles/s41576-019-0128-0. DOI: 10.1038/s41576-019-0128-0.
[38] HSIEH T H S, CATTOGLIO C, SLOBODYANYUK E, et al. Enhancer–Promoter Interactions and Transcription Are Largely Maintained upon Acute Loss of CTCF, Cohesin, WAPL or YY1 [J/OL]. Nature Genetics, 2022, 54(12): 1919-1932
[2022-12-11]. https://www.nature.com/articles/s41588-022-01223-8. DOI: 10.1038/s41588-022-01223-8.
[39] PAL K, FORCATO M, FERRARI F. Hi-C Analysis : From Data Generation to Integration[J/OL]. Biophys Rev., 2019: 67-78. DOI: 10.1007/s12551-018-0489-1.
[40] IMAKAEV M, FUDENBERG G, MCCORD R P, et al. Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization[J/OL]. Nature Methods, 2012, 9(10): 999-1003
[2021-06-07]. http://www.nature.com/articles/nmeth.2148. DOI: 10.1038/nmeth.2148.
[41] KNIGHT P A, RUIZ D. A Fast Algorithm for Matrix Balancing[J/OL]. IMA Journal of Numerical Analysis, 2013, 33(3): 1029-1047
[2022-11-24]. https://academic.oup.com/imajna/article-lookup/doi/10.1093/imanum/drs019.
[42] YANG M, MA J. Machine Learning Methods for Exploring Sequence Determinants of 3D Genome Organization[J/OL]. Journal of Molecular Biology, 2022, 434(15): 167666
[2023-03-08]. https://www.sciencedirect.com/science/article/pii/S0022283622002583. DOI: 10.1016/j.jmb.2022.167666.
[43] LUPIáñEZ D G, SPIELMANN M, MUNDLOS S. Breaking TADs: How Alterations of Chromatin Domains Result in Disease[J/OL]. Trends in Genetics, 2016, 32(4): 225-237
[2023-01-08]. https://www.sciencedirect.com/science/article/pii/S0168952516000044. DOI:10.1016/j.tig.2016.01.003.
[44] LUPIáñEZ D G, KRAFT K, HEINRICH V, et al. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions[J/OL]. Cell, 2015, 161(5): 1012-1025
[2023-01-07]. https://www.cell.com/cell/abstract/S0092-8674(15)00377-3. DOI:10.1016/j.cell.2015.04.004.
[45] FRANKE M, IBRAHIM D M, ANDREY G, et al. Formation of New Chromatin Domains Determines Pathogenicity of Genomic Duplications[J/OL]. Nature, 2016, 538(7624): 265-269
[2023-01-07]. https://www.nature.com/articles/nature19800. DOI: 10.1038/nature19800.
[46] DOWEN J M, FAN Z P, HNISZ D, et al. Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes[J/OL]. Cell, 2014, 159(2): 374-387
[2021-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197132/. DOI: 10.1016/j.cell.2014.09.030.
[47] FLAVAHAN W A, DRIER Y, LIAU B B, et al. Insulator Dysfunction and Oncogene Activation in IDH Mutant Gliomas[J/OL]. Nature, 2016, 529(7584): 110-114
[2023-02-06]. https://www.nature.com/articles/nature16490. DOI: 10.1038/nature16490.
[48] HNISZ D, WEINTRAUB A S, DAY D S, et al. Activation of Proto-Oncogenes by Disruption of Chromosome Neighborhoods[J/OL]. Science, 2016, 351(6280): 1454-1458
[2021-05-24].https://science.sciencemag.org/content/351/6280/1454. DOI: 10.1126/science.aad9024.71
[49] SUN J H, ZHOU L, EMERSON D J, et al. Disease-Associated Short Tandem Repeats CoLocalize with Chromatin Domain Boundaries[J/OL]. Cell, 2018, 175(1): 224-238.e15
[2023-3-10]. https://www.cell.com/cell/abstract/S0092-8674(18)31021-3. DOI: 10.1016/j.cell.2018.08.005.
[50] NORA E P, GOLOBORODKO A, VALTON A L, et al. Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization[J/OL]. Cell, 2017, 169(5): 930-944.e22. DOI: 10.1016/j.cell.2017.05.004.
[51] SCHWARZER W, ABDENNUR N, GOLOBORODKO A, et al. Two Independent Modes of Chromatin Organization Revealed by Cohesin Removal[J/OL]. Nature, 2017, 551(7678):51-56
[2023-03-01]. https://www.nature.com/articles/nature24281. DOI: 10.1038/nature24281.
[52] HAARHUIS J H, VAN DER WEIDE R H, BLOMEN V A, et al. The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension[J/OL]. Cell, 2017, 169(4): 693-707.e14. DOI: 10.1016/j.cell.2017.04.013.
[53] RAO S S P, HUANG S C, GLENN ST HILAIRE B, et al. Cohesin Loss Eliminates All Loop Domains[J/OL]. Cell, 2017, 171(2): 305-320.e24
[2021-05-05]. https://www.sciencedirect.com/science/article/pii/S0092867417311200. DOI: 10.1016/j.cell.2017.09.026.
[54] WEINTRAUB A S, LI C H, ZAMUDIO A V, et al. YY1 Is a Structural Regulator of EnhancerPromoter Loops[J/OL]. Cell, 2017, 171(7): 1573-1588.e28
[2021-05-06]. https://www.sciencedirect.com/science/article/pii/S009286741731317X. DOI: 10.1016/j.cell.2017.11.008.
[55] RHODES J D P, FELDMANN A, HERNá NDEZ-RODRíGUEZ B, et al. Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells[J/OL]. Cell Reports, 2020, 30(3): 820-835.e10
[2021-04-07]. https://www.sciencedirect.com/science/article/pii/S2 211124719317140. DOI: 10.1016/j.celrep.2019.12.057.
[56] KRAFT K, YOST K E, MURPHY S E, et al. Polycomb-Mediated Genome Architecture Enables Long-Range Spreading of H3K27 Methylation[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(22): e2201883119
[2023-01-07].https: //www.pnas.org/doi/abs/10.1073/pnas.2201883119.
[57] MCLAUGHLIN K, FLYAMER I M, THOMSON J P, et al. DNA Methylation Directs Polycomb-Dependent 3D Genome Re-Organization in Naive Pluripotency[J/OL]. Cell Reports, 2019, 29(7): 1974-1985.e6
[2022-04-25]. DOI: 10.1016/j.celrep.2019.10.031.
[58] BUSSLINGER G A, STOCSITS R R, VAN DER LELIJ P, et al. Cohesin Is Positioned in Mammalian Genomes by Transcription, CTCF and Wapl[J/OL]. Nature, 2017, 544(7651): 503-507
[2023-02-27]. https://www.nature.com/articles/nature22063. DOI: 10.103 8/nature22063.
[59] HEINZ S, TEXARI L, HAYES M G B, et al. Transcription Elongation Can Affect Genome 3D Structure[J/OL]. Cell, 2018, 174(6): 1522-1536.e22
[2023-02-25]. https://www.cell.com/cell/abstract/S0092-8674(18)30975-9. DOI: 10.1016/j.cell.2018.07.047.
[60] JIANG Y, HUANG J, LUN K, et al. Genome-Wide Analyses of Chromatin Interactions after the Loss of Pol I, Pol II, and Pol III[J/OL]. Genome Biology, 2020, 21(1):158
[2021-05-06]. https://doi.org/10.1186/s13059-020-02067-3.72
[61] LINARES-SALDANA R, KIM W, BOLAR N A, et al. BRD4 Orchestrates Genome Folding to Promote Neural Crest Differentiation[J/OL]. Nature Genetics, 2021, 53(10): 1480-1492
[2021-11-04]. https://www.nature.com/articles/s41588-021-00934-8. DOI: 10.1038/s41588-021-00934-8.
[62] KIM Y H, MARHON S A, ZHANG Y, et al. Rev-Erbα Dynamically Modulates Chromatin Looping to Control Circadian Gene Transcription[J/OL]. Science, 2018, 359(6381): 1274-1277
[2023-03-13]. https://www.science.org/doi/10.1126/science.aao6891.
[63] BANIGAN E J, TANG W, VAN DER BERG A A, et al. Transcription Shapes 3D Chromatin Organization by Interacting with Loop Extrusion[J/OL]. Proceedings of the National Academy of Sciences, 2023, 120(11): e2210480120
[2023-03-11]. https://www.pnas .org/doi/10.1073/pnas.2210480120.
[64] ARNOLD M, BRESSIN A, JASNOVIDOVA O, et al. A BRD4-Mediated Elongation Con-trol Point Primes Transcribing RNA Polymerase II for 3ff-Processing and Termination[J/OL]. Molecular Cell, 2021, 81(17): 3589-3603.e13
[2023-02-27]. https://linkinghub.elsevier.com/retrieve/pii/S1097276521005062. DOI: 10.1016/j.molcel.2021.06.026.
[65] STADHOUDERS R, FILION G J, GRAF T. Transcription Factors and 3D Genome Conformation in Cell-Fate Decisions[J/OL]. Nature, 2019, 569(7756): 345-354
[2021-05-16]. https://www.nature.com/articles/s41586-019-1182-7. DOI: 10.1038/s41586-019-1182-7.
[66] STADHOUDERS R, VIDAL E, SERRA F, et al. Transcription Factors Orchestrate Dynamic Interplay between Genome Topology and Gene Regulation during Cell Reprogramming[J/OL]. Nature Genetics, 2018, 50(2): 238-249
[2021-05-05]. https://www.nature.com/articles/s41588-017-0030-7. DOI: 10.1038/s41588-017-0030-7.
[67] DE WIT E, BOUWMAN B A M, ZHU Y, et al. The Pluripotent Genome in Three Dimensions Is Shaped around Pluripotency Factors[J/OL]. Nature, 2013, 501(7466):227-231
[2022-12-13]. DOI: 10.1038/nature1242 0.
[68] SCHOENFELDER S, SUGAR R, DIMOND A, et al. Polycomb Repressive Complex PRC1 Spatially Constrains the Mouse Embryonic Stem Cell Genome[J/OL]. Nature Genetics, 2015, 47(10): 1179-1186. DOI: 10.1038/ng.3393.
[69] DENHOLTZ M, BONORA G, CHRONIS C, et al. Long-Range Chromatin Contacts in Embryonic Stem Cells Reveal a Role for Pluripotency Factors and Polycomb Proteins in Genome Organization[J/OL]. Cell Stem Cell, 2013, 13(5): 602-616. DOI: 10.1016/j.stem.2013.08.013.
[70] DOOLITTLE W F, SAPIENZA C. Selfish Genes, the Phenotype Paradigm and Genome Evolution[J/OL]. Nature, 1980, 284(5757): 601-603. https://doi.org/10.1038/284601a0.
[71] HUANG C R L, BURNS K H, BOEKE J D. Active Transposition in Genomes[J/OL]. Annual Review of Genetics, 2012, 46(1): 651-675
[2021-04-08]. http://www.annualreviews.org/doi/10 .1146/annurev-genet-110711-155616.
[72] HUTCHINS A P, PEI D. Transposable Elements at the Center of the Crossroads between Embryogenesis, Embryonic Stem Cells, Reprogramming, and Long Non-Coding RNAs[J/OL]. Science Bulletin, 2015, 60(20): 1722-1733
[2021-04-04]. https://doi.org/10.1007/s11434-015-0905-x.73
[73] HOYT S J, STORER J M, HARTLEY G A, et al. From Telomere to Telomere: The Transcriptional and Epigenetic State of Human Repeat Elements[J/OL]. Science, 2022, 376(6588): eabk3112
[2023-02-26]. https://www.science.org/doi/full/10.1126/science.abk3112.
[74] MCCLINTOCK B. The Origin and Behavior of Mutable Loci in Maize[J/OL]. Proceedings of the National Academy of Sciences, 1950, 36(6): 344. http://www.pnas.org/content/36/6/344.abstract. DOI: 10.1073/pnas.36.6.344.
[75] FEDOROFF N, WESSLER S, SHURE M. Isolation of the Transposable Maize Controlling Elements Ac and Ds[J/OL]. Cell, 1983, 35(1): 235-242
[2023-02-26]. https://linkinghub.elsevier.com/retrieve/pii/009286748390226X. DOI: 10.1016/0092-8674(83)90226-X.
[76] BRITTEN R J, KOHNE D E. Repeated Sequences in DNA[J/OL]. Science, 1968, 161(3841):529-540
[2023-02-26]. https://www.science.org/doi/10.1126/science.161.3841.529.
[77] BRITTEN R J, DAVIDSON E H. Repetitive and Non-Repetitive DNA Sequences and a Speculation on the Origins of Evolutionary Novelty[J/OL]. The Quarterly Review of Biology, 1971
[2023-02-26]. https://www.journals.uchicago.edu/doi/10.1086/406830.
[78] OHNO S. So Much ”Junk” DNA in Our Genome[J]. Brookhaven Symposia in Biology, 1972,23: 366-370.
[79] FINNEGAN D J. Eukaryotic Transposable Elements and Genome Evolution[J/OL]. Trends in Genetics, 1989, 5: 103-107
[2021-10-31]. https://linkinghub.elsevier.com/retrieve/pii/0168952589900395. DOI: 10.1016/0168-9525(89)90039-5.
[80] WELLS J N, FESCHOTTE C. A Field Guide to Eukaryotic Transposable Elements[J/OL]. Annual Review of Genetics, 2020. https://www.annualreviews.org/doi/abs/10.1146/annurev-genet-040620-022145.
[81] DEWANNIEUX M, ESNAULT C, HEIDMANN T. LINE-Mediated Retrotransposition of Marked Alu Sequences[J/OL]. Nature Genetics, 2003, 35(1): 41-48
[2021-11-03]. http://www.nature.com/articles/ng1223. DOI: 10.1038/ng1223.
[82] SCHMID C W. Alu: A Parasite’s Parasite?[J/OL]. Nature Genetics, 2003, 35(1): 15-16
[2023-02-26]. http://www.nature.com/articles/ng0903-15. DOI: 10.1038/ng0903-15.
[83] WICKER T, SABOT F, HUA-VAN A, et al. A Unified Classification System for Eukaryotic Transposable Elements[J/OL]. Nature Reviews Genetics, 2007, 8(12): 973-982
[2023-03-31].https://www.nature.com/articles/nrg2165. DOI: 10.1038/nrg2165.
[84] SUNDARAM V, CHENG Y, MA Z, et al. Widespread Contribution of Transposable Elements to the Innovation of Gene Regulatory Networks[J/OL]. Genome Research, 2014, 24(12): 1963-1976. /pmc/articles/PMC4248313//pmc/articles/PMC4248313/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248313/. DOI: 10.1101/gr.168872.113.
[85] FUEYO R, JUDD J, FESCHOTTE C, et al. Roles of Transposable Elements in the Regulation of Mammalian Transcription[J/OL]. Nature Reviews Molecular Cell Biology, 2022, 23(7): 481-497
[2023-01-09]. https://www.nature.com/articles/s41580-022-00457-y. DOI: 10.1038/s41580-022-00457-y.
[86] BOURQUE G, BURNS K H, GEHRING M, et al. Ten Things You Should Know about Transposable Elements[J/OL]. Genome Biology, 2018, 19(1). DOI: 10.1186/s13059-018-1577-z.74
[87] HOLLISTER J D, GAUT B S. Epigenetic Silencing of Transposable Elements: A Trade-off between Reduced Transposition and Deleterious Effects on Neighboring Gene Expression[J/OL]. Genome Research, 2009, 19(8): 1419-1428
[2023-03-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720190/. DOI: 10.1101/gr.091678.109.
[88] GOERNER-POTVIN P, BOURQUE G. Computational Tools to Unmask Transposable Elements[J/OL]. Nature Reviews Genetics, 2018, 19(11): 688-704
[2021-10-27]. https://www.nature.com/articles/s41576-018-0050-x. DOI: 10.1038/s41576-018-0050-x.
[89] GAGNIER L, BELANCIO V P, MAGER D L. Mouse Germ Line Mutations Due to Retrotransposon Insertions[J/OL]. Mobile DNA, 2019, 10(1): 15
[2021-11-03]. https://mobilednajournal.biomedcentral.com/articles/10.1186/s13100-019-0157-4.
[90] KUNARSO G, CHIA N Y, JEYAKANI J, et al. Transposable Elements Have Rewired the Core Regulatory Network of Human Embryonic Stem Cells[J/OL]. Nature Genetics, 2010, 42(7):631-634. DOI: 10.1038/ng.600.
[91] YU H, CHEN M, HU Y, et al. Dynamic Reprogramming of H3K9me3 at Hominoid-Specific Retrotransposons during Human Preimplantation Development[J/OL]. Cell Stem Cell, 2022,29(7): 1031-1050.e12. DOI: 10.1016/j.stem.2022.06.006.
[92] XIANG X, TAO Y, DIRUSSO J, et al. Human Reproduction Is Regulated by Retrotransposons Derived from Ancient Hominidae-Specific Viral Infections[J/OL]. Nature Communications, 2022, 13(1): 463
[2023-01-07]. https://www.nature.com/articles/s41467-022-28105-1. DOI:10.1038/s41467-022-28105-1.
[93] COSBY R L, JUDD J, ZHANG R, et al. Recurrent Evolution of Vertebrate Transcription Factors by Transposase Capture[J/OL]. Science, 2021, 371(6531): eabc6405
[2023-01-05]. https://www.science.org/doi/10.1126/science.abc6405.
[94] JACOBS F M J, GREENBERG D, NGUYEN N, et al. An Evolutionary Arms Race between KRAB Zinc-Finger Genes ZNF91/93 and SVA/L1 Retrotransposons[J/OL]. Nature, 2014, 516 (7530): 242-245
[2021-11-04]. https://www.nature.com/articles/nature13760. DOI: 10.1038/nature13760.
[95] BRUNO M, MAHGOUB M, MACFARLAN T S. The Arms Race Between KRAB–Zinc Finger Proteins and Endogenous Retroelements and Its Impact on Mammals[J/OL]. Annual Review of Genetics, 2019, 53(1): 393-416
[2021-09-23]. https://doi.org/10.1146/annurev-genet-112618-043717.
[96] CHUONG E B, ELDE N C, FESCHOTTE C. Regulatory Evolution of Innate Immunity through Co-Option of Endogenous Retroviruses[J/OL]. Science, 2016, 351(6277): 1083-1087
[2023-02-27]. https://www.science.org/doi/10.1126/science.aad5497.
[97] WANG T, ZENG J, LOWE C B, et al. Species-Specific Endogenous Retroviruses Shape the Transcriptional Network of the Human Tumor Suppressor Protein P53[J/OL]. Proceedings of the National Academy of Sciences, 2007, 104(47): 18613-18618
[2021-10-31]. http://www.pnas.org/cgi/doi/10.1073/pnas.0703637104.
[98] BOURQUE G, LEONG B, VEGA V B, et al. Evolution of the Mammalian Transcription Factor Binding Repertoire via Transposable Elements[J/OL]. Genome Research, 2008, 18(11): 1752-1762. DOI: 10.1101/gr.080663.108.75
[99] HE J, FU X, ZHANG M, et al. Transposable Elements Are Regulated by Context-Specific Patterns of Chromatin Marks in Mouse Embryonic Stem Cells[J/OL]. Nature Communications, 2019, 10(1): 34
[2021-10-14]. http://www.nature.com/articles/s41467-018-08006-y. DOI: 10.1038/s41467-018-08006-y.
[100] SCHMIDT D, SCHWALIE P C, WILSON M D, et al. Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages[J/OL].Cell, 2012, 148(1-2): 335-348. DOI: 10.1016/j.cell.2011.11.058.
[101] RAVIRAM R, ROCHA P P, LUO V M, et al. Analysis of 3D Genomic Interactions Identifies Candidate Host Genes That Transposable Elements Potentially Regulate[J/OL]. Genome Biology, 2018, 19(1): 216
[2022-12-28]. https://doi.org/10.1186/s13059-018-1598-7.
[102] CAO Y, CHEN G, WU G, et al. Widespread Roles of Enhancer-like Transposable Elements in Cell Identity and Long-Range Genomic Interactions[J/OL]. Genome Research, 2019, 29(1):40-52
[2023-03-08]. https://genome.cshlp.org/content/29/1/40. DOI: 10.1101/gr.235747.118.
[103] KAPUSTA A, KRONENBERG Z, LYNCH V J, et al. Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs[J/OL]. PLOS Genetics, 2013, 9(4): e1003470
[2022-12-27]. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003470.
[104] BABARINDE I A, MA G, LI Y, et al. Transposable Element Sequence Fragments Incorporated into Coding and Noncoding Transcripts Modulate the Transcriptome of Human Pluripotent Stem Cells[J/OL]. Nucleic Acids Research, 2021
[2021-08-24]. https://doi.org/10.1093/nar/gkab710.
[105] ZHANG Y, LI T, PREISSL S, et al. Transcriptionally Active HERV-H Retrotransposons Demarcate Topologically Associating Domains in Human Pluripotent Stem Cells[J/OL]. Nature Genetics, 2019, 51(9): 1380-1388
[2021-03-29]. https://www.nature.com/articles/s41588-019-0479-7. DOI: 10.1038/s41588-019-0479-7.
[106] LUO X, LIU Y, DANG D, et al. 3D Genome of Macaque Fetal Brain Reveals Evolutionary Innovations during Primate Corticogenesis[J/OL]. Cell, 2021, 184(3): 723-740.e21
[2021-03-26]. https://www.sciencedirect.com/science/article/pii/S0092867421000015. DOI: 10.1016/j.cell.2021.01.001.
[107] LAMBERT S A, JOLMA A, CAMPITELLI L F, et al. The Human Transcription Factors[J/OL]. Cell, 2018, 172(4): 650-665
[2021-12-14]. https://www.sciencedirect.com/science/article/pii/S0092867418301065. DOI: 10.1016/j.cell.2018.01.029.
[108] INUKAI S, KOCK K H, BULYK M L. Transcription Factor–DNA Binding: Beyond Binding Site Motifs[J/OL]. Current opinion in genetics & development, 2017, 43: 110-119
[2023-03-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447501/. DOI: 10.1016/j.gde.2017.02.007.
[109] KIM S, WYSOCKA J. Deciphering the Multi-Scale, Quantitative Cis-Regulatory Code[J/OL]. Molecular Cell, 2023, 83(3): 373-392
[2023-02-12]. https://www.cell.com/molecular-cell/abstract/S1097-2765(22)01215-1. DOI: 10.1016/j.molcel.2022.12.032.
[110] WITTKOPP P J, KALAY G. Cis-Regulatory Elements: Molecular Mechanisms and Evolutionary Processes Underlying Divergence[J/OL]. Nature Reviews Genetics, 2012, 13(1): 59-69
[2023-03-12]. https://www.nature.com/articles/nrg3095. DOI: 10.1038/nrg3095.76
[111] PEHRSSON E C, CHOUDHARY M N, SUNDARAM V, et al. The Epigenomic Landscape of Transposable Elements across Normal Human Development and Anatomy[J/OL]. Nature Communications, 2019, 10(1): 1-16. https://doi.org/10.1038/s41467-019-13555-x.
[112] BECKER K G, SWERGOLD G D, OZATO K, et al. Binding of the Ubiquitous Nuclear Transcription Factor YY1 to a Cis Regulatory Sequence in the Human LINE-1 Transposable Element[J/OL]. Human Molecular Genetics, 1993, 2(10): 1697-1702. DOI: 10.1093/hmg/2.10.1697.
[113] ITO J, SUGIMOTO R, NAKAOKA H, et al. Systematic Identification and Characterization of Regulatory Elements Derived from Human Endogenous Retroviruses[J/OL]. PLOS Genetics, 2017, 13(7): e1006883
[2023-02-27]. https://dx.plos.org/10.1371/journal.pgen.1006883.
[114] NAJAFABADI H S, MNAIMNEH S, SCHMITGES F W, et al. C2H2 Zinc Finger Proteins Greatly Expand the Human Regulatory Lexicon[J/OL]. Nature Biotechnology, 2015, 33(5):555-562
[2021-10-31]. http://www.nature.com/articles/nbt.3128. DOI: 10.1038/nbt.3128.
[115] MARNETTO D, MANTICA F, MOLINERIS I, et al. Evolutionary Rewiring of Human Regulatory Networks by Waves of Genome Expansion[J/OL]. The American Journal of Human Genetics, 2018, 102(2): 207-218
[2023-03-07]. https://www.cell.com/ajhg/abstract/S0002-9297(17)30503-7. DOI: 10.1016/j.ajhg.2017.12.014.
[116] GUALDRINI F, POLLETTI S, SIMONATTO M, et al. H3K9 Trimethylation in Active Chromatin Restricts the Usage of Functional CTCF Sites in SINE B2 Repeats[J/OL]. Genes & Development, 2022, 36(7-8): 414-432
[2023-01-26]. http://genesdev.cshlp.org/content/36/7-8/414. DOI: 10.1101/gad.349282.121.
[117] KAAIJ L J T, MOHN F, WEIDE R H V D, et al. The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites That Emerged from SINE Expansions in Mouse Article The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites That Emerged from SINE Expansions in Mouse[J/OL]. Cell, 2019: 1437-1451. DOI: 10.1016/j.cell.2019.08.007.
[118] SENFT A D, MACFARLAN T S. Transposable Elements Shape the Evolution of Mammalian Development[J/OL]. Nature Reviews Genetics, 2021: 1-21
[2021-08-22]. https://www.nature.com/articles/s41576-021-00385-1. DOI: 10.1038/s41576-021-00385-1.
[119] VILLAR D, BERTHELOT C, ALDRIDGE S, et al. Enhancer Evolution across 20 Mammalian Species[J/OL]. Cell, 2015, 160(3): 554-566. DOI: 10.1016/j.cell.2015.01.006.
[120] YE M, GOUDOT C, HOYLER T, et al. Specific Subfamilies of Transposable Elements Contribute to Different Domains of T Lymphocyte Enhancers[J/OL]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7905-7916
[2021-04-02]. http://www.pnas.org/lookup/doi/10.1073/pnas.1912008117.
[121] LYNCH V J, LECLERC R D, MAY G, et al. Transposon-Mediated Rewiring of Gene Regulatory Networks Contributed to the Evolution of Pregnancy in Mammals[J/OL]. Nature Genetics, 2011, 43(11): 1154-1159
[2023-03-12]. https://www.nature.com/articles/ng.917. DOI:10.1038/ng.917.
[122] SU M, HAN D, BOYD-KIRKUP J, et al. Evolution of Alu Elements toward Enhancers[J/OL]. Cell Reports, 2014, 7(2): 376-385
[2023-03-10]. https://www.cell.com/cell-reports/abstract/S2211-1247(14)00189-2. DOI: 10.1016/j.celrep.2014.03.011.77
[123] WU F, LIUFU Z, LIU Y, et al. Species-Specific Rewiring of Definitive Endoderm Developmental Gene Activation via Endogenous Retroviruses through TET1-Mediated Demethylation [J/OL]. Cell Reports, 2022, 41(11)
[2023-03-12]. https://www.cell.com/cell-reports/abstract/S2211-1247(22)01679-5. DOI: 10.1016/j.celrep.2022.111791.
[124] FERRIGNO O, VIROLLE T, DJABARI Z, et al. Transposable B2 SINE Elements Can Provide Mobile RNA Polymerase II Promoters[J/OL]. Nature Genetics, 2001, 28(1): 77-81
[2023-03-13]. https://www.nature.com/articles/ng0501_77. DOI: 10.1038/ng0501-77.
[125] FAULKNER G J, KIMURA Y, DAUB C O, et al. The Regulated Retrotransposon Transcriptome of Mammalian Cells[J/OL]. Nature Genetics, 2009, 41(5): 563-571
[2022-12-30]. http://www.nature.com/articles/ng.368. DOI: 10.1038/ng.368.
[126] WOLFF E M, BYUN H M, HAN H F, et al. Hypomethylation of a LINE-1 Promoter Activates an Alternate Transcript of the MET Oncogene in Bladders with Cancer[J/OL]. PLOS Genetics, 2010, 6(4): e1000917
[2023-03-12]. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000917.
[127] HAN J S, SZAK S T, BOEKE J D. Transcriptional Disruption by the L1 Retrotransposon and Implications for Mammalian Transcriptomes[J/OL]. Nature, 2004, 429(6989): 268-274
[2023-03-12]. http://www.nature.com/articles/nature02536. DOI: 10.1038/nature02536.
[128] WANG J, VICENTE-GARCíA C, SERUGGIA D, et al. MIR Retrotransposon Sequences Provide Insulators to the Human Genome[J/OL]. Proceedings of the National Academy of Sciences, 2015, 112(32): E4428-E4437
[2023-01-26]. https://www.pnas.org/doi/10.1073/pnas.1507253112.
[129] SUNDARAM V, WYSOCKA J. Transposable Elements as a Potent Source of Diverse CisRegulatory Sequences in Mammalian Genomes[J/OL]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375(1795): 20190347. DOI: 10.1098/rstb.2019.0347.
[130] COURNAC A, KOSZUL R, MOZZICONACCI J. The 3D Folding of Metazoan Genomes Correlates with the Association of Similar Repetitive Elements[J/OL]. Nucleic Acids Research, 2016, 44(1): 245-255
[2023-01-05]. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv1292.
[131] LU J Y, CHANG L, LI T, et al. Homotypic Clustering of L1 and B1/Alu Repeats Compartmentalizes the 3D Genome[J/OL]. Cell Research, 2021, 31(6): 613-630
[2022-11-24]. http://www.nature.com/articles/s41422-020-00466-6. DOI: 10.1038/s41422-020-00466-6.
[132] CHOUDHARY M N, FRIEDMAN R Z, WANG J T, et al. Co-Opted Transposons Help Perpetuate Conserved Higher-Order Chromosomal Structures[J/OL]. Genome Biology, 2020, 21(1):16
[2021-04-13]. https://doi.org/10.1186/s13059-019-1916-8.
[133] DIEHL A G, OUYANG N, BOYLE A P. Transposable Elements Contribute to Cell and SpeciesSpecific Chromatin Looping and Gene Regulation in Mammalian Genomes[J/OL]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-020-15520-5.
[134] CHOUDHARY M N K, QUAID K, XING X, et al. Widespread Contribution of Transposable Elements to the Rewiring of Mammalian 3D Genomes[J/OL]. Nature Communications, 2023, 14(1): 634
[2023-02-08]. https://www.nature.com/articles/s41467-023-36364-9. DOI: 10.1038/s41467-023-36364-9.78
[135] OKHOVAT M, VANCAMPEN J, LIMA A C, et al. TAD Evolutionary and Functional Characterization Reveals Diversity in Mammalian TAD Boundary Properties and Function[EB/OL]. 2023.03.07.531534(2023-03-07)
[2023-03-08]. https://www.biorxiv.org/content/10.1101/2023.03.07.531534v1.
[136] KRUSE K, DíAZ N, ENRIQUEZ-GASCA R, et al. Transposable Elements Drive Reorganisation of 3D Chromatin during Early Embryogenesis[EB/OL]. Genomics(2019-01-17)
[2021-10-30]. http://biorxiv.org/lookup/doi/10.1101/523712.
[137] SAKASHITA A, KITANO T, ISHIZU H, et al. Transcription of MERVL Retrotransposons Is Required for Preimplantation Embryo Development[J/OL]. Nature Genetics, 2023: 1-12
[2023-03-08]. https://www.nature.com/articles/s41588-023-01324-y. DOI: 10.1038/s41588-023-01324-y.
[138] SLOTKIN R K. The Case for Not Masking Away Repetitive DNA[J/OL]. Mobile DNA, 2018, 9: 15
[2023-03-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930866/. DOI: 10.1186/s13100-018-0120-9.
[139] BELL J C, JUKAM D, TERAN N A, et al. Chromatin-Associated RNA Sequencing (ChARSeq) Maps Genome-Wide RNA-to-DNA Contacts[J/OL]. eLife, 2018, 7: e27024
[2022-12-30]. https://doi.org/10.7554/eLife.27024.
[140] ZHENG Y, AY F, KELES S. Generative Modeling of Multi-Mapping Reads with mHiC Advances Analysis of Hi-C Studies[J/OL]. eLife, 2019, 8: e38070
[2023-03-01]. https://doi.org/10.7554/eLife.38070.
[141] LEXA M, CECHOVA M, NGUYEN S H, et al. HiC-TE: A Computational Pipeline for Hi-C Data Analysis Shows a Possible Role of Repeat Family Interactions in the Genome 3D Organization[M/OL]. Cold Spring Harbor Laboratory, 2021: 2021.12.18.473300
[2021-12-24]. https://www.biorxiv.org/content/10.1101/2021.12.18.473300v1.
[142] DIXON J R, JUNG I, SELVARAJ S, et al. Chromatin Architecture Reorganization during Stem Cell Differentiation[J/OL]. Nature, 2015, 518(7539): 331-336. DOI: 10.1038/nature14222.
[143] ZHENG R, DONG X, WAN C, et al. Cistrome Data Browser and Toolkit: Analyzing Human and Mouse Genomic Data Using Compendia of ChIP-Seq and Chromatin Accessibility Data[J/OL]. Quantitative Biology, 2020, 8(3): 267-276
[2021-10-31]. https://journal.hep.com.cn/qb/EN/10.1007/s40484-020-0204-7.
[144] LUO Y, HITZ B C, GABDANK I, et al. New Developments on the Encyclopedia of DNA Elements (ENCODE) Data Portal[J/OL]. Nucleic Acids Research, 2020, 48(D1): D882-D889.DOI: 10.1093/nar/gkz1062.
[145] TSANKOV A M, GU H, AKOPIAN V, et al. Transcription Factor Binding Dynamics during Human ES Cell Differentiation[J/OL]. Nature, 2015, 518(7539): 344-349. DOI: 10.1038/nature14233.
[146] LYU X, ROWLEY M J, CORCES V G. Architectural Proteins and Pluripotency Factors Cooperate to Orchestrate the Transcriptional Response of hESCs to Temperature Stress[J/OL]. Molecular Cell, 2018, 71(6): 940-955.e7. DOI: 10.1016/j.molcel.2018.07.012.79
[147] ERNST J, KHERADPOUR P, MIKKELSEN T S, et al. Mapping and Analysis of Chromatin State Dynamics in Nine Human Cell Types[J/OL]. Nature, 2011, 473(7345): 43-49
[2021-12-09]. https://www.nature.com/articles/nature09906. DOI: 10.1038/nature09906.
[148] ERNST J, KELLIS M. Chromatin-State Discovery and Genome Annotation with ChromHMM[J/OL]. Nature Protocols, 2017, 12(12): 2478-2492
[2021-11-02]. http://www.nature.com/articles/nprot.2017.124. DOI: 10.1038/nprot.2017.124.
[149] Roadmap Epigenomics Consortium, KUNDAJE A, MEULEMAN W, et al. Integrative Analysis of 111 Reference Human Epigenomes[J/OL]. Nature, 2015, 518(7539): 317-330
[2023-02-21]. http://www.nature.com/articles/nature14248. DOI: 10.1038/nature14248.
[150] SERVANT N, VAROQUAUX N, LAJOIE B R, et al. HiC-Pro: An Optimized and Flexible Pipeline for Hi-C Data Processing[J/OL]. Genome Biology, 2015, 16(1): 259
[2023-02-19]. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0831-x.
[151] LANGMEAD B, SALZBERG S L. Fast Gapped-Read Alignment with Bowtie 2[J/OL]. Nature Methods, 2012, 9(4): 357-359
[2021-11-01]. http://www.nature.com/articles/nmeth.1923. DOI:10.1038/nmeth.1923.
[152] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map Format and SAMtools[J/OL]. Bioinformatics, 2009, 25(16): 2078-2079
[2021-06-07]. https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352.
[153] ABDENNUR N, MIRNY L A. Cooler: Scalable Storage for Hi-C Data and Other Genomically Labeled Arrays[J/OL]. Bioinformatics, 2020, 36(1): 311-316
[2021-04-13]. https://doi.org/10.1093/bioinformatics/btz540.
[154] WOLFF J, BACKOFEN R, GRüNING B. Loop Detection Using Hi-C Data with HiCExplorer[J/OL]. GigaScience, 2022, 11: giac061
[2022-11-24]. https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giac061/6636891.
[155] QUINLAN A R, HALL I M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features[J/OL]. Bioinformatics, 2010, 26(6): 841-842
[2021-06-07]. https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq033.
[156] ZHANG Y, LIU T, MEYER C A, et al. Model-Based Analysis of ChIP-Seq (MACS)[J/OL]. Genome Biology, 2008, 9(9): R137
[2021-10-31]. http://genomebiology.biomedcentral.com/articles/10.1186/gb-2008-9-9-r137.
[157] FRANKISH A, DIEKHANS M, FERREIRA A M, et al. GENCODE Reference Annotation for the Human and Mouse Genomes[J/OL]. Nucleic Acids Research, 2019, 47(D1): D766-D773
[2023-02-21]. https://academic.oup.com/nar/article/47/D1/D766/5144133. DOI: 10.1093/nar/gky955.
[158] GU Z, EILS R, SCHLESNER M. Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data[J/OL]. Bioinformatics, 2016, 32(18): 2847-2849
[2023-02-21]. https://doi.org/10.1093/bioinformatics/btw313.
[159] FLYAMER I M, ILLINGWORTH R S, BICKMORE W A. Coolpup.Py: Versatile Pile-up Analysis of Hi-C Data[J/OL]. Bioinformatics, 2020, 36(10): 2980-2985
[2022-04-09]. https://doi.org/10.1093/bioinformatics/btaa073.80
[160] LOPEZ-DELISLE L, RABBANI L, WOLFF J, et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets[J]. Bioinformatics, 2020, 37: 422 - 423.
[161] WANG R, HYUNG LEE J, KIM J, et al. SARS-CoV-2 restructures host chromatin architecture [J]. Nature Microbiology, 2023, 8: 679 - 694.
[162] ZHOU Q, YU M, TIRADO-MAGALLANES R, et al. ZNF143 Mediates CTCF-Bound Promoter–Enhancer Loops Required for Murine Hematopoietic Stem and Progenitor Cell Function[J/OL]. Nature Communications, 2021, 12
[2021-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782510/. DOI: 10.1038/s41467-020-20282-1.
[163] WEN Z, HUANG Z T, ZHANG R, et al. ZNF143 Is a Regulator of Chromatin Loop[J/OL]. Cell Biology and Toxicology, 2018, 34(6): 471-478
[2021-04-06]. https://doi.org/10.1007/s10565-018-9443-z.
[164] KAGEY M H, NEWMAN J J, BILODEAU S, et al. Mediator and Cohesin Connect Gene Expression and Chromatin Architecture[J/OL]. Nature, 2010, 467(7314): 430-435
[2023-02-25]. http://www.nature.com/articles/nature09380. DOI: 10.1038/nature09380.
[165] LIU W, MA Q, WONG K, et al. Brd4 and JMJD6-Associated Anti-Pause Enhancers in Regulation of Transcriptional Pause Release[J]. Cell, 2013, 155: 1581-1595.
[166] KIM J, CHU J, SHEN X, et al. An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells[J/OL]. Cell, 2008, 132(6): 1049-1061
[2021-05-20]. https://www.cell.com/cell/abstract/S0092-8674(08)00328-0. DOI: 10.1016/j.cell.2008.02.039.
[167] DANIELS G R, DEININGER P L. Repeat Sequence Families Derived from Mammalian tRNA Genes[J/OL]. Nature, 1985, 317(6040): 819-822
[2023-03-13]. https://www.nature.com/articles/317819a0. DOI: 10.1038/317819a0.
[168] KWON H, IMBALZANO A, KHAVARI P, et al. Nucleosome Disruption and Enhancement of Activator Binding by a Human SW1/SNF Complex[J/OL]. Nature, 1994, 370(6489): 477-481. DOI: 10.1038/370477a0.
[169] BARUTCU A R, LAJOIE B R, FRITZ A J, et al. SMARCA4 Regulates Gene Expression and Higher-Order Chromatin Structure in Proliferating Mammary Epithelial Cells[J/OL]. Genome Research, 2016, 26(9): 1188-1201
[2023-03-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052043/. DOI: 10.1101/gr.201624.115.
[170] KATSUOKA F, YAMAMOTO M. Small Maf Proteins (MafF, MafG, MafK): History, Structure and Function[J/OL]. Gene, 2016, 586(2): 197-205
[2021-04-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911266/. DOI: 10.1016/j.gene.2016.03.058.
[171] DU A Y, ZHUO X, SUNDARAM V, et al. Evolution of Transposable Element-Derived Enhancer Activity[EB/OL]. Genetics(2022-03-17)
[2022-08-04]. http://biorxiv.org/lookup/doi/10.1101/2022.03.16.483999.
[172] ZHANG T, ZHENG R, LI M, et al. Active Endogenous Retroviral Elements in Human Pluripotent Stem Cells Play a Role in Regulating Host Gene Expression[J/OL]. Nucleic Acids Research, 2022, 50(9): 4959-4973
[2022-08-05]. https://doi.org/10.1093/nar/gkac265.
[173] WHYTE W A, BILODEAU S, ORLANDO D A, et al. Enhancer Decommissioning by LSD1 during Embryonic Stem Cell Differentiation[J/OL]. Nature, 2012, 482(7384): 221-225
[2022-11-28]. https://www.nature.com/articles/nature10805. DOI: 10.1038/nature10805.81
[174] AGARWAL S, BONEFAS K M, GARAY P M, et al. KDM1A Maintains Genome-Wide Homeostasis of Transcriptional Enhancers[J/OL]. Genome Research, 2021, 31(2): 186-197
[2022-08-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849409/. DOI: 10.1101/gr.234559.118.
[175] QUEVEDO M, MEERT L, DEKKER M R, et al. Mediator Complex Interaction Partners Organize the Transcriptional Network That Defines Neural Stem Cells[J/OL]. Nature Communications, 2019, 10(1): 2669
[2023-03-14]. https://www.nature.com/articles/s41467-019-10502-8. DOI: 10.1038/s41467-019-10502-8.
[176] ANCELIN K, SYX L, BORENSZTEIN M, et al. Maternal LSD1/KDM1A Is an Essential Regulator of Chromatin and Transcription Landscapes during Zygotic Genome Activation[J/OL]. eLife, 2016, 5: e08851
[2022-08-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829419/. DOI: 10.7554/eLife.08851.
[177] GUNSALUS L M, KEISER M J, POLLARD K S. In Silico Discovery of Repetitive Elements as Key Sequence Determinants of 3D Genome Folding[EB/OL]. Genomics(2022-08-12)
[2022-11-12]. http://biorxiv.org/lookup/doi/10.1101/2022.08.11.503410.
[178] REIK W. Stability and Flexibility of Epigenetic Gene Regulation in Mammalian Development[J/OL]. Nature, 2007, 447(7143): 425-432
[2023-03-14]. https://www.nature.com/articles/nature05918. DOI: 10.1038/nature05918.
[179] HYMAN A A, WEBER C A, JüLICHER F. Liquid-Liquid Phase Separation in Biology[J/OL]. Annual Review of Cell and Developmental Biology, 2014, 30(1): 39-58
[2023-03-15]. https://www.annualreviews.org/doi/10.1146/annurev-cellbio-100913-013325.
[180] AHN J H, DAVIS E S, DAUGIRD T A, et al. Phase Separation Drives Aberrant Chromatin Looping and Cancer Development[J/OL]. Nature, 2021: 1-5
[2021-06-24]. https://www.nature.com/articles/s41586-021-03662-5. DOI: 10.1038/s41586-021-03662-5.
[181] LIU X, JIANG S, MA L, et al. Time-Dependent Effect of 1,6-Hexanediol on Biomolecular Condensates and 3D Chromatin Organization[J/OL]. Genome Biology, 2021, 22(1): 230
[2023-03-15]. https://doi.org/10.1186/s13059-021-02455-3.
[182] ASIMI V, SAMPATH KUMAR A, NISKANEN H, et al. Hijacking of Transcriptional Condensates by Endogenous Retroviruses[J/OL]. Nature Genetics, 2022: 1-10
[2022-07-22]. https://www.nature.com/articles/s41588-022-01132-w. DOI: 10.1038/s41588-022-01132-w.
[183] QUINODOZ S A, JACHOWICZ J W, BHAT P, et al. RNA Promotes the Formation of Spatial Compartments in the Nucleus[J/OL]. Cell, 2021, 184(23): 5775-5790.e30
[2022-12-30]. https://linkinghub.elsevier.com/retrieve/pii/S0092867421012307. DOI: 10.1016/j.cell.2021.10.014.
[184] STATELLO L, GUO C J, CHEN L L, et al. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions[J/OL]. Nature Reviews Molecular Cell Biology, 2021, 22(2): 96-118
[2022-11-29]. https://www.nature.com/articles/s41580-020-00315-9. DOI: 10.1038/s41580-020-00315-9.
[185] GUO Q, SHI X, WANG X. RNA and Liquid-Liquid Phase Separation[J/OL]. Non-coding RNA Research, 2021, 6(2): 92-99
[2023-03-15]. https://www.sciencedirect.com/science/article/pii/S2468054021000184. DOI: 10.1016/j.ncrna.2021.04.003.82
[186] LUBELSKY Y, ULITSKY I. Sequences Enriched in Alu Repeats Drive Nuclear Localization of Long RNAs in Human Cells[J/OL]. Nature, 2018, 555(7694): 107-111
[2023-01-06]. http://www.nature.com/articles/nature25757. DOI: 10.1038/nature25757.
[187] XU W, REN L, ZHENG C, et al. Chromatin-Interacting Transposon RNAs Linking to the Core Trans-Inhibition Circuitry for Embryonic Stem Cell Identity[EB/OL]. 2021.04.28.441894 (2021-04-30)
[2023-02-25]. https://www.biorxiv.org/content/10.1101/2021.04.28.441894v1.
[188] MEDVEDEVA Y A, LENNARTSSON A, EHSANI R, et al. EpiFactors: a comprehensive database of human epigenetic factors and complexes[J]. Database: The Journal of Biological Databases and Curation, 2015, 2015.
[189] SHEN W, CHEN S, GAN Z Q, et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations[J]. Nucleic Acids Research, 2022, 51: D39 - D45.

所在学位评定分委会
生物学
国内图书分类号
Q341
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545013
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
Shi LY. Transposable Elements Mediate 3D Genome Structure[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032170-史丽阳-生物系.pdf(6201KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史丽阳]的文章
百度学术
百度学术中相似的文章
[史丽阳]的文章
必应学术
必应学术中相似的文章
[史丽阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。