中文版 | English
题名

基于等离激元材料的新冠病毒变异检测与免疫结合分析

其他题名
PLASMONIC MATERIAL BASED SARS-COV-2 VARIANTS DETECTION AND IMMUNOAFFINITY ANALYSIS
姓名
姓名拼音
TANG Jiahu
学号
12132644
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
张博
导师单位
生物医学工程系
论文答辩日期
2023-05-17
论文提交日期
2023-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

病毒变异是影响其传染性、致病性、抗药性和免疫逃逸的根本原因。快速确定病毒种类及其突变情况,进行病毒突变对其与宿主受体蛋白结合影响的分析,对于疫情防控及临床诊断和治疗具有重要意义。课题组前期基于等离激元材料构建了高通量核酸/蛋白质多重检测平台,其中核酸检测灵敏度达单拷贝,能够实现单碱基区分,蛋白质检测灵敏度达飞摩级。本课题以等离激元核酸检测平台为基础开展了新冠病毒变异株即时检测(Point-of-care TestingPOCT)的可行性验证,并完成在新冠病毒(SARS-CoV-2)检测中的临床实验验证,实现了100%的检测特异性。同时,以等离激元蛋白质检测平台为基础,结合蛋白质建模和分子动力学模拟技术,构建了一套评价体系以计算多肽与蛋白的结合自由能,进而评价其结合强度,从多肽层面探究了SARS-CoV-2的受体结构域(Receptor-Binding DomainRBD)突变对其与人血管紧张素转换酶2(Angiotensin-converting enzyme 2ACE2)蛋白结合的影响。通过计算不同RBD的子序列多肽与ACE2的结合强度,发现多肽YNYLYRLFRKSNLKPACE2的结合强度显著高于其他多肽,在RBD靶向ACE2中具有潜在的重要意义。通过在等离激元荧光增强材料表面构建多肽微阵列并表征其与ACE2蛋白的结合强度,验证了这一体系的预测准确率达80%。本课题有望为未来病原体的快速检测及突变区分以及多肽药物或疫苗的筛选提供新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] BRANT A C, TIAN W, MAJERCIAK V, et al. SARS-CoV-2: from its discovery to genome structure, transcription, and replication[J]. Cell and Bioscience, 2021, 11(1):136.
[2] HUANG Y, YANG C, XU X-F, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19[J]. Acta Pharmacologica Sinica, 2020, 41(9):1141–1149.
[3] SMITH C C, OLSEN K S, GENTRY K M, et al. Landscape and selection of vaccine epitopes in SARS-CoV-2[J]. Genome Medicine, 2021, 13(1):101.
[4] HARVEY W T, CARABELLI A M, JACKSON B, et al. SARS-CoV-2 variants, spike mutations and immune escape[J]. Nature Reviews Microbiology, 2021, 19(7):409–424.
[5] WILLETT B J, GROVE J, MACLEAN O A, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway[J]. Nature Microbiology, 2022, 7(8):1161–1179.
[6] CALLAWAY E. Heavily mutated Omicron variant puts scientists on alert[J]. Nature, 2021, 600(7887):21.
[7] UNSELT D, KNUDSEN K, ROUNDS C, et al. Abstract 437: Characterization of SARS-CoV-2 using the Ion AmpliSeq SARS-CoV-2 research panel[J]. Cancer Research, 2022, 82(12_Supplement):437.
[8] KAMINSKI M M, ABUDAYYEH O O, GOOTENBERG J S, et al. CRISPR-based diagnostics[J]. Nature Biomedical Engineering, 2021, 5(7):643–656.
[9] MONDAL S, FEIRER N, BROCKMAN M, et al. A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2[J]. The Science of the Total Environment, 2021, 795:148834.
[10] PATCHSUNG M, JANTARUG K, PATTAMA A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA[J]. Nature Biomedical Engineering, 2020, 4(12):1140–1149.
[11] DING X, YIN K, LI Z, et al. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus[J]. Biorxiv : the Preprint Server for Biology, 2020. DOI: 10.1101/2020.03.19.998724.
[12] KONG D, WANG X, GU C, et al. Direct SARS-CoV-2 Nucleic Acid Detection by Y-Shaped DNA Dual-Probe Transistor Assay[J]. Journal of the American Chemical Society, 2021, 143(41):17004–17014.
[13] WANG L, WANG X, WU Y, et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples[J]. Nature Biomedical Engineering, 2022, 6(3):276–285.
[14] YANG J, PETITJEAN S J L, KOEHLER M, et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor[J]. Nature Communications, 2020, 11(1):4541.
[15] HAYNES W A, KAMATH K, BOZEKOWSKI J, et al. High-resolution epitope mapping and characterization of SARS-CoV-2 antibodies in large cohorts of subjects with COVID-19[J]. Communications Biology, 2021, 4(1):1317.
[16] HOLENYA P, LANGE P J, REIMER U, et al. Peptide microarray-based analysis of antibody responses to SARS-CoV-2 identifies unique epitopes with potential for diagnostic test development[J]. European Journal of Immunology, 2021, 51(7):1839–1849.
[17] MISHRA N, HUANG X, JOSHI S, et al. Immunoreactive peptide maps of SARS-CoV-2[J]. Communications Biology, 2021, 4(1):225.
[18] TABAKMAN S M, LAU L, ROBINSON J T, et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range[J]. Nature Communications, 2011, 2:466.
[19] ZHANG B, PRICE J, HONG G, et al. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence[J]. Nano Research, 2013, 6(2):113–120.
[20] ZHANG B, KUMAR R B, DAI H, et al. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes[J]. Nature Medicine, 2014, 20(8): 948–953.
[21] XU W, WANG L, ZHANG R, et al. Diagnosis and prognosis of myocardial infarction on a plasmonic chip[J]. Nature Communications, 2020, 11(1):1654.
[22] LIU T, HSIUNG J, ZHAO S, et al. Quantification of antibody avidities and accurate detection of SARS-CoV-2 antibodies in serum and saliva on plasmonic substrates[J]. Nature Biomedical Engineering, 2020, 4(12):1188–1196.
[23] SOHRABI C, FOSTER A, TAVASSOLI A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery[J]. Nature Reviews Chemistry, 2020, 4(2):90–101.
[24] ABDOOL KARIM S S, OLIVEIRA T de. New SARS-CoV-2 Variants - Clinical, Public Health, and Vaccine Implications[J]. The New England Journal of Medicine, 2021, 384(19):1866–1868.
[25] TAVASSOLI A. SICLOPPS cyclic peptide libraries in drug discovery[J]. Current Opinion in Chemical Biology, 2017, 38:30–35.
[26] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583–589.
[27] DRAKE Z C, SEFFERNICK J T, LINDERT S. Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling[J]. Nature Communications, 2022, 13(1):7846.
[28] TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873):590–596.
[29] NUEDA M J, TARAZONA S, CONESA A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series[J]. Bioinformatics, 2014, 30(18):2598–2602.
[30] BERENDSEN H, VAN DER SPOEL D, VAN DRUNEN R. GROMACS: A message-passing parallel molecular dynamics implementation[J]. Computer Physics Communications, 1995, 91(1-3):43–56.
[31] MAIER J A, MARTINEZ C, KASAVAJHALA K, et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB[J]. Journal of Chemical Theory and Computation, 2015, 11(8):3696–3713.
[32] MARK P, NILSSON L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K[J]. The Journal of Physical Chemistry A, 2001, 105(43): 9954–9960.
[33] LEAVER-FAY A, TYKA M, LEWIS S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules[J]. Methods in Enzymology, 2011, 487:545–574.
[34] SHEN W, LE S, LI Y, et al. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation[J]. Plos One, 2016, 11(10):e0163962.
[35] JOUNG J, LADHA A, SAITO M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics[J]. Medrxiv: The Preprint Server for Health Sciences , 2020.
[36] BROUGHTON J P, DENG X, YU G, et al. Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay[J]. Medrxiv : The Preprint Server for Health Sciences, 2020.
[37] JIANG Y, HU M, LIU A-A, et al. Detection of SARS-CoV-2 by CRISPR/ Cas12a-Enhanced Colorimetry[J]. ACS Sensors, 2021, 6(3):1086–1093.
[38] PENG Y, PAN Y, SUN Z, et al. An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA[J]. Biosensors and Bioelectronics, 2021, 186: 113309.
[39] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277–282.
[40] LI Z, CHEN X, HUANG Z, et al. Multiplex Nucleic Acid Assay of SARS-CoV-2 via a Lanthanide Nanoparticle-Tagging Strategy[J]. Analytical Chemistry, 2021, 93(37):12714–12722.
[41] BANADA P P, GREEN R, BANIK S, et al. An expanded high throughput RT-PCR assay to rapidly identify all known SARS-CoV-2 variants of concern using melting temperature coding[J]. Medrxiv, 2022. DOI: 10.1101/2022.01.1- 8.22269424
[42] BATÉJAT C, GRASSIN Q, MANUGUERRA J-C, et al. Heat inactivation of the severe acute respiratory syndrome coronavirus 2[J]. Journal of Biosafety and Biosecurity, 2021, 3(1):1–3.
[43] LOBATO I M, O'SULLIVAN C K. Recombinase polymerase amplification: Basics, applications and recent advances[J]. Trends in Analytical Chemistry : TRAC, 2018, 98:19–35.
[44] SÜSS B, FLEKNA G, WAGNER M, et al. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR[J]. Journal of Microbiological Methods, 2009, 76(3):316–319.
[45] YOU Y, MOREIRA B G, BEHLKE M A, et al. Design of LNA probes that improve mismatch discrimination[J]. Nucleic Acids Research, 2006, 34(8):e60.
[46] SUN Y, WANG M, LIN W, et al. "Mutation blacklist" and "mutation whitelist" of SARS-CoV-2[J]. Journal of Biosafety and Biosecurity, 2022, 4(2):114–120.
[47] HUANG J, XU Y, XUE Y, et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences[J]. Nature Biomedical Engineering, 2023.
[48] GAUTAM A, CHAUDHARY K, KUMAR R, et al. Computer-Aided Virtual Screening and Designing of Cell-Penetrating Peptides[J]. Methods in Molecular Biology, 2015, 1324:59–69.
[49] LEI Y, LI S, LIU Z, et al. A deep-learning framework for multi-level peptide-protein interaction prediction[J]. Nature Communications, 2021, 12(1):5465.
[50] ZHANG T, HUA Y, ZHOU C, et al. Umami peptides screened based on peptidomics and virtual screening from Ruditapes philippinarum and Mactra veneriformis clams[J]. Food Chemistry, 2022, 394:133504.
[51] FROLOFF N, WINDEMUTH A, HONIG B. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions[J]. Protein Science, 1997, 6(6):1293–1301.
[52] HAN Y, KRÁL P. Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2[J]. ACS Nano, 2020, 14(4):5143–5147..
[53] WANG H, WU X, ZHANG X, et al. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution[J]. ACS Central Science, 2020, 6(12):2238–2249.
[54] CHANG L, PEREZ A. Ranking Peptide Binders by Affinity with AlphaFold[J]. Angewandte Chemie, 2023, 62(7):e202213362.
[55] CAO Y, YISIMAYI A, JIAN F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, 608(7923):593–602.

所在学位评定分委会
材料与化工
国内图书分类号
Q819
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545021
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
汤佳虎. 基于等离激元材料的新冠病毒变异检测与免疫结合分析[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132644-汤佳虎-生物医学工程系(3486KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[汤佳虎]的文章
百度学术
百度学术中相似的文章
[汤佳虎]的文章
必应学术
必应学术中相似的文章
[汤佳虎]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。