[1] BRANT A C, TIAN W, MAJERCIAK V, et al. SARS-CoV-2: from its discovery to genome structure, transcription, and replication[J]. Cell and Bioscience, 2021, 11(1):136.
[2] HUANG Y, YANG C, XU X-F, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19[J]. Acta Pharmacologica Sinica, 2020, 41(9):1141–1149.
[3] SMITH C C, OLSEN K S, GENTRY K M, et al. Landscape and selection of vaccine epitopes in SARS-CoV-2[J]. Genome Medicine, 2021, 13(1):101.
[4] HARVEY W T, CARABELLI A M, JACKSON B, et al. SARS-CoV-2 variants, spike mutations and immune escape[J]. Nature Reviews Microbiology, 2021, 19(7):409–424.
[5] WILLETT B J, GROVE J, MACLEAN O A, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway[J]. Nature Microbiology, 2022, 7(8):1161–1179.
[6] CALLAWAY E. Heavily mutated Omicron variant puts scientists on alert[J]. Nature, 2021, 600(7887):21.
[7] UNSELT D, KNUDSEN K, ROUNDS C, et al. Abstract 437: Characterization of SARS-CoV-2 using the Ion AmpliSeq SARS-CoV-2 research panel[J]. Cancer Research, 2022, 82(12_Supplement):437.
[8] KAMINSKI M M, ABUDAYYEH O O, GOOTENBERG J S, et al. CRISPR-based diagnostics[J]. Nature Biomedical Engineering, 2021, 5(7):643–656.
[9] MONDAL S, FEIRER N, BROCKMAN M, et al. A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2[J]. The Science of the Total Environment, 2021, 795:148834.
[10] PATCHSUNG M, JANTARUG K, PATTAMA A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA[J]. Nature Biomedical Engineering, 2020, 4(12):1140–1149.
[11] DING X, YIN K, LI Z, et al. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus[J]. Biorxiv : the Preprint Server for Biology, 2020. DOI: 10.1101/2020.03.19.998724.
[12] KONG D, WANG X, GU C, et al. Direct SARS-CoV-2 Nucleic Acid Detection by Y-Shaped DNA Dual-Probe Transistor Assay[J]. Journal of the American Chemical Society, 2021, 143(41):17004–17014.
[13] WANG L, WANG X, WU Y, et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples[J]. Nature Biomedical Engineering, 2022, 6(3):276–285.
[14] YANG J, PETITJEAN S J L, KOEHLER M, et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor[J]. Nature Communications, 2020, 11(1):4541.
[15] HAYNES W A, KAMATH K, BOZEKOWSKI J, et al. High-resolution epitope mapping and characterization of SARS-CoV-2 antibodies in large cohorts of subjects with COVID-19[J]. Communications Biology, 2021, 4(1):1317.
[16] HOLENYA P, LANGE P J, REIMER U, et al. Peptide microarray-based analysis of antibody responses to SARS-CoV-2 identifies unique epitopes with potential for diagnostic test development[J]. European Journal of Immunology, 2021, 51(7):1839–1849.
[17] MISHRA N, HUANG X, JOSHI S, et al. Immunoreactive peptide maps of SARS-CoV-2[J]. Communications Biology, 2021, 4(1):225.
[18] TABAKMAN S M, LAU L, ROBINSON J T, et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range[J]. Nature Communications, 2011, 2:466.
[19] ZHANG B, PRICE J, HONG G, et al. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence[J]. Nano Research, 2013, 6(2):113–120.
[20] ZHANG B, KUMAR R B, DAI H, et al. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes[J]. Nature Medicine, 2014, 20(8): 948–953.
[21] XU W, WANG L, ZHANG R, et al. Diagnosis and prognosis of myocardial infarction on a plasmonic chip[J]. Nature Communications, 2020, 11(1):1654.
[22] LIU T, HSIUNG J, ZHAO S, et al. Quantification of antibody avidities and accurate detection of SARS-CoV-2 antibodies in serum and saliva on plasmonic substrates[J]. Nature Biomedical Engineering, 2020, 4(12):1188–1196.
[23] SOHRABI C, FOSTER A, TAVASSOLI A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery[J]. Nature Reviews Chemistry, 2020, 4(2):90–101.
[24] ABDOOL KARIM S S, OLIVEIRA T de. New SARS-CoV-2 Variants - Clinical, Public Health, and Vaccine Implications[J]. The New England Journal of Medicine, 2021, 384(19):1866–1868.
[25] TAVASSOLI A. SICLOPPS cyclic peptide libraries in drug discovery[J]. Current Opinion in Chemical Biology, 2017, 38:30–35.
[26] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583–589.
[27] DRAKE Z C, SEFFERNICK J T, LINDERT S. Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling[J]. Nature Communications, 2022, 13(1):7846.
[28] TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873):590–596.
[29] NUEDA M J, TARAZONA S, CONESA A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series[J]. Bioinformatics, 2014, 30(18):2598–2602.
[30] BERENDSEN H, VAN DER SPOEL D, VAN DRUNEN R. GROMACS: A message-passing parallel molecular dynamics implementation[J]. Computer Physics Communications, 1995, 91(1-3):43–56.
[31] MAIER J A, MARTINEZ C, KASAVAJHALA K, et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB[J]. Journal of Chemical Theory and Computation, 2015, 11(8):3696–3713.
[32] MARK P, NILSSON L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K[J]. The Journal of Physical Chemistry A, 2001, 105(43): 9954–9960.
[33] LEAVER-FAY A, TYKA M, LEWIS S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules[J]. Methods in Enzymology, 2011, 487:545–574.
[34] SHEN W, LE S, LI Y, et al. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation[J]. Plos One, 2016, 11(10):e0163962.
[35] JOUNG J, LADHA A, SAITO M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics[J]. Medrxiv: The Preprint Server for Health Sciences , 2020.
[36] BROUGHTON J P, DENG X, YU G, et al. Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay[J]. Medrxiv : The Preprint Server for Health Sciences, 2020.
[37] JIANG Y, HU M, LIU A-A, et al. Detection of SARS-CoV-2 by CRISPR/ Cas12a-Enhanced Colorimetry[J]. ACS Sensors, 2021, 6(3):1086–1093.
[38] PENG Y, PAN Y, SUN Z, et al. An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA[J]. Biosensors and Bioelectronics, 2021, 186: 113309.
[39] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277–282.
[40] LI Z, CHEN X, HUANG Z, et al. Multiplex Nucleic Acid Assay of SARS-CoV-2 via a Lanthanide Nanoparticle-Tagging Strategy[J]. Analytical Chemistry, 2021, 93(37):12714–12722.
[41] BANADA P P, GREEN R, BANIK S, et al. An expanded high throughput RT-PCR assay to rapidly identify all known SARS-CoV-2 variants of concern using melting temperature coding[J]. Medrxiv, 2022. DOI: 10.1101/2022.01.1- 8.22269424
[42] BATÉJAT C, GRASSIN Q, MANUGUERRA J-C, et al. Heat inactivation of the severe acute respiratory syndrome coronavirus 2[J]. Journal of Biosafety and Biosecurity, 2021, 3(1):1–3.
[43] LOBATO I M, O'SULLIVAN C K. Recombinase polymerase amplification: Basics, applications and recent advances[J]. Trends in Analytical Chemistry : TRAC, 2018, 98:19–35.
[44] SÜSS B, FLEKNA G, WAGNER M, et al. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR[J]. Journal of Microbiological Methods, 2009, 76(3):316–319.
[45] YOU Y, MOREIRA B G, BEHLKE M A, et al. Design of LNA probes that improve mismatch discrimination[J]. Nucleic Acids Research, 2006, 34(8):e60.
[46] SUN Y, WANG M, LIN W, et al. "Mutation blacklist" and "mutation whitelist" of SARS-CoV-2[J]. Journal of Biosafety and Biosecurity, 2022, 4(2):114–120.
[47] HUANG J, XU Y, XUE Y, et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences[J]. Nature Biomedical Engineering, 2023.
[48] GAUTAM A, CHAUDHARY K, KUMAR R, et al. Computer-Aided Virtual Screening and Designing of Cell-Penetrating Peptides[J]. Methods in Molecular Biology, 2015, 1324:59–69.
[49] LEI Y, LI S, LIU Z, et al. A deep-learning framework for multi-level peptide-protein interaction prediction[J]. Nature Communications, 2021, 12(1):5465.
[50] ZHANG T, HUA Y, ZHOU C, et al. Umami peptides screened based on peptidomics and virtual screening from Ruditapes philippinarum and Mactra veneriformis clams[J]. Food Chemistry, 2022, 394:133504.
[51] FROLOFF N, WINDEMUTH A, HONIG B. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions[J]. Protein Science, 1997, 6(6):1293–1301.
[52] HAN Y, KRÁL P. Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2[J]. ACS Nano, 2020, 14(4):5143–5147..
[53] WANG H, WU X, ZHANG X, et al. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution[J]. ACS Central Science, 2020, 6(12):2238–2249.
[54] CHANG L, PEREZ A. Ranking Peptide Binders by Affinity with AlphaFold[J]. Angewandte Chemie, 2023, 62(7):e202213362.
[55] CAO Y, YISIMAYI A, JIAN F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, 608(7923):593–602.
修改评论