中文版 | English
题名

基于 RRAM 存储阵列的存算一体系统研究

其他题名
RESEARCH ON IN-MEMORY COMPUTING SYSTEM BASED ON RRAM MEMORY
姓名
姓名拼音
QIN Zhengwei
学号
12132470
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
LI
导师单位
深港微电子学院
论文答辩日期
2023-05-18
论文提交日期
2023-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

互联网和移动设备的普及让社会进入了大数据时代,这既促进了人工智能技 术的飞速发展,同时也带来了新的挑战。传统的冯诺依曼架构由于其存储单元与 计算单元分离的结构性限制,导致了”内存墙“的问题,因此提出了一种将计算单 元与存储单元结合的存算一体解决方案。这也得益于新型非易失性存储器的发展 和突破以及新的操作机理,本文正是针对新型存储器——RRAM(Resistive Random Access Memory) 的存算一体方案所进行的研究。 本文从 RRAM 的基本介绍、工作方式和电气特性出发,重点强调了 RRAM 作 为新一代存算一体存储器的优势所在,并为后面的外围电路设计提供了理论上的 准备。外围电路的主要功能是对存储阵列实现读写操作,在具体设计上,该电路 系统的模块组成包括用来确定存储单元位置的 WL 和 BL 选通模块、读写功能切 换模块、用于将电流转电压的读取电路和实现信号转换 DAC/ADC 模块。该电路系 统被用来测试 RRAM 器件的电气特性参数,如耐久性、数据保留性和 LTP

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] O’LEARY D E. Artificial intelligence and big data[J]. IEEE intelligent systems, 2013, 28(2):96-99.
[2] HAENSCH W. Scaling is over—what now?[C]//2017 75th Annual Device Research Conference(DRC). IEEE, 2017: 1-2.
[3] ZHANG W, GAO B, TANG J, et al. Neuro-inspired computing chips[J]. Nature electronics,2020, 3(7): 371-382.
[4] SANGWAN V K, HERSAM M C. Neuromorphic nanoelectronic materials[J]. Nature nan otechnology, 2020, 15(7): 517-528.
[5] EFNUSHEVA D, CHOLAKOSKA A, TENTOV A. A survey of different approaches for over coming the processor-memory bottleneck[J]. International Journal of Computer Science andInformation Technology, 2017, 9(2): 151-163.
[6] CHEN A. A review of emerging non-volatile memory (NVM) technologies and applications[J]. Solid-State Electronics, 2016, 125: 25-38.
[7] PEDRETTI G, IELMINI D. In-memory computing with resistive memory circuits: Status and outlook[J]. Electronics, 2021, 10(9): 1063.
[8] 毛海宇, 舒继武, 李飞, 等. 内存计算研究进展[J]. 中国科学: 信息科学, 2021, 51: 173-205.
[9] IELMINI D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling[J]. Semiconductor Science and Technology, 2016, 31(6): 063002.
[10] MILO V, ZAMBELLI C, OLIVO P, et al. Multilevel HfO2-based RRAM devices for low-power neuromorphic networks[J]. APL materials, 2019, 7(8): 081120.
[11] ALIBART F, GAO L, HOSKINS B D, et al. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm[J]. Nanotechnology, 2012, 23(7): 075201.
[12] YU S, LI Z, CHEN P Y, et al. Binary neural network with 16 Mb RRAM macro chip for clas sification and online training[C]//2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016: 16-2.
[13] BALATTI S, AMBROGIO S, GILMER D C, et al. Set variability and failure induced by com plementary switching in bipolar RRAM[J]. IEEE electron device letters, 2013, 34(7): 861-863.
[14] COSEMANS S, VERHOEF B, DOEVENSPECK J, et al. Towards 10000TOPS/W DNN infer ence with analog in-memory computing–a circuit blueprint, device options and requirements [M]//2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019: 22-2.
[15] SHERIDAN P M, CAI F, DU C, et al. Sparse coding with memristor networks[J]. Nature nanotechnology, 2017, 12(8): 784-789.
[16] SHIN J H, JEONG Y J, ZIDAN M A, et al. Hardware acceleration of simulated annealing of spin glass by RRAM crossbar array[M]//2018 IEEE International Electron Devices Meeting(IEDM). IEEE, 2018: 3-3.
[17] MAHMOODI M, KIM H, FAHIMI Z, et al. An analog neuro-optimizer with adaptable an nealing based on 64× 64 0T1R crossbar circuit[M]//2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019: 14-7.
[18] SUN Z, PEDRETTI G, AMBROSI E, et al. Solving matrix equations in one step with crosspoint resistive arrays[J]. Proceedings of the National Academy of Sciences, 2019, 116(10): 4123-4128.
[19] SUN Z, PEDRETTI G, BRICALLI A, et al. One-step regression and classification with cross point resistive memory arrays[J]. Science advances, 2020, 6(5): eaay2378.
[20] LI C, GRAVES C E, SHENG X, et al. Analog content-addressable memories with memristors[J]. Nature communications, 2020, 11(1): 1638.
[21] CHEN H Y, BRIVIO S, CHANG C C, et al. Resistive random access memory (RRAM) tech nology: From material, device, selector, 3D integration to bottom-up fabrication[J]. Journal of Electroceramics, 2017, 39: 21-38.
[22] ZAHOOR F, AZNI ZULKIFLI T Z, KHANDAY F A. Resistive random access memory(RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications[J]. Nanoscale research letters, 2020, 15(1): 1-26.
[23] 孙一鸣. 阻变存储器中金属导电细丝的形态调控[J]. TFC’19 第十五届全国薄膜技术学术研讨会摘要集, 2019.
[24] WANG G, LONG S, ZHANG M, et al. Operation methods of resistive random access memory[J]. Science China Technological Sciences, 2014, 57: 2295-2304.
[25] LEE J S, LEE S, NOH T W. Resistive switching phenomena: A review of statistical physics approaches[J]. Applied Physics Reviews, 2015, 2(3): 031303.
[26] YANG X, LONG S, ZHANG K, et al. Investigation on the RESET switching mechanism of bipolar Cu/HfO2/Pt RRAM devices with a statistical methodology[J]. Journal of Physics D: Applied Physics, 2013, 46(24): 245107.
[27] WASER R. Resistive non-volatile memory devices[J]. Microelectronic Engineering, 2009, 86(7-9): 1925-1928.
[28] YU S. Resistive random access memory (RRAM)[J]. Synthesis lectures on emerging engineering technologies, 2016, 2(5): 1-79.
[29] 程宗憬. 阻变存储器特性研究及读写电路设计[D]. 华中科技大学, 2013.
[30] LEE M J, PARK Y, SUH D S, et al. Two series oxide resistors applicable to high speed and high density nonvolatile memory[J]. Advanced Materials, 2007, 19(22): 3919-3923.
[31] CHANG M F, SHEU S S, LIN K F, et al. A high-speed 7.2-ns read-write random access 4-Mb embedded resistive RAM (ReRAM) macro using process-variation-tolerant current-mode read schemes[J]. IEEE Journal of Solid-State Circuits, 2012, 48(3): 878-891.
[32] CHEN Y D, CHIN A. An offset readout current sensing scheme for one-resistor RRAM-based cross-point array[J]. IEEE Electron Device Letters, 2018, 40(2): 208-211.
[33] SUNG C, SONG J, LEE S, et al. Improved endurance of RRAM by optimizing reset bias scheme in 1T1R configuration to suppress reset breakdown[C]//2016 IEEE Silicon Nanoelec tronics Workshop (SNW). IEEE, 2016: 84-85.
[34] 王博, 杨建国, 林殷茵. 不同工艺下操作算法对阻变存储器可靠性的影响[J]. 半导体技术, 2016, 41(10): 769-773.
[35] LI C, HU M, LI Y, et al. Analogue signal and image processing with large memristor crossbars[J]. Nature electronics, 2018, 1(1): 52-59.
[36] HU M, GRAVES C E, LI C, et al. Memristor-based analog computation and neural network classification with a dot product engine[J]. Advanced Materials, 2018, 30(9): 1705914.
[37] CHI P, LI S, XU C, et al. Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory[J]. ACM SIGARCH Computer Architecture News, 2016, 44(3): 27-39.
[38] GOKMEN T, VLASOV Y. Acceleration of deep neural network training with resistive crosspoint devices: Design considerations[J]. Frontiers in neuroscience, 2016, 10: 333.
[39] LAN J, LI Z, CHEN Z, et al. Improved Performance of HfxZnyO-Based RRAM and its Switching Characteristics down to 4 K Temperature[J]. Advanced Electronic Materials, 2023, 9(3):2201250.
[40] LAN J, ZHU Q, ZHANG Y, et al. Zinc-Alloyed HFO 2 Synaptic RRAM with Operating Voltage and Switching Energy Enhancement[C]//2022 China Semiconductor Technology International Conference (CSTIC). IEEE, 2022: 1-3.
[41] CROCKETT L H, ELLIOT R A, ENDERWITZ M A, et al. The Zynq book: embedded process ing with the ARM Cortex-A9 on the Xilinx Zynq-7000 all programmable SoC[M]. Strathclyde Academic Media, 2014.
[42] GUPTA M, NAGAWAT A K. Design and implementation of high performance advanced ex tensible interface (AXI) based DDR3 memory controller[C]//2016 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2016: 1175-1179.
[43] 刘姑城. 双极性阻变存储器外围关键电路设计[D]. 安徽大学, 2018.
[44] HUANG C, XU N, QIU K, et al. Efficient and optimized methods for alleviating the impacts of IR-drop and fault in RRAM based neural computing systems[J]. IEEE Journal of the Electron Devices Society, 2021, 9: 645-652.
[45] IELMINI D, WASER R. Resistive switching: from fundamentals of nanoionic redox processes to memristive device applications[M]. John Wiley & Sons, 2015.
[46] HOEFFLINGER B. ITRS: The international technology roadmap for semiconductors[M]//Chips 2020: a guide to the future of nanoelectronics. Springer, 2011: 161-174.
[47] HUI F, GRUSTAN-GUTIERREZ E, LONG S, et al. Graphene and related materials for resistive random access memories[J]. Advanced Electronic Materials, 2017, 3(8): 1600195.
[48] SHI Y, PAN C, CHEN V, et al. Coexistence of volatile and non-volatile resistive switching in 2D h-BN based electronic synapses[C]//2017 IEEE International Electron Devices Meeting(IEDM). IEEE, 2017: 5-4.
[49] RUSSO U, IELMINI D, CAGLI C, et al. Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices[J]. IEEE Transactions on Electron Devices,2009, 56(2): 186-192
[50] CHENG C H, CHIN A, YEH F. Novel ultra-low power RRAM with good endurance and reten tion[C]//2010 Symposium on VLSI Technology. IEEE, 2010: 85-86.
[51] WEI Z, KANZAWA Y, ARITA K, et al. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism[C]//2008 IEEE International Electron Devices Meeting. IEEE, 2008: 1-4.
[52] BHATTACHARYYA A J, MAIER J. Second phase effects on the conductivity of non-aqueous salt solutions:“Soggy sand electrolytes”[J]. Advanced Materials, 2004, 16(9-10): 811-814.
[53] ROLLS E T. Roles of LTP and LTD in neuronal network in the brain[M]//Cortical plasticity. Garland Science, 2020: 223-250.
[54] KASAI H, ZIV N E, OKAZAKI H, et al. Spine dynamics in the brain, mental disorders and artificial neural networks[J]. Nature Reviews Neuroscience, 2021, 22(7): 407-422.
[55] MU B, HSU H H, KUO C C, et al. Organic small molecule-based RRAM for data storage and neuromorphic computing[J]. Journal of Materials Chemistry C, 2020, 8(37): 12714-12738.
[56] SHEN Z, ZHAO C, QI Y, et al. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application[J]. Nanomaterials, 2020, 10(8): 1437.
[57] TUTTE W T, TUTTE W T. Graph theory: volume 21[M]. Cambridge university press, 2001.
[58] SANCHEZ-LENGELING B, REIF E, PEARCE A, et al. A gentle introduction to graph neural networks[J]. Distill, 2021, 6(9): e33.
[59] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//International conference on machine learning. PMLR, 2017: 1263-1272.
[60] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[A]. 2018.
[61] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[A]. 2016.
[62] DUVENAUD D K, MACLAURIN D, IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[J]. Advances in neural information processing systems, 2015, 28.
[63] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI magazine, 2008, 29(3): 93-93.
[64] LIU H, WEI M, CHEN Y. Optimization of non-linear conductance modulation based on metal oxide memristors[J]. Nanotechnology Reviews, 2018, 7(5): 443-468.
[65] QUERLIOZ D, DOLLFUS P, BICHLER O, et al. Learning with memristive devices: How should we model their behavior?[C]//2011 IEEE/ACM International Symposium on Nanoscale Architectures. IEEE, 2011: 150-156.
[66] CHEN P Y, PENG X, YU S. NeuroSim: A circuit-level macro model for benchmarking neuro-inspired architectures in online learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(12): 3067-3080.

所在学位评定分委会
材料与化工
国内图书分类号
TN41
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545022
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
覃政伟. 基于 RRAM 存储阵列的存算一体系统研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132470-覃政伟-南方科技大学-(12265KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[覃政伟]的文章
百度学术
百度学术中相似的文章
[覃政伟]的文章
必应学术
必应学术中相似的文章
[覃政伟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。