[1] LI H. Practical evaluation of Li-ion batteries[J]. Joule, 2019, 3(4): 911-914.
[2] MA J L, MENG F L, YU Y, et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries[J]. Nature Chemistry, 2019, 11(1): 64-70.
[3] XIN S, CHANG Z, ZHANG X, et al. Progress of rechargeable lithium metal batteries based on conversion reactions[J]. National Science Review, 2017, 4(1): 54-70.
[4] HUANG Y, DONG Y, LI S, et al. Lithium manganese spinel cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2020, 11(2): 2000997.
[5] LU Y, CHEN J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020, 4(3): 127-142.
[6] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499.
[7] XIE L, TANG C, BI Z, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650.
[8] XU K. Li-ion battery electrolytes[J]. Nature Energy, 2021, 6(7): 763-763.
[9] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[10] MAHMOOD N, HOU Y. Electrode nanostructures in lithium-based batteries[J]. Advanced Science, 2014, 1(1): 1400012.
[11] YADA C, LEE C E, LAUGHMAN D, et al. A high-throughput approach developing lithium-niobium-tantalum oxides as electrolyte/cathode interlayers for high-voltage all-solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2015, 162(4): A722-A726.
[12] HERNANDEZ-BURGOS K, RODRIGUEZ-CALERO G G, ZHOU W, et al. Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+)[J]. Journal of the American Chemical Society, 2013, 135(39): 14532-14535.
[13] JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1(9): 16141.
[14] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[15] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[16] FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702657.
[17] CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
[18] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.
[19] ZHAO Q, STALIN S, ZHAO C-Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
[20] HUO H, LUO J, THANGADURAI V, et al. Li2CO3: A critical issue for developing solid garnet batteries[J]. ACS Energy Letters, 2019, 5(1): 252-262.
[21] NIKODIMOS Y, HUANG C-J, TAKLU B W, et al. Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders[J]. Energy & Environmental Science, 2022, 15(3): 991-1033.
[22] 曾振.PEO基固态聚合物电解质的制备及其性能研究[D], 山东大学, 2021.
[23] DING P, LIN Z, GUO X, et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries[J]. Materials Today, 2021, 51: 449-474.
[24] NGAI K S, RAMESH S, RAMESH K, et al. A review of polymer electrolytes: fundamental, approaches and applications[J]. Ionics, 2016, 22(8): 1259-1279.
[25] ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects[J]. Chem, 2019, 5(9): 2326-2352.
[26] XU B, LI X, YANG C, et al. Interfacial chemistry enables stable cycling of all-solid-state li metal batteries at high current densities[J]. Journal of the American Chemical Society, 2021, 143(17): 6542-6550.
[27] LIU Y, ZHAO Y, LU W, et al. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries[J]. Nano Energy, 2021, 88: 106205.
[28] Ratner M A, Shriver D F. Ion transport in solvent-free polymers[J]. Chemical Review, 1988, 88: 109-124.
[29] MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO—Alternative host materials for Li+ -conducting solid polymer electrolytes[J]. Progress in Polymer Science, 2018, 81: 114-143.
[30] LEE J E, CHOI J W , LEE D J, et al. Radial microstructure development of polyacrylonitrile (PAN)-based carbon fibers[J]. Carbon, 2022, 191: 515-524.
[31] RAMACHANDRAN J, SERRANO J M, LIU T, et al. Porous carbon fibers from gel-spun polyacrylonitrile and poly(methyl methacrylate)-block-poly(acrylonitrile)[J]. Carbon, 2022, 192: 332-346.
[32] XIAO Z, LONG T, SONG L, et al. Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries[J]. Ionics, 2021, 28(1): 15-26.
[33] WU Y, LI Y, WANG Y, et al. Advances and prospects of PVDF based polymer electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84.
[34] MEYER W H. Polymer electrolytes for lithium-ion batteries[J]. Advanced Materials, 1998, 10(6): 439-448.
[35] LI Z, FU J, ZHOU X, et al. Ionic conduction in polymer-based solid electrolytes[J]. Advanced Science, 2023, 10(10): 2201718.
[36] ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): 1902029.
[37] FAN L Z, HE H, NAN C W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019.
[38] EISHUN T, HIROYUKI O, KOICHI T, et al. Lithium ionic conduction in poly(methacrylic acid)-poly(ethylene oxide) complex containing lithium perchlorate[J]. Solid State Ionics, 1983, 11(3): 227-233.
[39] CROCE F, Appetecchi G, PERSI L, et al. Nanocomposite polymer electrolytes for lithiumbatteries[J]. Nature, 1998, 394: 456–458.
[40] FAN R, LIU C, HE K, et al. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent peo and Li6.75La3Zr1.75Ta0.25O12 nanofibers[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7222-7231.
[41] YUAN C, LI J, HAN P, et al. Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework[J]. Journal of Power Sources, 2013, 240: 653-658.
[42] ZHAO R, WU Y, LIANG Z, et al. Metal–organic frameworks for solid-state electrolytes[J]. Energy & Environmental Science, 2020, 13(8): 2386-2403.
[43] XIA W, ZHU J, GUO W, et al. Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction[J]. Journal of Materials Chemistry A, 2014, 2(30): 11606-11613.
[44] SUO L, OH D, LIN Y, et al. How Solid-electrolyte interphase forms in aqueous electrolytes[j]. Journal of the American Chemical Society, 2017, 139(51): 18670-18680.
[45] ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5): 365-373.
[46] ZHONG R, WU Y, LIANG Z, et al. Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction[J]. Carbon, 2019, 142: 115-122.
[47] SERRE C, MELLOT-DRAZNIEKS C, SURBLé S et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks[J]. Science, 2017, 315(5820): 1828-1831.
[48] MA M, BéTARD A, WEBER I, et al. Iron-based metal–organic frameworks MIL-88B and NH2-MIL-88B: high quality microwave synthesis and solvent-induced lattice “breathing”[J]. Crystal Growth & Design, 2013, 13(6): 2286-2291.
[49] MA Y, WAN J, YANG Y, et al. Scalable, ultrathin, and high‐temperature‐resistant solid polymer electrolytes for energy‐dense lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(15): 2103720.
[50] ZHU M, LI L, ZHANG Y, et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte[J]. Energy Storage Materials, 2021, 42: 145-153.
[51] LI Z, ZHOU X-Y, GUO X. High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes[J]. Energy Storage Materials, 2020, 29: 149-155.
[52] JIN Y, ZONG X, ZHANG X, et al. Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 49: 433-444.
[53] WEN S, LUO C, WANG Q, et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 47: 453-461.
[54] ZHAO Y, BAI Y, LI W, et al. Semi closed coordination structure polymer electrolyte combined in situ interface engineering for lithium batteries[J]. Chemical Engineering Journal, 2020, 394: 124847.
[55] MORIOKA T, OTA K, TOMINAGA Y. Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes[J]. Polymer, 2016, 84: 21-26.
[56] MACKANIC D G, MICHAELS W, LEE M, et al. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte[J]. Advanced Energy Materials, 2018, 8(25): 1800703.
[57] MEABE L, HUYNH T V, LAGO N, et al. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries[J]. Electrochimica Acta, 2018, 264: 367-375.
[58] DU L, ZHANG B, DENG W, et al. Hierarchically self‐assembled mof network enables continuous ion transport and high mechanical strength[J]. Advanced Energy Materials, 2022, 12(24): 2200501.
[59] ZHU F, BAO H, WU X, et al. High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43206-43213.
[60] ZHANG Q, LIU B, WANG J, et al. The optimized interfacial compatibility of metal–organic frameworks enables a high-performance quasi-solid metal battery[J]. ACS Energy Letters, 2020, 5(9): 2919-2926.
[61] TANTHANA J, CHUANG S S. In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture[J]. ChemSusChem, 2010, 3(8): 957-964.
[62] HUO H, WU B, ZHANG T, et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries[J]. Energy Storage Materials, 2019, 18: 59-67.
[63] PARK K, GOODENOUGH J B. Dendrite‐Suppressed lithium plating from a liquid electrolyte via wetting of Li3N[J]. Advanced Energy Materials, 2017, 7(19): 1700732.
[64] XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 ℃[J]. Nano Letters, 2018, 18(11): 7414-7418.
[65] XIU L F, XIAO J, FU D H, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advance, 2018, 4(12): 9245.
[66] YAN M, LIANG J Y, ZUO T T, et al. Stabilizing polymer–lithium interface in a rechargeable solid battery[J]. Advanced Functional Materials, 2019, 30(6): 1908047.
[67] JI X, HOU S, WANG P, et al. Solid-state electrolyte design for lithium dendrite suppression[J]. Advanced Materials, 2020, 32(46): 2002741.
修改评论