[1]Ramakrishnan M, Rajan G, Semenova Y, et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J]. Sensors, 2016, 16(1): 99.
[2]Giurgiutiu V. SHM of aerospace composites–challenges and opportunities[J]. Proceedings of the Composites and Advanced Materials Expo, Dallas, CA, USA, 2015: 26-29.
[3]Boller C. Next generation structural health monitoring and its integration into aircraft design[J]. International Journal of Systems Science, 2000, 31(11): 1333-1349.
[4]陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6): 1312-1320.
[5]Giurgiutiu V. Structural health monitoring (SHM) of aerospace composites[M]//Polymer composites in the aerospace industry. Woodhead Publishing, 2020: 491-558.
[6]王奕首,卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报,2016,33(01):1-16.
[7]Woracek R, Santisteban J, Fedrigo A, et al. Diffraction in neutron imaging—A review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 141-158.
[8]Amjadian M, Agrawal A K. Modeling, design, and testing of a proof-of-concept prototype damper with friction and eddy current damping effects[J]. Journal of Sound and Vibration, 2018, 413: 225-249.
[9]Ren S, Ren X. Studies on laws of stress-magnetization based on magnetic memory testing technique[J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 165-171.
[10]赵星波,蒲建忠,陈仙凤,欧阳星峰,郑小腾. 奥氏体不锈钢现场复膜金相技术研究[J]. 中国特种设备安全,2009,25(05):18-21.
[11]Gianneo A, Carboni M, Giglio M. Feasibility study of a multi-parameter probability of detection formulation for a Lamb waves–based structural health monitoring approach to light alloy aeronautical plates[J]. Structural Health Monitoring, 2017, 16(2): 225-249.
[12]Hong M, Mao Z, Todd M D, et al. Uncertainty quantification for acoustic nonlinearity parameter in Lamb wave-based prediction of barely visible impact damage in composites[J]. Mechanical Systems and Signal Processing, 2017, 82: 448-460.
[13]Chilles J S, Koutsomitopoulou A F, Croxford A J, et al. Monitoring cure and detecting damage in composites with inductively coupled embedded sensors[J]. Composites Science and Technology, 2016, 134: 81-88.
[14]Andreades C, Mahmoodi P, Ciampa F. Characterisation of smart CFRP composites with embedded PZT transducers for nonlinear ultrasonic applications[J]. Composite Structures, 2018, 206: 456-466.
[15]徐燕,李炜. 国内外预浸料制备方法[J]. 玻璃钢/复合材料,2013,No.236,No.237(Z3):3-7.
[16]De Simone M E, Andreades C, Meo M, et al. Smart composite detector of orbital debris and micrometeoroids particles[J]. Materials today: proceedings, 2021, 34: 202-209.
[17]Su Z, Ye L. Identification of damage using Lamb waves: from fundamentals to applications[M]. Springer Science & Business Media, 2009.
[18]Nag-Chowdhury S, Bellegou H, Pillin I, et al. Non-intrusive health monitoring of infused composites with embedded carbon quantum piezo-resistive sensors[J]. Composites Science and Technology, 2016, 123: 286-294.
[19]Di Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713.
[20]Jang B W, Kim C G. Real-time detection of low-velocity impact-induced delamination onset in composite laminates for efficient management of structural health[J]. Composites Part B: Engineering, 2017, 123: 124-135.
[21]Zhou G, Sim L M. Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review[J]. Smart Materials and Structures, 2002, 11(6): 925.
[22]Foedinger R C, Rea D L, Sirkis J S, et al. Embedded fiber optic sensor arrays for structural health monitoring of filament wound composite pressure vessels[C]//Smart Structures and Materials 1999: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials. SPIE, 1999, 3670: 289-301.
[23]Liu T, Brooks D, Martin A, et al. A multi-mode extrinsic Fabry-Perot interferometric strain sensor[J]. Smart materials and structures, 1997, 6(4): 464.
[24]Ansari F. Theory and applications of integrated fiber optic sensors in structures[C]//Intelligent civil engineering materials and structures. ASCE, 1997: 2-28.
[25]Liu T, Fernando G F. The application of optical fiber sensors in advanced fiber reinforced composites. Part 3: Strain, temperature and health monitoring[J]. Optical fiber sensor technology: applications and systems, 1999: 87-129.
[26]Measures R M. Smart composite structures with embedded sensors[J]. Composites Engineering, 1992, 2(5-7): 597-618.
[27]Guo H, Xiao G, Mrad N, et al. Fiber optic sensors for structural health monitoring of air platforms[J]. Sensors, 2011, 11(4): 3687-3705.
[28]Chambers A R, Mowlem M C, Dokos L. Evaluating impact damage in CFRP using fibre optic sensors[J]. Composites science and technology, 2007, 67(6): 1235-1242.
[29]Ramly R, Kuntjoro W, Rahman M K A. Using embedded fiber Bragg grating (FBG) sensors in smart aircraft structure materials[J]. Procedia Engineering, 2012, 41: 600-606.
[30]Miguel Giraldo C, Zúñiga Sagredo J, Sánchez Gómez J, et al. Demonstration and methodology of structural monitoring of stringer runs out composite areas by embedded optical fiber sensors and connectors integrated during production in a composite plant[J]. Sensors, 2017, 17(7): 1683.
[31]Rocha H, Semprimoschnig C, Nunes J P. Sensors for process and structural health monitoring of aerospace composites: A review[J]. Engineering Structures, 2021, 237: 112231.
[32]Lee J R, Ryu C Y, Koo B Y, et al. In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system[J]. Smart Materials & Structures, 2003, 12(1):147-151.
[33]Ogisu T, Shimanuki M, Kiyoshima S, et al. Development of damage monitoring system for aircraft structure using a PZT actuator/FBG sensor hybrid system[C]//Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. SPIE, 2004, 5388: 425-436.
[34]Ramly R, Kuntjoro W, Abd Rahman M K. Embedded FBG Sensor in Aircraft Smart Composite Materials for Structural Monitoring[J]. Applied Mechanics & Materials, 2016, 393(393):311-316.
[35]Liu R, Liang D. Natural frequency detection of smart composite structure by small diameter fiber Bragg grating[J]. Journal of Vibration and Control, 2015, 21(14): 2896-2902.
[36]Takeda S, Okabe Y, Takeda N. Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors[J]. Composites Part A: applied science and manufacturing, 2002, 33(7): 971-980.
[37]Shivakumar K, Bhargava A. Failure mechanics of a composite laminate embedded with a fiber optic sensor[J]. Journal of composite materials, 2005, 39(9): 777-798.
[38]Tuloup C, Harizi W, Aboura Z, et al. On the manufacturing, integration, and wiring techniques of in situ piezoelectric devices for the manufacturing and structural health monitoring of polymer–matrix composites: A literature review[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(16): 2351-2381.
[39]Ramadan K S, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers[J]. Smart Materials and Structures, 2014, 23(3): 033001.
[40]Masmoudi S, El Mahi A, Turki S. Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant[J]. Applied Acoustics, 2016, 108: 50-58.
[41]Qiu L, Deng X, Yuan S, et al. Impact monitoring for aircraft smart composite skins based on a lightweight sensor network and characteristic digital sequences[J]. Sensors, 2018, 18(7): 2218.
[42]Annamdas V G M, Soh C K. Application of electromechanical impedance technique for engineering structures: review and future issues[J]. Journal of Intelligent material systems and structures, 2010, 21(1): 41-59.
[43]Wandowski T, Malinowski P H, Ostachowicz W M. Delamination detection in CFRP panels using EMI method with temperature compensation[J]. Composite Structures, 2016, 151: 99-107.
[44]Thomas G R, Khatibi A A. Durability of structural health monitoring systems under impact loading[J]. Procedia Engineering, 2017, 188: 340-347.
[45]Carboni M, Gianneo A, Giglio M. A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites[J]. Ultrasonics, 2015, 60: 51-64.
[46]Lin M, Qing X, Kumar A, et al. Smart layer and smart suitcase for structural health monitoring applications[C]//Smart structures and materials 2001: industrial and commercial applications of smart structures technologies. SPIE, 2001, 4332: 98-106.
[47]Qing X P, Beard S J, Kumar A, et al. Advances in the development of built-in diagnostic system for filament wound composite structures[J]. Composites science and technology, 2006, 66(11-12): 1694-1702.
[48]Wang Y, Qiu L, Luo Y, et al. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring[J]. Structural Health Monitoring, 2021, 20(3): 861-876.
[49]Jung K C, Chang S H. Performance evaluation of smart grid fabrics comprising carbon dry fabrics and PVDF ribbon sensors for structural health monitoring[J]. Composites Part B: Engineering, 2019, 163: 690-701.
[50]Shin S, Zamorano B, Elvin N. Comparison of the electromechanical properties of embedded and surface-mounted piezoelectric transducers[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20): 2837-2850.
[51]Li W, Yuan J, Dichiara A, et al. The use of vertically aligned carbon nanotubes grown on SiC for in situ sensing of elastic and plastic deformation in electrically percolative epoxy composites[J]. Carbon, 2012, 50(11): 4298-4301.
[52]Li Y, Liao Y, Su Z. Graphene-functionalized polymer composites for self-sensing of ultrasonic waves: An initiative towards “sensor-free” structural health monitoring[J]. Composites Science and Technology, 2018, 168: 203-213.
[53]Zeng Z, Liu M, Xu H, et al. Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites[J]. Carbon, 2017, 121: 490-501.
[54]Chiacchiarelli L M, Rallini M, Monti M, et al. The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring[J]. Composites Science and Technology, 2013, 80: 73-79.
[55]Zeng Z, Liu M, Xu H, et al. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: From structural vibration to ultrasonic waves[J]. Smart Materials and Structures, 2016, 25(6): 065005.
[56]Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501.
[57]Liao Y, Zhou P, Pan D, et al. An ultra-thin printable nanocomposite sensor network for structural health monitoring[J]. Structural Health Monitoring, 2021, 20(3): 894-903.
[58]Duan F, Liao Y, Zeng Z, et al. Graphene-based nanocomposite strain sensor response to ultrasonic guided waves[J]. Composites Science and Technology, 2019, 174: 42-49.
[59]Zhou P, Liao Y, Li Y, et al. An inkjet-printed, flexible, ultra-broadband nanocomposite film sensor for in-situ acquisition of high-frequency dynamic strains[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105554.
[60]Su Y, Yang J, Liao Y, et al. An implantable, compatible and networkable nanocomposite piezoresistive sensor for in situ acquisition of dynamic responses of CFRPs[J]. Composites Science and Technology, 2021, 208: 108747.
[61]Garboczi E J, Snyder K A, Douglas J F, et al. Geometrical percolation threshold of overlapping ellipsoids[J]. Physical review E, 1995, 52(1): 819.
[62]Hwang S H, Park H W, Park Y B. Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets[J]. Smart materials and structures, 2012, 22(1): 015013.
[63]Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of applied physics, 1963, 34(6): 1793-1803.
[64]Li Y, Wang K, Su Z. Dispersed sensing networks in nano-engineered polymer composites: From static strain measurement to ultrasonic wave acquisition[J]. Sensors, 2018, 18(5): 1398.
[65]Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites[J]. Macromolecules, 2010, 43(16): 6515-6530.
[66]Bhattacharya M. Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016, 9(4): 262.
修改评论