中文版 | English
题名

含有传感单元的预浸料设计与制造

其他题名
DESIGN AND MANUFACTURE OF PREPREG WITH SENSING UNIT
姓名
姓名拼音
ZHANG Jingzheng
学号
12132685
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
周利民
导师单位
系统设计与智能制造学院
论文答辩日期
2023-05-18
论文提交日期
2023-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

复合材料在实际应用过程中的失效形式具有一定的复杂性和难以预测性,这对复合材料的广泛应用产生了限制。使用传感器系统对复合材料的结构健康状况进行实时监测,可以进一步扩大复合材料的应用范围。相对于表面粘贴的传感器,嵌入式传感器由于受到表层复合材料的保护,减少了外界噪声等环境因素的干扰,更能够反应主体结构的真实情况。然而,现有的光纤传感器和压电传感器在嵌入后会带来力学性能的损失,且较脆的材质使得其在嵌入过程中容易被损坏。本研究提出了一种新型石墨烯环氧树脂传感器,并采用了新的嵌入方式,即将传感器嵌入预浸料中,制作出了一种具有自感知能力的预浸料,有效解决了传统嵌入式传感器所面临的问题。

本研究利用预浸料用环氧树脂体系作为基体,将石墨烯均匀分散其中后将其作为传感单元局部或全面浸润干纤维制成功能化预浸料。在铺层固化制成智能复合材料板后其智能结构可实现对振动或微小应变的感应监测。当智能结构感应到振动或者微小应变时,基于隧穿效应,传感器中相邻石墨烯片的距离会发生变化进而产生阻值的变化,从而实现对结构的监测。根据渗流理论与实验分析,石墨烯在环氧树脂体系中的质量分数大约达到1%时,传感器具有最优异的传感性能和稳定性。在对智能复合材料板件进行一系列力学性能测试,并与普通复合材料板件进行对比之后,得出结论:将传感器浸润干纤维制作成预浸料后,不会对复合材料构件产生明显的力学性能损失。此外,在低频振动(300 Hz­2 kHz)下对信号的响应没有存在失真的情况,且具有一定的精度。

本研究使用含有传感单元的预浸料与普通预浸料铺层后固化成型来达到传感器嵌入的目的,简化了传感器的嵌入操作,并且提高了嵌入的成功率。此外将制作的预浸料在常温下储存了两周,并制作成板件进行低频振动响应测试。测试结果表明,所制作的预浸料仍然具有良好的响应能力,这表明其可以长时间存储,并具有良好的稳定性。本研究开发的具有自感知能力的复合材料预浸料,为实现智能材料的自感知提供了一种新的方法。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1]Ramakrishnan M, Rajan G, Semenova Y, et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J]. Sensors, 2016, 16(1): 99.
[2]Giurgiutiu V. SHM of aerospace composites–challenges and opportunities[J]. Proceedings of the Composites and Advanced Materials Expo, Dallas, CA, USA, 2015: 26-29.
[3]Boller C. Next generation structural health monitoring and its integration into aircraft design[J]. International Journal of Systems Science, 2000, 31(11): 1333-1349.
[4]陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6): 1312-1320.
[5]Giurgiutiu V. Structural health monitoring (SHM) of aerospace composites[M]//Polymer composites in the aerospace industry. Woodhead Publishing, 2020: 491-558.
[6]王奕首,卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报,2016,33(01):1-16.
[7]Woracek R, Santisteban J, Fedrigo A, et al. Diffraction in neutron imaging—A review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 141-158.
[8]Amjadian M, Agrawal A K. Modeling, design, and testing of a proof-of-concept prototype damper with friction and eddy current damping effects[J]. Journal of Sound and Vibration, 2018, 413: 225-249.
[9]Ren S, Ren X. Studies on laws of stress-magnetization based on magnetic memory testing technique[J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 165-171.
[10]赵星波,蒲建忠,陈仙凤,欧阳星峰,郑小腾. 奥氏体不锈钢现场复膜金相技术研究[J]. 中国特种设备安全,2009,25(05):18-21.
[11]Gianneo A, Carboni M, Giglio M. Feasibility study of a multi-parameter probability of detection formulation for a Lamb waves–based structural health monitoring approach to light alloy aeronautical plates[J]. Structural Health Monitoring, 2017, 16(2): 225-249.
[12]Hong M, Mao Z, Todd M D, et al. Uncertainty quantification for acoustic nonlinearity parameter in Lamb wave-based prediction of barely visible impact damage in composites[J]. Mechanical Systems and Signal Processing, 2017, 82: 448-460.
[13]Chilles J S, Koutsomitopoulou A F, Croxford A J, et al. Monitoring cure and detecting damage in composites with inductively coupled embedded sensors[J]. Composites Science and Technology, 2016, 134: 81-88.
[14]Andreades C, Mahmoodi P, Ciampa F. Characterisation of smart CFRP composites with embedded PZT transducers for nonlinear ultrasonic applications[J]. Composite Structures, 2018, 206: 456-466.
[15]徐燕,李炜. 国内外预浸料制备方法[J]. 玻璃钢/复合材料,2013,No.236,No.237(Z3):3-7.
[16]De Simone M E, Andreades C, Meo M, et al. Smart composite detector of orbital debris and micrometeoroids particles[J]. Materials today: proceedings, 2021, 34: 202-209.
[17]Su Z, Ye L. Identification of damage using Lamb waves: from fundamentals to applications[M]. Springer Science & Business Media, 2009.
[18]Nag-Chowdhury S, Bellegou H, Pillin I, et al. Non-intrusive health monitoring of infused composites with embedded carbon quantum piezo-resistive sensors[J]. Composites Science and Technology, 2016, 123: 286-294.
[19]Di Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713.
[20]Jang B W, Kim C G. Real-time detection of low-velocity impact-induced delamination onset in composite laminates for efficient management of structural health[J]. Composites Part B: Engineering, 2017, 123: 124-135.
[21]Zhou G, Sim L M. Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review[J]. Smart Materials and Structures, 2002, 11(6): 925.
[22]Foedinger R C, Rea D L, Sirkis J S, et al. Embedded fiber optic sensor arrays for structural health monitoring of filament wound composite pressure vessels[C]//Smart Structures and Materials 1999: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials. SPIE, 1999, 3670: 289-301.
[23]Liu T, Brooks D, Martin A, et al. A multi-mode extrinsic Fabry-Perot interferometric strain sensor[J]. Smart materials and structures, 1997, 6(4): 464.
[24]Ansari F. Theory and applications of integrated fiber optic sensors in structures[C]//Intelligent civil engineering materials and structures. ASCE, 1997: 2-28.
[25]Liu T, Fernando G F. The application of optical fiber sensors in advanced fiber reinforced composites. Part 3: Strain, temperature and health monitoring[J]. Optical fiber sensor technology: applications and systems, 1999: 87-129.
[26]Measures R M. Smart composite structures with embedded sensors[J]. Composites Engineering, 1992, 2(5-7): 597-618.
[27]Guo H, Xiao G, Mrad N, et al. Fiber optic sensors for structural health monitoring of air platforms[J]. Sensors, 2011, 11(4): 3687-3705.
[28]Chambers A R, Mowlem M C, Dokos L. Evaluating impact damage in CFRP using fibre optic sensors[J]. Composites science and technology, 2007, 67(6): 1235-1242.
[29]Ramly R, Kuntjoro W, Rahman M K A. Using embedded fiber Bragg grating (FBG) sensors in smart aircraft structure materials[J]. Procedia Engineering, 2012, 41: 600-606.
[30]Miguel Giraldo C, Zúñiga Sagredo J, Sánchez Gómez J, et al. Demonstration and methodology of structural monitoring of stringer runs out composite areas by embedded optical fiber sensors and connectors integrated during production in a composite plant[J]. Sensors, 2017, 17(7): 1683.
[31]Rocha H, Semprimoschnig C, Nunes J P. Sensors for process and structural health monitoring of aerospace composites: A review[J]. Engineering Structures, 2021, 237: 112231.
[32]Lee J R, Ryu C Y, Koo B Y, et al. In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system[J]. Smart Materials & Structures, 2003, 12(1):147-151.
[33]Ogisu T, Shimanuki M, Kiyoshima S, et al. Development of damage monitoring system for aircraft structure using a PZT actuator/FBG sensor hybrid system[C]//Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. SPIE, 2004, 5388: 425-436.
[34]Ramly R, Kuntjoro W, Abd Rahman M K. Embedded FBG Sensor in Aircraft Smart Composite Materials for Structural Monitoring[J]. Applied Mechanics & Materials, 2016, 393(393):311-316.
[35]Liu R, Liang D. Natural frequency detection of smart composite structure by small diameter fiber Bragg grating[J]. Journal of Vibration and Control, 2015, 21(14): 2896-2902.
[36]Takeda S, Okabe Y, Takeda N. Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors[J]. Composites Part A: applied science and manufacturing, 2002, 33(7): 971-980.
[37]Shivakumar K, Bhargava A. Failure mechanics of a composite laminate embedded with a fiber optic sensor[J]. Journal of composite materials, 2005, 39(9): 777-798.
[38]Tuloup C, Harizi W, Aboura Z, et al. On the manufacturing, integration, and wiring techniques of in situ piezoelectric devices for the manufacturing and structural health monitoring of polymer–matrix composites: A literature review[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(16): 2351-2381.
[39]Ramadan K S, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers[J]. Smart Materials and Structures, 2014, 23(3): 033001.
[40]Masmoudi S, El Mahi A, Turki S. Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant[J]. Applied Acoustics, 2016, 108: 50-58.
[41]Qiu L, Deng X, Yuan S, et al. Impact monitoring for aircraft smart composite skins based on a lightweight sensor network and characteristic digital sequences[J]. Sensors, 2018, 18(7): 2218.
[42]Annamdas V G M, Soh C K. Application of electromechanical impedance technique for engineering structures: review and future issues[J]. Journal of Intelligent material systems and structures, 2010, 21(1): 41-59.
[43]Wandowski T, Malinowski P H, Ostachowicz W M. Delamination detection in CFRP panels using EMI method with temperature compensation[J]. Composite Structures, 2016, 151: 99-107.
[44]Thomas G R, Khatibi A A. Durability of structural health monitoring systems under impact loading[J]. Procedia Engineering, 2017, 188: 340-347.
[45]Carboni M, Gianneo A, Giglio M. A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites[J]. Ultrasonics, 2015, 60: 51-64.
[46]Lin M, Qing X, Kumar A, et al. Smart layer and smart suitcase for structural health monitoring applications[C]//Smart structures and materials 2001: industrial and commercial applications of smart structures technologies. SPIE, 2001, 4332: 98-106.
[47]Qing X P, Beard S J, Kumar A, et al. Advances in the development of built-in diagnostic system for filament wound composite structures[J]. Composites science and technology, 2006, 66(11-12): 1694-1702.
[48]Wang Y, Qiu L, Luo Y, et al. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring[J]. Structural Health Monitoring, 2021, 20(3): 861-876.
[49]Jung K C, Chang S H. Performance evaluation of smart grid fabrics comprising carbon dry fabrics and PVDF ribbon sensors for structural health monitoring[J]. Composites Part B: Engineering, 2019, 163: 690-701.
[50]Shin S, Zamorano B, Elvin N. Comparison of the electromechanical properties of embedded and surface-mounted piezoelectric transducers[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20): 2837-2850.
[51]Li W, Yuan J, Dichiara A, et al. The use of vertically aligned carbon nanotubes grown on SiC for in situ sensing of elastic and plastic deformation in electrically percolative epoxy composites[J]. Carbon, 2012, 50(11): 4298-4301.
[52]Li Y, Liao Y, Su Z. Graphene-functionalized polymer composites for self-sensing of ultrasonic waves: An initiative towards “sensor-free” structural health monitoring[J]. Composites Science and Technology, 2018, 168: 203-213.
[53]Zeng Z, Liu M, Xu H, et al. Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites[J]. Carbon, 2017, 121: 490-501.
[54]Chiacchiarelli L M, Rallini M, Monti M, et al. The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring[J]. Composites Science and Technology, 2013, 80: 73-79.
[55]Zeng Z, Liu M, Xu H, et al. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: From structural vibration to ultrasonic waves[J]. Smart Materials and Structures, 2016, 25(6): 065005.
[56]Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501.
[57]Liao Y, Zhou P, Pan D, et al. An ultra-thin printable nanocomposite sensor network for structural health monitoring[J]. Structural Health Monitoring, 2021, 20(3): 894-903.
[58]Duan F, Liao Y, Zeng Z, et al. Graphene-based nanocomposite strain sensor response to ultrasonic guided waves[J]. Composites Science and Technology, 2019, 174: 42-49.
[59]Zhou P, Liao Y, Li Y, et al. An inkjet-printed, flexible, ultra-broadband nanocomposite film sensor for in-situ acquisition of high-frequency dynamic strains[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105554.
[60]Su Y, Yang J, Liao Y, et al. An implantable, compatible and networkable nanocomposite piezoresistive sensor for in situ acquisition of dynamic responses of CFRPs[J]. Composites Science and Technology, 2021, 208: 108747.
[61]Garboczi E J, Snyder K A, Douglas J F, et al. Geometrical percolation threshold of overlapping ellipsoids[J]. Physical review E, 1995, 52(1): 819.
[62]Hwang S H, Park H W, Park Y B. Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets[J]. Smart materials and structures, 2012, 22(1): 015013.
[63]Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of applied physics, 1963, 34(6): 1793-1803.
[64]Li Y, Wang K, Su Z. Dispersed sensing networks in nano-engineered polymer composites: From static strain measurement to ultrasonic wave acquisition[J]. Sensors, 2018, 18(5): 1398.
[65]Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites[J]. Macromolecules, 2010, 43(16): 6515-6530.
[66]Bhattacharya M. Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016, 9(4): 262.

所在学位评定分委会
材料与化工
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545027
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
张竞争. 含有传感单元的预浸料设计与制造[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132685-张竞争-系统设计与智能(8484KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张竞争]的文章
百度学术
百度学术中相似的文章
[张竞争]的文章
必应学术
必应学术中相似的文章
[张竞争]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。