中文版 | English
题名

机器人辅助连续纤维复材增材制造系统开发

其他题名
Development of the Robot-assisted Continuous Fiber-reinforced Polymer Additive Manufacturing System
姓名
姓名拼音
ZHANG Guoquan
学号
12032673
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
熊异
导师单位
系统设计与智能制造学院
外机构导师单位
南方科技大学
论文答辩日期
2023-05-18
论文提交日期
2023-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

面向高性能工程材料的增材制造工艺的快速发展使得增材制造逐渐由一项快速成型技术转向一种可行的生产选择。特别是新兴的连续纤维增强复合材料增材制造工艺(CFRP-AM)由于其具有一体化快速成型高性能、轻量化结构的能力,受到了研究者们的广泛关注。然而,现有CFRP-AM系统广泛采用的三自由度运动平台阻碍了研究者们探索和利用网格加强的壳结构等一类具有非平面特征的先进结构。

本课题开发了一套机器人辅助的保形CFRP-AM制造系统,借助其多自由度运动能够直接成型非平面特征。该系统由一台六轴机器人、一个纤维-树脂共挤出打印末端和控制系统组成,通过所提出的设计-制造工作流程运行。系统工作流程包括三个主要步骤:(1)系统标定,(2)保形三维路径生成和(3)工艺执行。由不同工艺制造样件的压缩实验结果表明保形CFRP-AM工艺及其工艺流程可以显著提高制件的力学性能。

此外,由于纤维铺排路径设计对制件性能的显著影响,保形三维路径生成是本课题的主要研究内容之一。面向网格加强的壳结构,本课题提出了基于曲面映射的保形路径规划和基于图论的连续路径规划方法。其中,基于计算共形几何理论,保形三维路径规划针对曲面壳和加强筋结构的不同填充需求将对应三维曲面以不同方式映射到二维平面,进而生成多样化的纤维填充图案。基于图论的连续路径规划则面向具有格栅设计的加强筋结构,该方法将格栅结构描述为基于图的数学模型,进而将路径规划转化为特殊的中国邮递员问题,并且首次将CFRP-AM工艺的制造约束添加到路径搜索算法中,生成了具有最小化的纤维剪切频率、打印时间和总纤维路径转角的优化路径。最后,通过针对性的实验设计验证了所提出方法的有效性。具体来说,实验结果表明了多样化的纤维铺排设计可以广泛扩展CFRP-AM工艺对结构性能的调控范围,而考虑特定制造约束的算法优化可以显著提高制造效率和质量。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LIU G, XIONG Y, ZHOU L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J/OL]. Composites Communications, 2021, 27: 100907
[2021-11-20]. DOI:10.1016/J.COCO.2021.100907.
[2] SHANMUGAM V, DAS O, BABU K, et al. Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials[J/OL]. International Journal of Fatigue, 2021, 143: 106007
[2021-11-20]. DOI:10.1016/J.IJFATIGUE.2020.106007.
[3] XU X, ROBLES-MARTINEZ P, MADLA C M, et al. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction[J/OL]. Additive Manufacturing, 2020, 33: 101071
[2022-06-01]. DOI:10.1016/J.ADDMA.2020.101071.
[4] BAYAT M, THANKI A, MOHANTY S, et al. Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation[J/OL]. Additive Manufacturing, 2019, 30: 100835
[2022-06-01]. DOI:10.1016/J.ADDMA.2019.100835.
[5] GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J/OL]. Advanced Materials Technologies, 2019, 4(1): 1800271
[2021-11-20]. https://onlinelibrary.wiley.com/doi/full/10.1002/admt.201800271. DOI:10.1002/ADMT.201800271.
[6] XIONG Y, TANG Y, KIM S, et al. Human-machine collaborative additive manufacturing[J/OL]. Journal of Manufacturing Systems, 2023, 66: 82-91
[2023-02-28]. DOI:10.1016/J.JMSY.2022.12.004.
[7] 夏正付. 纤维增强复合材料增材制造技术研究[D]. 哈尔滨工业大学, 2017.
[8] 杨冬阳. 编织纤维增强复合材料在复杂应力状态下的力学行为表征[D]. 清华大学, 2017.
[9] YANG G, PARK M, PARK S J. Recent progresses of fabrication and characterization of fibers-reinforced composites: A review[J/OL]. Composites Communications, 2019, 14: 34-42
[2022-06-01]. DOI:10.1016/J.COCO.2019.05.004.
[10] VAN DE WERKEN N, TEKINALP H, KHANBOLOUKI P, et al. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective[J/OL]. Additive Manufacturing, 2020, 31: 100962
[2022-07-20]. DOI:10.1016/J.ADDMA.2019.100962.
[11] DUTRA T A, FERREIRA R T L, RESENDE H B, et al. Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic[J/OL]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(3): 1-15
[2021-11-20]. https://link.springer.com/article/10.1007/s40430-019-1630-1. DOI:10.1007/S40430-019-1630-1/FIGURES/16.
[12] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J/OL]. Composites Part B: Engineering, 2018, 143: 172-196
[2021-12-16]. DOI:10.1016/J.COMPOSITESB.2018.02.012.
[13] PARANDOUSH P, LIN D. A review on additive manufacturing of polymer-fiber composites[J/OL]. Composite Structures, 2017, 182: 36-53
[2022-01-18]. DOI:10.1016/J.COMPSTRUCT.2017.08.088.
[14] NAGESHA B K, DHINAKARAN V, VARSHA SHREE M, et al. Review on characterization and impacts of the lattice structure in additive manufacturing[J/OL]. Materials Today: Proceedings, 2020, 21: 916-919
[2021-11-20]. DOI:10.1016/J.MATPR.2019.08.158.
[15] LI N, LI Y, LIU S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J/OL]. Journal of Materials Processing Technology, 2016, 238: 218-225
[2022-06-01]. DOI:10.1016/J.JMATPROTEC.2016.07.025.
[16] ZHANG R, LV J, LI J, et al. A graph-based reinforcement learning-enabled approach for adaptive human-robot collaborative assembly operations[J/OL]. Journal of Manufacturing Systems, 2022, 63: 491-503
[2023-01-31]. DOI:10.1016/J.JMSY.2022.05.006.
[17] DIKSHIT V, GOH G D, NAGALINGAM A P, et al. Recent progress in 3D printing of fiber-reinforced composite and nanocomposites[J/OL]. Fiber-Reinforced Nanocomposites: Fundamentals and Applications, 2020: 371-394
[2023-02-28]. DOI:10.1016/B978-0-12-819904-6.00017-7.
[18] LI J, DURANDET Y, HUANG X, et al. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities[J/OL]. Journal of Materials Science & Technology, 2022, 119: 219-244
[2023-02-28]. DOI:10.1016/J.JMST.2021.11.063.
[19] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J/OL]. Scientific Reports 2016 6:1, 2016, 6(1): 1-7
[2021-11-20]. https://www.nature.com/articles/srep23058. DOI:10.1038/srep23058.
[20] QUAN Z, WU A, KEEFE M, et al. Additive manufacturing of multi-directional preforms for composites: Opportunities and challenges[J/OL]. Materials Today, 2015, 18(9): 503-512
[2022-06-01]. DOI:10.1016/J.MATTOD.2015.05.001.
[21] FANG G, ZHANG T, ZHONG S, et al. Reinforced FDM[J/OL]. ACM Transactions on Graphics (TOG), 2020, 39(6)
[2022-12-07]. https://dl.acm.org/doi/10.1145/3414685.3417834. DOI:10.1145/3414685.3417834.
[22] BADARINATH R, PRABHU V. Integration and evaluation of robotic fused filament fabrication system[J/OL]. Additive Manufacturing, 2021, 41: 101951
[2022-10-09]. DOI:10.1016/J.ADDMA.2021.101951.
[23] TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J/OL]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 198-205
[2022-06-01]. DOI:10.1016/J.COMPOSITESA.2016.05.032.
[24] HEIDARI-RARANI M, RAFIEE-AFARANI M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J/OL]. Composites Part B: Engineering, 2019, 175: 107147
[2021-11-20]. DOI:10.1016/J.COMPOSITESB.2019.107147.
[25] ALAM M S, KAUR J, KHAIRA H, et al. Extrusion and Extruded Products: Changes in quality attributes as affected by extrusion process parameters: A review[J/OL]. https://doi.org/10.1080/10408398.2013.779568, 2015, 56(3): 445-473
[2023-02-28]. https://www.tandfonline.com/doi/abs/10.1080/10408398.2013.779568. DOI:10.1080/10408398.2013.779568.
[26] PANDELIDI C, BATEMAN S, PIEGERT S, et al. The technology of continuous fibre-reinforced polymers: A review on extrusion additive manufacturing methods[J/OL]. The International Journal of Advanced Manufacturing Technology 2021 113:11, 2021, 113(11): 3057-3077
[2023-02-28]. https://link.springer.com/article/10.1007/s00170-021-06837-6. DOI:10.1007/S00170-021-06837-6.
[27] ZHUO P, LI S, ASHCROFT I A, et al. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook[J/OL]. Composites Part B: Engineering, 2021, 224: 109143
[2023-02-28]. DOI:10.1016/J.COMPOSITESB.2021.109143.
[28] IBRAHIM Y, ELKHOLY A, SCHOFIELD J S, et al. Effective thermal conductivity of 3D-printed continuous fiber polymer composites[J/OL]. https://doi.org/10.1080/20550340.2019.1710023, 2020, 6(1): 17-28
[2023-02-28]. https://www.tandfonline.com/doi/abs/10.1080/20550340.2019.1710023. DOI:10.1080/20550340.2019.1710023.
[29] CHEN A Y, BAEHR S, TURNER A, et al. Carbon-fiber reinforced polymer composites: A comparison of manufacturing methods on mechanical properties[J/OL]. International Journal of Lightweight Materials and Manufacture, 2021, 4(4): 468-479
[2023-02-28]. DOI:10.1016/J.IJLMM.2021.04.001.
[30] QIAO J, LI Y, LI L. Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic (FRTP) composites[J/OL]. Additive Manufacturing, 2019, 30: 100926
[2022-06-01]. DOI:10.1016/J.ADDMA.2019.100926.
[31] 李英睿. 纤维增强复合材料超声辅助增材制造技术研究[D]. 哈尔滨工业大学, 2018.
[32] KASMI S, GINOUX G, ALLAOUI S, et al. Investigation of 3D printing strategy on the mechanical performance of coextruded continuous carbon fiber reinforced PETG[J/OL]. Journal of Applied Polymer Science, 2021, 138(37): 50955
[2023-02-28]. https://onlinelibrary.wiley.com/doi/full/10.1002/app.50955. DOI:10.1002/APP.50955.
[33] BALIKOĞLU F, DEMIRCIOĞLU T K, İNAL O, et al. Compression after low velocity impact tests of marine sandwich composites: Effect of intermediate wooden layers[J/OL]. Composite Structures, 2018, 183(1): 636-642
[2022-06-01]. DOI:10.1016/J.COMPSTRUCT.2017.08.003.
[34] COMMINAL R, SERDECZNY M P, PEDERSEN D B, et al. Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing[J/OL]. Additive Manufacturing, 2018, 20: 68-76
[2022-06-01]. DOI:10.1016/J.ADDMA.2017.12.013.
[35] 蒋维. 连续碳纤维增强热塑性复合材料制备与性能研究[D]. 华中科技大学, 2018.
[36] UEDA M, KISHIMOTO S, YAMAWAKI M, et al. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic[J/OL]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 105985
[2022-06-01]. DOI:10.1016/J.COMPOSITESA.2020.105985.
[37] O’CONNOR H J, DOWLING D P. Low-pressure additive manufacturing of continuous fiber-reinforced polymer composites[J/OL]. Polymer Composites, 2019, 40(11): 4329-4339
[2022-07-20]. https://onlinelibrary.wiley.com/doi/full/10.1002/pc.25294. DOI:10.1002/PC.25294.
[38] ALHIJAILY A, KILIC Z M, BARTOLO A N P. Teams of robots in additive manufacturing: a review[J/OL]. https://doi.org/10.1080/17452759.2022.2162929, 2023, 18(1)
[2023-02-01]. https://www.tandfonline.com/doi/abs/10.1080/17452759.2022.2162929. DOI:10.1080/17452759.2022.2162929.
[39] ZHANG T, CHEN X, FANG G, et al. Singularity-aware motion planning for multi-axis additive manufacturing[J/OL]. IEEE Robotics and Automation Letters, 2021, 6(4): 6172-6179
[2023-02-28]. DOI:10.1109/LRA.2021.3091109.
[40] CHEN X, FANG G, LIAO W H, et al. Field-based toolpath generation for 3D printing continuous fibre reinforced thermoplastic composites[J/OL]. Additive Manufacturing, 2022, 49
[2022-06-29]. DOI:10.1016/J.ADDMA.2021.102470.
[41] HONG F, HODGES S, MYANT C, et al. Open5x: Accessible 5-axis 3D printing and conformal slicing[J/OL]. Conference on Human Factors in Computing Systems - Proceedings, 2022
[2023-02-28]. https://dl.acm.org/doi/10.1145/3491101.3519782. DOI:10.1145/3491101.3519782.
[42] SHEMBEKAR A v., YOON Y J, KANYUCK A, et al. Generating robot trajectories for conformal three-dimensional printing using nonplanar layers[J/OL]. Journal of Computing and Information Science in Engineering, 2019, 19(3)
[2022-06-01]. https://asmedigitalcollection.asme.org/computingengineering/article/19/3/031011/726284/Generating-Robot-Trajectories-for-Conformal-Three. DOI:10.1115/1.4043013/726284.
[43] DAI C, LEFEBVRE S, YU K M, et al. Planning jerk-optimized trajectory with discrete time constraints for redundant robots[J/OL]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4): 1711-1724
[2023-02-28]. DOI:10.1109/TASE.2020.2974771.
[44] BHATT P M, MCNULTY Z, GUPTA S K. Robot trajectory generation for multi-axis wire arc additive manufacturing[J/OL]. Proceedings of ASME 2022 17th International Manufacturing Science and Engineering Conference, MSEC 2022, 2022, 1
[2023-02-28]. /MSEC/proceedings-abstract/MSEC2022/85802/1146920. DOI:10.1115/MSEC2022-85701.
[45] KIPPING J, SCHÜPPSTUHL T. Load-oriented nonplanar additive manufacturing method for optimized continuous carbon fiber parts[J/OL]. Materials, 2023, 16(3): 998
[2023-02-28]. https://www.mdpi.com/1996-1944/16/3/998/htm. DOI:10.3390/MA16030998/S1.
[46] DÖRFLER K, DIELEMANS G, LACHMAYER L, et al. Additive manufacturing using mobile robots: Opportunities and challenges for building construction[J/OL]. Cement and Concrete Research, 2022, 158: 106772
[2023-02-28]. DOI:10.1016/J.CEMCONRES.2022.106772.
[47] ZHANG K, CHERMPRAYONG P, XIAO F, et al. Aerial additive manufacturing with multiple autonomous robots[J/OL]. Nature 2022 609:7928, 2022, 609(7928): 709-717
[2023-02-28]. https://www.nature.com/articles/s41586-022-04988-4. DOI:10.1038/s41586-022-04988-4.
[48] ZHAO D, LIU T, ZHANG M, et al. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures[J/OL]. Smart Materials and Structures, 2012, 21(11): 115008
[2023-01-29]. https://iopscience.iop.org/article/10.1088/0964-1726/21/11/115008. DOI:10.1088/0964-1726/21/11/115008.
[49] LU L, HOU J, YUAN S, et al. Deep learning-assisted real-time defect detection and closed-loop adjustment for additive manufacturing of continuous fiber-reinforced polymer composites[J/OL]. Robotics and Computer-Integrated Manufacturing, 2023, 79: 102431
[2023-02-28]. DOI:10.1016/J.RCIM.2022.102431.
[50] SIDERIS I, CRIVELLI F, BAMBACH M. GPyro: uncertainty-aware temperature predictions for additive manufacturing[J/OL]. Journal of Intelligent Manufacturing, 2023, 34(1): 243-259
[2023-02-28]. https://link.springer.com/article/10.1007/s10845-022-02019-7. DOI:10.1007/S10845-022-02019-7/FIGURES/9.
[51] ZHAO H, GU F, HUANG Q X, et al. Connected fermat spirals for layered fabrication[J/OL]. ACM Transactions on Graphics (TOG), 2016, 35(4)
[2023-02-28]. https://dl.acm.org/doi/10.1145/2897824.2925958. DOI:10.1145/2897824.2925958.
[52] ZHANG H, CHEN J, YANG D. Fibre misalignment and breakage in 3D printing of continuous carbon fibre reinforced thermoplastic composites[J/OL]. Additive Manufacturing, 2021, 38: 101775
[2021-11-20]. DOI:10.1016/J.ADDMA.2020.101775.
[53] TAN W S, JUHARI M A bin, SHI Q, et al. Development of a new additive manufacturing platform for direct freeform 3D printing of intrinsically curved flexible membranes[J/OL]. Additive Manufacturing, 2020, 36: 101563
[2022-07-03]. DOI:10.1016/J.ADDMA.2020.101563.
[54] XIONG Y, PARK S I, PADMANATHAN S, et al. Process planning for adaptive contour parallel toolpath in additive manufacturing with variable bead width[J/OL]. International Journal of Advanced Manufacturing Technology, 2019, 105(10): 4159-4170
[2021-11-20]. https://link.springer.com/article/10.1007/s00170-019-03954-1. DOI:10.1007/S00170-019-03954-1/FIGURES/13.
[55] XU K, LI Y, CHEN L, et al. Curved layer based process planning for multi-axis volume printing of freeform parts[J/OL]. Computer-Aided Design, 2019, 114: 51-63
[2022-07-03]. DOI:10.1016/J.CAD.2019.05.007.
[56] 段尊义. 纤维增强复合材料框架结构拓扑与纤维铺角一体化优化设计[D]. 大连理工大学, 2016.
[57] YAMANAKA Y, TODOROKI A, UEDA M, et al. Fiber line optimization in single ply for 3D printed composites[J/OL]. Open Journal of Composite Materials, 2016, 6(4): 121-131
[2023-02-28]. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=71164. DOI:10.4236/OJCM.2016.64012.
[58] SUGIYAMA K, MATSUZAKI R, MALAKHOV A v., et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J/OL]. Composites Science and Technology, 2020, 186: 107905
[2023-02-28]. DOI:10.1016/J.COMPSCITECH.2019.107905.
[59] HOU Z, TIAN X, ZHANG J, et al. Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites[J/OL]. Composites Science and Technology, 2021, 201: 108502
[2023-02-28]. DOI:10.1016/J.COMPSCITECH.2020.108502.
[60] SUZUKI T, FUKUSHIGE S, TSUNORI M. Load path visualization and fiber trajectory optimization for additive manufacturing of composites[J/OL]. Additive Manufacturing, 2020, 31: 100942
[2023-02-28]. DOI:10.1016/J.ADDMA.2019.100942.
[61] DONG K, KE H, PANAHI-SARMAD M, et al. Mechanical properties and shape memory effect of 4D printed cellular structure composite with a novel continuous fiber-reinforced printing path[J/OL]. Materials & Design, 2021, 198: 109303
[2021-11-21]. DOI:10.1016/J.MATDES.2020.109303.
[62] CHOI P T, LUI L M. Fast Disk Conformal Parameterization of Simply-Connected Open Surfaces[J/OL]. Journal of Scientific Computing, 2015, 65(3): 1065-1090
[2022-09-04]. https://link.springer.com/article/10.1007/s10915-015-9998-2. DOI:10.1007/S10915-015-9998-2/FIGURES/13.
[63] EHSANI A, DALIR H. Multi-objective optimization of composite angle grid plates for maximum buckling load and minimum weight using genetic algorithms and neural networks[J/OL]. Composite Structures, 2019, 229: 111450
[2022-11-11]. DOI:10.1016/J.COMPSTRUCT.2019.111450.
[64] MAES V K, PAVLOV L, SIMONIAN S M (Samo). An efficient semi-automated optimisation approach for (grid-stiffened) composite structures: Application to Ariane 6 Interstage[J/OL]. Composite Structures, 2019, 209: 1042-1049
[2022-07-03]. DOI:10.1016/J.COMPSTRUCT.2016.02.082.
[65] GU D X, LUO F, YAU S T. Fundamentals of computational conformal geometry[J/OL]. Mathematics in Computer Science 2011 4:4, 2011, 4(4): 389-429
[2022-08-31]. https://link.springer.com/article/10.1007/s11786-011-0065-6. DOI:10.1007/S11786-011-0065-6.
[66] ZHOU Y, GAO L, LI H. Graded infill design within free-form surfaces by conformal mapping[J/OL]. International Journal of Mechanical Sciences, 2022, 224: 107307
[2022-08-31]. DOI:10.1016/J.IJMECSCI.2022.107307.
[67] GU X, WANG Y, CHAN T F, et al. Genus zero surface conformal mapping and its application to brain surface mapping[J/OL]. IEEE Transactions on Medical Imaging, 2004, 23(8): 949-958
[2022-09-01]. DOI:10.1109/TMI.2004.831226.
[68] KHAMAYSEH A, MASTIN C W. Computational conformal mapping for surface grid generation[J/OL]. Journal of Computational Physics, 1996, 123(2): 394-401
[2022-08-31]. DOI:10.1006/JCPH.1996.0032.
[69] KONAKOVIĆ M, CRANE K, DENG B, et al. Beyond developable[J/OL]. ACM Transactions on Graphics (TOG), 2016, 35(4)
[2022-08-31]. https://dl.acm.org/doi/10.1145/2897824.2925944. DOI:10.1145/2897824.2925944.
[70] LIU Z, XIA L, XIA Q, et al. Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations[J/OL]. Structural and Multidisciplinary Optimization, 2020, 61(6): 2227-2235
[2021-11-20]. https://link.springer.com/article/10.1007/s00158-020-02497-4. DOI:10.1007/S00158-020-02497-4/TABLES/2.

所在学位评定分委会
力学
国内图书分类号
TH164
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545029
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
张国权. 机器人辅助连续纤维复材增材制造系统开发[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032673-张国权-系统设计与智能(7256KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张国权]的文章
百度学术
百度学术中相似的文章
[张国权]的文章
必应学术
必应学术中相似的文章
[张国权]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。