中文版 | English
题名

基于六方氮化硼的锂电池导热性能研究

其他题名
A STUDY ON THE THERMAL CONDUCTIVITY OF LITHIUM BATTERY BASED ON HEXAGONAL BORON NITRIDE
姓名
姓名拼音
XU Tongle
学号
12132019
学位类型
硕士
学位专业
085600
学科门类/专业学位类别
08 工学
导师
徐洪礼
导师单位
创新创业学院
论文答辩日期
2023-05-19
论文提交日期
2023-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  锂离子电池相比于其他电池具有更高的能量密度和长循环寿命,被广泛应用 于各种领域。但近年来锂离子电池自燃等安全问题频发,引发了人们对锂离子电池热失控相关的研究。在锂离子电池中,控制温度最简单有效的方法就是增强电池内部的热导率,使得内部的热量可以及时传导出去,降低电池内部的热量积累。本论文为解决该问题,拟通过添加导热填料的方式来增强电池内部热导率,导热填料选取兼备提高电池体系热导率与优化体系电化学性能的六方氮化硼(HBN)颗粒。具体研究内容如下:
(1) 在复合固态电解质体系中,向聚乙烯醇接枝聚己内酯(PVA-g-PCL)体系中添加硅烷偶联剂改性后的 HBNHBN-NH2)颗粒,通过优化 HBN-NH2 的添加量,得到热导率与电化学性能均较为优异的复合固态电解质。在 50 ℃ 下,添加了5 wt% HBN-NH2 的电解质离子电导率为 6.98×10−4 S/cm,电化学稳定窗口可达 4.31 V。在 0.1 mA/cm2 电流密度下,该电解质的 Li/Li 电池可稳定循环 2000 h以上。以该电解质组装的 LiFePO4/CPE/Li 电池在 0.1 C 倍率下首圈放电比容量为151.5 mAh/g,循环第 150 圈后,容量保持率为 87.3%。在导热性能方面,未添加HBN-NH2 的电解质温度从 30 ℃ 升高到 55 ℃ 所需时间为 12.5 s,添加了 5 wt% HBN-NH2 的电解质所需时间为 9.6 s,未添加 HBN-NH2 的电解质温度从 50 ℃ 降低至 35 ℃ 所需时间为 4.16 min, 添加了 5 wt% HBN-NH2 的电解质所需时间为 2.49 min
(2) 在硅负极体系中,将导热填料 HBN 加入至 Si622 Si811 极片(硅粉、粘 结剂和导电剂质量比分别为 622 811)中,其电化学性能与热导率均有显著提升。添加了 10 wt% HBN Si622 极片所组装的在电池在 0.1 C 倍率下首圈放电比容量为 2758 mAh/g,循环 50 圈后,该极片的放电比容量降为 2082 mAh/g。添加了 10 wt% HBN Si811 极片所组装的在电池在 0.1 C 倍率下首圈放电比容量为3070 mAh/g,循环 50 圈后,该极片的放电比容量降为 2408 mAh/g。在导热性能方面,添加 10 wt% 的极片与不添加的极片相比,热导率分别由 3.91 W/mKSi622)与 3.81 W/mKSi811)升高至 4.01 W/mKSi622)与 3.97 W/mKSi811)。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.

[2] 王鹏博, 郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(04): 283-289.

[3] FENG X, REN D, HE X, et al. Mitigating Thermal Runaway of Lithium-Ion Batteries[J]. Joule,2020, 4(4): 743-770.

[4] BöRGER A, MERTENS J, WENZL H. Thermal runaway and thermal runaway propagation inbatteries: What do we talk about?[J]. Journal of Energy Storage, 2019, 24: 100649.

[5] KAPP E A, WROTH D S, CHAPIN J T. Analysis of Thermal Runaway Incidents InvolvingLithium Batteries in U.S. Commercial Aviation[J]. Transportation Research Record, 2020, 2674(11): 584-592.

[6] XU S, HU L. Towards a high-performance garnet-based solid-state Li metal battery: A per￾spective on recent advances[J]. Journal Of Power Sources, 2020, 472: 228571.

[7] CUI Y, MAHMOUD M M, ROHDE M, et al. Thermal and ionic conductivity studies of lithiumaluminum germanium phosphate solid-state electrolyte[J]. Solid State Ionics, 2016, 289: 125-132.

[8] MENG H, YU X, FENG H, et al. Superior thermal conductivity of poly (ethylene oxide) forsolid-state electrolytes: A molecular dynamics study[J]. International Journal Of Heat AndMass Transfer, 2019, 137: 1241-1246.

[9] WEI X, MA R, LUO T. Thermal Conductivity of Polyelectrolytes with Different Counterions[J]. Journal of Physical Chemistry C, 2020, 124(8): 4483-4488.

[10] DU A, LI H, CHEN X, et al. Recent Research Progress of Silicon-Based Anode Materials forLithium-Ion Batteries[J]. ChemistrySelect, 2022, 7(19): e202201269.

[11] XIAO Z, WANG C, SONG L, et al. Research progress of nano-silicon-based materials andsilicon-carbon composite anode materials for lithium-ion batteries[J]. Journal Of Solid StateElectrochemistry, 2022, 26(5): 1125-1136.

[12] HE S, HABTE B T, JIANG F. LBM prediction of effective thermal conductivity of lithium-ionbattery graphite anode[J]. International Communications In Heat And Mass Transfer, 2017, 82:1-8.

[13] 郝晓光. 锂离子电池三元复合正极材料的改进与性能研究[D]. 重庆大学, 2009.

[14] GE M, CAO C, BIESOLD G M, et al. Recent Advances in Silicon-Based Electrodes: FromFundamental Research toward Practical Applications[J]. Advanced Materials, 2021, 33(16):2004577.

[15] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术,2013, 2(04): 331-341.

[16] 毕志杰, 赵宁, 石川, 等. 固态锂电池界面问题的研究进展[J]. 电源技术, 2019, 43(4): 543-549.65参考文献

[17] RANDAU S, WEBER D A, KöTZ O, et al. Benchmarking the performance of all-solid-statelithium batteries[J]. Nature Energy, 2020, 5(3): 259-270.

[18] MA M, ZHANG M, JIANG B, et al. A review of all-solid-state electrolytes for lithium batteries:high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces[J].Materials Chemistry Frontiers, 2023, 7: 1268-1297.

[19] LUO S, LIU X, GAO L, et al. A review on modified polymer composite electrolytes for solid￾state lithium batteries[J]. Sustainable Energy & Fuels, 2022, 6: 5019-5044.

[20] LIANG H, WANG L, WANG A, et al. Tailoring Practically Accessible Polymer/InorganicComposite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review[J]. Nano-MicroLetters, 2023, 15(1): 42.

[21] PANG Y, PAN J, YANG J, et al. Electrolyte/Electrode Interfaces in All-Solid-State LithiumBatteries: A Review[J]. Electrochemical Energy Reviews, 2021, 4(2): 169-193.

[22] MENG H, YU X, FENG H, et al. Superior thermal conductivity of poly (ethylene oxide) forsolid-state electrolytes: A molecular dynamics study[J]. International Journal Of Heat AndMass Transfer, 2019, 137: 1241-1246.

[23] WU C W, REN X, ZHOU W X, et al. Thermal stability and thermal conductivity of solidelectrolytes[J]. APL Materials, 2022, 10(4): 040902.

[24] ZHANG L, ZHU C, YU S, et al. Status and challenges facing representative anode materialsfor rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294.

[25] KIM Y Y, LEE J H, KIM H J. Nanoporous silicon flakes as anode active material for lithium-ionbatteries[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 85: 223-226.

[26] DU A, LI H, CHEN X, et al. Recent Research Progress of Silicon-Based Anode Materials forLithium-Ion Batteries[J]. ChemistrySelect, 2022, 7(19): e202201269.

[27] FENG Z Y, PENG W J, WANG Z X, et al. Review of silicon-based alloys for lithium-ionbattery anodes[J]. International Journal Of Minerals Metallurgy And Materials, 2021, 28(10):1549-1564.

[28] GAO Y, ZHOU Y, ZHANG X, et al. Extremely Low Thermal Conductivity of PolycrystallineSilicene[J]. Journal of Physical Chemistry C, 2018, 122(16): 9220-9228.

[29] CHENG X, LIANG X. Discussion on the analogy between heat and electric conductions[J].International Journal Of Heat And Mass Transfer, 2019, 131: 709-712.

[30] KANTHARAJ R, MARCONNET A M. Heat Generation and Thermal Transport in Lithium￾Ion Batteries: A Scale-Bridging Perspective[J]. Nanoscale And Microscale ThermophysicalEngineering, 2019, 23(2): 128-156.

[31] GAITONDE A, NIMMAGADDA A, MARCONNET A. Measurement of interfacial thermalconductance in Lithium ion batteries[J]. Journal of Power Sources, 2017, 343: 431-436.

[32] HUANG Z, YU Y, DUAN Q, et al. Heating position effect on internal thermal runaway prop￾agation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778.

[33] WANG Q, JIANG B, LI B, et al. A critical review of thermal management models and solu￾tions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable andSustainable Energy Reviews, 2016, 64: 106-128.66参考文献

[34] LIU J, CAO D, YAO H, et al. Hexagonal Boron Nitride-Coated Polyimide Ion Track EtchedSeparator with Enhanced Thermal Conductivity and High-Temperature Stability for Lithium￾Ion Batteries[J]. Acs Applied Energy Materials, 2022, 5(7): 8639-8649.

[35] KHAN W S, ASMATULU R, RODRIGUEZ V, et al. Enhancing thermal and ionic conductiv￾ities of electrospun PAN and PMMA nanofibers by graphene nanoflake additions for battery￾separator applications[J]. International Journal Of Energy Research, 2014, 38(15): 2044-2051.

[36] DE MORAES A C M, HYUN W J, LUU N S, et al. Phase-Inversion Polymer CompositeSeparators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-IonBatteries[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8107-8114.

[37] BATES A M, PREGER Y, TORRES-CASTRO L, et al. Are solid-state batteries safer thanlithium-ion batteries?[J]. Joule, 2022, 6(4): 742-755.

[38] CHENG M, RAMASUBRAMANIAN A, RASUL M G, et al. Direct Ink Writing of PolymerComposite Electrolytes with Enhanced Thermal Conductivities[J]. Advanced Functional Ma￾terials, 2021, 31(4): 2006683.

[39] VISHWAKARMA V, JAIN A. Enhancement of thermal transport in Gel Polymer Electrolyteswith embedded BN/Al2O3 nano- and micro-particles[J]. Journal of Power Sources, 2017, 362:219-227.

[40] GAN H, YUAN J, ZHANG Y, et al. Electrospun Composite Gel Polymer Electrolytes with HighThermal Conductivity toward Wide Temperature Lithium Metal Batteries[J]. ACS AppliedEnergy Materials, 2021, 4(8): 8130-8141.

[41] ZHAO B, JIANG L, ZENG X, et al. A highly thermally conductive electrode for lithium ionbatteries[J]. Journal of Materials Chemistry A, 2016, 4: 14595-14604.

[42] ZHAO T, SHE S, JI X, et al. Expanded graphite embedded with aluminum nanoparticles assuperior thermal conductivity anodes for high-performance lithium-ion batteries[J]. ScientificReports, 2016, 6(1): 33833.

[43] TAO J, LU L, WU B, et al. Dramatic improvement enabled by incorporating thermal conductiveTiN into Si-based anodes for lithium ion batteries[J]. Energy Storage Materials, 2020, 29: 367-376.

[44] 孙启浩, 文光华, 朱先飞, 等. 保护渣固态渣膜传导及辐射耦合传热特性研究[J]. 连铸,2017, 42(1): 35-40.

[45] 梁伟, 刘振祺, 麦汉超, 等. 基于辐射和传导耦合的蜂窝夹芯结构传热性能分析[J]. 强度与环境, 2008, 35(4): 31-36.

[46] MA H, MA Y, TIAN Z. Simple Theoretical Model for Thermal Conductivity of CrystallinePolymers[J]. ACS Applied Polymer Materials, 2019, 1(10): 2566-2570.

[47] ZHAO W, HU R. Toward high-thermal-conductivity polymers[J]. Matter, 2021, 4(12): 3799-3801.

[48] XU X, CHEN J, ZHOU J, et al. Thermal Conductivity of Polymers and Their Nanocomposites[J]. Advanced Materials, 2018, 30(17): 1705544.

[49] GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers andpolymer composites: A review[J]. Composites Science and Technology, 2020, 193: 108134.67参考文献

[50] KAUSAR A. Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticlenanocomposite: a review[J]. Polymer-plastics Technology And Materials, 2020, 59(8): 895-909.

[51] LIANG J Z, ZHU B. Estimation of thermal conductivity of polymer multiphase composites[J].Polymer Engineering And Science, 2017, 57(9): 965-972.

[52] HUANG X, ZHI C, LIN Y, et al. Thermal conductivity of graphene-based polymer nanocom￾posites[J]. Materials Science & Engineering R-reports, 2020, 142: 100577.

[53] KIM S J, HONG C, JANG K S. Theoretical analysis and development of thermally conductivepolymer composites[J]. Polymer, 2019, 176: 110-117.

[54] WANG F, SHI W, MAI Y, et al. Effect of Thermal Conductive Fillers on the Flame Retar￾dancy, Thermal Conductivity, and Thermal Behavior of Flame-Retardant and Thermal Con￾ductive Polyamide 6[J]. Materials, 2019, 12(24): 4114.

[55] DIALLO M S, SRINIVASAN S, CHANG B, et al. Effect of metallic nanoparticle fillers on thethermal conductivity of diatomaceous earth[J]. Physics Letters A, 2016, 380(43): 3645-3649.

[56] HEMATH M, MAVINKERE RANGAPPA S, KUSHVAHA V, et al. A comprehensive re￾view on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/i￾norganic fillers reinforced hybrid polymer composites[J]. Polymer Composites, 2020, 41(10):3940-3965.

[57] YIN T, ZHANG W, HE Y, et al. Fabrication of Heterostructured BNNS-g-P4VP-AuNPs Hy￾brid Fillers with Uniform and Dense Au Nanoparticles for Enhancing Thermal Conductivity ofthe Nanofibrillated Cellulose[J]. Macromolecular Materials And Engineering, 2022, 307(10):2200311.

[58] RIVIèRE L, LONJON A, DANTRAS E, et al. Silver fillers aspect ratio influence on electricaland thermal conductivity in PEEK/Ag nanocomposites[J]. European Polymer Journal, 2016,85: 115-125.

[59] YAMAN K, TAGA. Thermal and Electrical Conductivity of Unsaturated Polyester Resin Filledwith Copper Filler Composites[J]. International Journal Of Polymer Science, 2018, 2018:8190190.

[60] HUANG Z, WU W, DRUMMER D, et al. Multi-contact hybrid thermal conductive fillerAl2O3@AgNPs optimized three-dimensional thermal network for flexible thermal interfacematerials[J]. Journal Of Applied Polymer Science, 2021, 138(35): 50889.

[61] GIACOMO R, ANGELO R, LORENZO P, et al. Magnetic-Oriented Nickel Particles andNickel-Coated Carbon Nanotubes: An Efficient Tool for Enhancing Thermal Conductivity ofPDMS Composites[J]. Macromolecular Chemistry And Physics, 2022, 223(22): 2200199.

[62] 田恐虎, 吴阳, 盛绍顶, 等. 聚合物基绝缘导热复合材料中碳系填料的研究进展[J]. 复合材料学报, 2021, 38(4): 1054-1065.

[63] TAKAFUJI M, KAWAMOTO N, HANO N, et al. Spherical filler-promoting thermally conduc￾tive pathway in graphite-containing polymer composites for high heat radiation[J]. Journal OfPolymer Science, 2020, 58(4): 607-615.68参考文献

[64] QU J, FAN L, MUKERABIGWI J F, et al. A silicon rubber composite with enhanced ther￾mal conductivity and mechanical properties based on nanodiamond and boron nitride fillers[J].Polymer Composites, 2021, 42(9): 4390-4396.

[65] NAMASIVAYAM M, SHAPTER J. Factors affecting carbon nanotube fillers towards enhance￾ment of thermal conductivity in polymer nanocomposites: A review[J]. Journal Of CompositeMaterials, 2017, 51(26): 3657-3668.

[66] HUANG X, ZHI C, LIN Y, et al. Thermal conductivity of graphene-based polymer nanocom￾posites[J]. Materials Science & Engineering R-reports, 2020, 142: 100577.

[67] YOON H, MATTEINI P, HWANG B. Review on three-dimensional ceramic filler networkingcomposites for thermal conductive applications[J]. Journal Of Non-crystalline Solids, 2022,576: 121272.

[68] CAI X, LIU Y, YANG T, et al. Matching micro- and nano-boron nitride hybrid fillers for high￾thermal conductive composites[J]. Journal Of Applied Polymer Science, 2021, 138(24): 50575.

[69] KUSUNOSE T, UNO Y, TANAKA Y, et al. Isotropic enhancement of the thermal conductivityof polymer composites by dispersion of equiaxed polyhedral boron nitride fillers[J]. CompositesScience and Technology, 2021, 208: 108770.

[70] YU C, ZHANG J, TIAN W, et al. Polymer composites based on hexagonal boron nitride andtheir application in thermally conductive composites[J]. Rsc Advances, 2018, 8: 21948-21967.

[71] FISCHER A J, ZHONG Y, ZHANG L, et al. Heat propagation in thermally conductive polymersof PA6 and hexagonal boron nitride[J]. Fire and Materials, 2019, 43(8): 928-935.

[72] YEO H, ISLAM A M, YOU N H, et al. Characteristic correlation between liquid crystallineepoxy and alumina filler on thermal conducting properties[J]. Composites Science and Tech￾nology, 2017, 141: 99-105.

[73] AKKOYUN S, AKKOYUN M. Improvement of thermal conductivity of rigid polyurethanefoams with aluminum nitride filler[J]. Cellular Polymers, 2021, 40(2): 87-98.

[74] SHENG C, LIANG K, WU G, et al. Multiscale analysis of the effect of interfacial thermalconductance between fillers and epoxy resin on the effective thermal conductivity of their com￾posites[J]. Diamond and Related Materials, 2022, 130: 109521.

[75] ZHANG F, YE W, ZHOU W, et al. Endowing Thermally Conductive and Electrically InsulatingEpoxy Composites with a Well-Structured Nanofiller Network via Dynamic Transesterification￾Participated Interfacial Welding[J]. Industrial & Engineering Chemistry Research, 2022, 61(9):3320-3328.

[76] SUJKA M. Ultrasonic modification of starch –Impact on granules porosity[J]. UltrasonicsSonochemistry, 2017, 37: 424-429.

[77] THASIRISAP E, VITTAYAKORN N, SEEHARAJ P. Surface modification of TiO2 particleswith the sono-assisted exfoliation method[J]. Ultrasonics Sonochemistry, 2017, 39: 733-740.

[78] HAN X, WU X, DENG Y, et al. Electrocatalysis: Ultrafine Pt Nanoparticle-Decorated Pyrite￾Type CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for OverallWater Splitting[J]. Advanced Energy Materials, 2018, 8(24): 1870110.69参考文献

[79] ZHANG Y, MA M, WANG X, et al. Second-order optical nonlinearity of surface-cappedCdS nanoparticles and effect of surface modification[J]. Journal Of Physics And ChemistryOf Solids, 2003, 64(6): 927-931.

[80] PAN C, KOU K, JIA Q, et al. Improved thermal conductivity and dielectric properties of hB￾N/PTFE composites via surface treatment by silane coupling agent[J]. Composites Part B:Engineering, 2017, 111: 83-90.

[81] SAVIN A V, SAVINA O I. An Effect of Chemical Modification of Surface of Carbon Nanotubeson Their Thermal Conductivity[J]. Physics Of The Solid State, 2019, 61(2): 279-284.

[82] CHEN Y, EVANS J W. Thermal Analysis of Lithium‐Ion Batteries[J]. Journal Of The Electro￾chemical Society, 1996, 143(9): 2708.

[83] BANDHAUER T M, GARIMELLA S, FULLER T F. A Critical Review of Thermal Issues inLithium-Ion Batteries[J]. Journal Of The Electrochemical Society, 2011, 158(3): R1.

[84] LUO W, ZHOU L, FU K, et al. A Thermally Conductive Separator for Stable Li Metal Anodes[J]. Nano Letters, 2015, 15(9): 6149-6154.

[85] LIU Y, QIAO Y, ZHANG Y, et al. 3D printed separator for the thermal management of high￾performance Li metal anodes[J]. Energy Storage Materials, 2018, 12: 197-203.

[86] TUTGUN M S, SINIRLIOGLU D, CELIK S U, et al. Investigation of nanocomposite mem￾branes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boronnitride[J]. Journal Of Polymer Research, 2015, 22(4): 47.

[87] AKEL M, ÜNüGüR ÇELIK S, BOZKURT A, et al. Nano hexagonal boron nitride–Nafioncomposite membranes for proton exchange membrane fuel cells[J]. Polymer Composites, 2016,37(2): 422-428.

[88] KOVTYUKHOVA N I, WANG Y, LV R, et al. Reversible Intercalation of Hexagonal BoronNitride with Brønsted Acids[J]. Journal Of The American Chemical Society, 2013, 135(22):8372-8381.

[89] MOGURAMPELLY S, BORODIN O, GANESAN V. Computer Simulations of Ion Transportin Polymer Electrolyte Membranes[J]. Annual Review of Chemical and Biomolecular Engi￾neering, 2016, 7(1): 349-371.

[90] DEIVANAYAGAM R, CHENG M, WANG M, et al. Composite Polymer Electrolyte for HighlyCyclable Room-Temperature Solid-State Magnesium Batteries[J]. Acs Applied Energy Mate￾rials, 2019, 2(11): 7980-7990.

[91] LIN D, LIU W, LIU Y, et al. High Ionic Conductivity of Composite Solid Polymer Electrolytevia In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)[J]. NanoLetters, 2016, 16(1): 459-465.

[92] DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithiumbatteries[J]. Materials Science & Engineering R-reports, 2019, 136: 27-46.

[93] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid statebatteries[J]. Journal Of Power Sources, 2015, 282: 299-322.

[94] VISHNUGOPI B S, HAO F, VERMA A, et al. Double-Edged Effect of Temperature on LithiumDendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23931-23938.70参考文献

[95] WANG H, ZHU Y, KIM S C, et al. Underpotential lithium plating on graphite anodes causedby temperature heterogeneity[J]. Proceedings of the National Academy of Sciences, 2020, 117(47): 29453-29461.

[96] HAN D, WANG X, ZHOU Y N, et al. A Graphene-Coated Thermal Conductive Separatorto Eliminate the Dendrite-Induced Local Hotspots for Stable Lithium Cycling[J]. AdvancedEnergy Materials, 2022, 12(25): 2201190.

[97] SHEN C, FANG X, GE M, et al. Hierarchical Carbon-Coated Ball-Milled Silicon: Synthesisand Applications in Free-Standing Electrodes and High-Voltage Full Lithium-Ion Batteries[J].ACS Nano, 2018, 12(6): 6280-6291.

[98] XIAO X, ZHOU W, KIM Y, et al. Regulated Breathing Effect of Silicon Negative Electrodefor Dramatically Enhanced Performance of Li-Ion Battery[J]. Advanced Functional Materials,2015, 25(9): 1426-1433.

[99] TAO J, LU L, WU B, et al. Dramatic improvement enabled by incorporating thermal conductiveTiN into Si-based anodes for lithium ion batteries[J]. Energy Storage Materials, 2020, 29: 367-376.

[100] ZHENG J, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layeredstructure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes forlithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(26): 13229-13238.

[101] MOGI R, INABA M, IRIYAMA Y, et al. In Situ Atomic Force Microscopy Study on LithiumDeposition on Nickel Substrates at Elevated Temperatures[J]. Journal Of The ElectrochemicalSociety, 2002, 149(4): A385.

[102] WANG C, ODSTRCIL R, LIU J, et al. Protein-modified SEI formation and evolution in Limetal batteries[J]. Journal of Energy Chemistry, 2022, 73: 248-258.

[103] YOON T, MILIEN M S, PARIMALAM B S, et al. Thermal Decomposition of the Solid Elec trolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries[J]. Chemistry Of Ma terials, 2017, 29(7): 3237-3245.

[104] HARUTA M, OKUBO T, MASUO Y, et al. Temperature effects on SEI formation and cyclabil ity of Si nanoflake powder anode in the presence of SEI-forming additives[J]. ElectrochimicaActa, 2017, 224: 186-193.

所在学位评定分委会
材料与化工
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545035
专题创新创业学院
推荐引用方式
GB/T 7714
徐同乐. 基于六方氮化硼的锂电池导热性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132019-徐同乐-创新创业学院.(53612KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐同乐]的文章
百度学术
百度学术中相似的文章
[徐同乐]的文章
必应学术
必应学术中相似的文章
[徐同乐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。