[1] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
[2] 王鹏博, 郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(04): 283-289.
[3] FENG X, REN D, HE X, et al. Mitigating Thermal Runaway of Lithium-Ion Batteries[J]. Joule,2020, 4(4): 743-770.
[4] BöRGER A, MERTENS J, WENZL H. Thermal runaway and thermal runaway propagation inbatteries: What do we talk about?[J]. Journal of Energy Storage, 2019, 24: 100649.
[5] KAPP E A, WROTH D S, CHAPIN J T. Analysis of Thermal Runaway Incidents InvolvingLithium Batteries in U.S. Commercial Aviation[J]. Transportation Research Record, 2020, 2674(11): 584-592.
[6] XU S, HU L. Towards a high-performance garnet-based solid-state Li metal battery: A perspective on recent advances[J]. Journal Of Power Sources, 2020, 472: 228571.
[7] CUI Y, MAHMOUD M M, ROHDE M, et al. Thermal and ionic conductivity studies of lithiumaluminum germanium phosphate solid-state electrolyte[J]. Solid State Ionics, 2016, 289: 125-132.
[8] MENG H, YU X, FENG H, et al. Superior thermal conductivity of poly (ethylene oxide) forsolid-state electrolytes: A molecular dynamics study[J]. International Journal Of Heat AndMass Transfer, 2019, 137: 1241-1246.
[9] WEI X, MA R, LUO T. Thermal Conductivity of Polyelectrolytes with Different Counterions[J]. Journal of Physical Chemistry C, 2020, 124(8): 4483-4488.
[10] DU A, LI H, CHEN X, et al. Recent Research Progress of Silicon-Based Anode Materials forLithium-Ion Batteries[J]. ChemistrySelect, 2022, 7(19): e202201269.
[11] XIAO Z, WANG C, SONG L, et al. Research progress of nano-silicon-based materials andsilicon-carbon composite anode materials for lithium-ion batteries[J]. Journal Of Solid StateElectrochemistry, 2022, 26(5): 1125-1136.
[12] HE S, HABTE B T, JIANG F. LBM prediction of effective thermal conductivity of lithium-ionbattery graphite anode[J]. International Communications In Heat And Mass Transfer, 2017, 82:1-8.
[13] 郝晓光. 锂离子电池三元复合正极材料的改进与性能研究[D]. 重庆大学, 2009.
[14] GE M, CAO C, BIESOLD G M, et al. Recent Advances in Silicon-Based Electrodes: FromFundamental Research toward Practical Applications[J]. Advanced Materials, 2021, 33(16):2004577.
[15] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术,2013, 2(04): 331-341.
[16] 毕志杰, 赵宁, 石川, 等. 固态锂电池界面问题的研究进展[J]. 电源技术, 2019, 43(4): 543-549.65参考文献
[17] RANDAU S, WEBER D A, KöTZ O, et al. Benchmarking the performance of all-solid-statelithium batteries[J]. Nature Energy, 2020, 5(3): 259-270.
[18] MA M, ZHANG M, JIANG B, et al. A review of all-solid-state electrolytes for lithium batteries:high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces[J].Materials Chemistry Frontiers, 2023, 7: 1268-1297.
[19] LUO S, LIU X, GAO L, et al. A review on modified polymer composite electrolytes for solidstate lithium batteries[J]. Sustainable Energy & Fuels, 2022, 6: 5019-5044.
[20] LIANG H, WANG L, WANG A, et al. Tailoring Practically Accessible Polymer/InorganicComposite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review[J]. Nano-MicroLetters, 2023, 15(1): 42.
[21] PANG Y, PAN J, YANG J, et al. Electrolyte/Electrode Interfaces in All-Solid-State LithiumBatteries: A Review[J]. Electrochemical Energy Reviews, 2021, 4(2): 169-193.
[22] MENG H, YU X, FENG H, et al. Superior thermal conductivity of poly (ethylene oxide) forsolid-state electrolytes: A molecular dynamics study[J]. International Journal Of Heat AndMass Transfer, 2019, 137: 1241-1246.
[23] WU C W, REN X, ZHOU W X, et al. Thermal stability and thermal conductivity of solidelectrolytes[J]. APL Materials, 2022, 10(4): 040902.
[24] ZHANG L, ZHU C, YU S, et al. Status and challenges facing representative anode materialsfor rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294.
[25] KIM Y Y, LEE J H, KIM H J. Nanoporous silicon flakes as anode active material for lithium-ionbatteries[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 85: 223-226.
[26] DU A, LI H, CHEN X, et al. Recent Research Progress of Silicon-Based Anode Materials forLithium-Ion Batteries[J]. ChemistrySelect, 2022, 7(19): e202201269.
[27] FENG Z Y, PENG W J, WANG Z X, et al. Review of silicon-based alloys for lithium-ionbattery anodes[J]. International Journal Of Minerals Metallurgy And Materials, 2021, 28(10):1549-1564.
[28] GAO Y, ZHOU Y, ZHANG X, et al. Extremely Low Thermal Conductivity of PolycrystallineSilicene[J]. Journal of Physical Chemistry C, 2018, 122(16): 9220-9228.
[29] CHENG X, LIANG X. Discussion on the analogy between heat and electric conductions[J].International Journal Of Heat And Mass Transfer, 2019, 131: 709-712.
[30] KANTHARAJ R, MARCONNET A M. Heat Generation and Thermal Transport in LithiumIon Batteries: A Scale-Bridging Perspective[J]. Nanoscale And Microscale ThermophysicalEngineering, 2019, 23(2): 128-156.
[31] GAITONDE A, NIMMAGADDA A, MARCONNET A. Measurement of interfacial thermalconductance in Lithium ion batteries[J]. Journal of Power Sources, 2017, 343: 431-436.
[32] HUANG Z, YU Y, DUAN Q, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778.
[33] WANG Q, JIANG B, LI B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable andSustainable Energy Reviews, 2016, 64: 106-128.66参考文献
[34] LIU J, CAO D, YAO H, et al. Hexagonal Boron Nitride-Coated Polyimide Ion Track EtchedSeparator with Enhanced Thermal Conductivity and High-Temperature Stability for LithiumIon Batteries[J]. Acs Applied Energy Materials, 2022, 5(7): 8639-8649.
[35] KHAN W S, ASMATULU R, RODRIGUEZ V, et al. Enhancing thermal and ionic conductivities of electrospun PAN and PMMA nanofibers by graphene nanoflake additions for batteryseparator applications[J]. International Journal Of Energy Research, 2014, 38(15): 2044-2051.
[36] DE MORAES A C M, HYUN W J, LUU N S, et al. Phase-Inversion Polymer CompositeSeparators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-IonBatteries[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8107-8114.
[37] BATES A M, PREGER Y, TORRES-CASTRO L, et al. Are solid-state batteries safer thanlithium-ion batteries?[J]. Joule, 2022, 6(4): 742-755.
[38] CHENG M, RAMASUBRAMANIAN A, RASUL M G, et al. Direct Ink Writing of PolymerComposite Electrolytes with Enhanced Thermal Conductivities[J]. Advanced Functional Materials, 2021, 31(4): 2006683.
[39] VISHWAKARMA V, JAIN A. Enhancement of thermal transport in Gel Polymer Electrolyteswith embedded BN/Al2O3 nano- and micro-particles[J]. Journal of Power Sources, 2017, 362:219-227.
[40] GAN H, YUAN J, ZHANG Y, et al. Electrospun Composite Gel Polymer Electrolytes with HighThermal Conductivity toward Wide Temperature Lithium Metal Batteries[J]. ACS AppliedEnergy Materials, 2021, 4(8): 8130-8141.
[41] ZHAO B, JIANG L, ZENG X, et al. A highly thermally conductive electrode for lithium ionbatteries[J]. Journal of Materials Chemistry A, 2016, 4: 14595-14604.
[42] ZHAO T, SHE S, JI X, et al. Expanded graphite embedded with aluminum nanoparticles assuperior thermal conductivity anodes for high-performance lithium-ion batteries[J]. ScientificReports, 2016, 6(1): 33833.
[43] TAO J, LU L, WU B, et al. Dramatic improvement enabled by incorporating thermal conductiveTiN into Si-based anodes for lithium ion batteries[J]. Energy Storage Materials, 2020, 29: 367-376.
[44] 孙启浩, 文光华, 朱先飞, 等. 保护渣固态渣膜传导及辐射耦合传热特性研究[J]. 连铸,2017, 42(1): 35-40.
[45] 梁伟, 刘振祺, 麦汉超, 等. 基于辐射和传导耦合的蜂窝夹芯结构传热性能分析[J]. 强度与环境, 2008, 35(4): 31-36.
[46] MA H, MA Y, TIAN Z. Simple Theoretical Model for Thermal Conductivity of CrystallinePolymers[J]. ACS Applied Polymer Materials, 2019, 1(10): 2566-2570.
[47] ZHAO W, HU R. Toward high-thermal-conductivity polymers[J]. Matter, 2021, 4(12): 3799-3801.
[48] XU X, CHEN J, ZHOU J, et al. Thermal Conductivity of Polymers and Their Nanocomposites[J]. Advanced Materials, 2018, 30(17): 1705544.
[49] GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers andpolymer composites: A review[J]. Composites Science and Technology, 2020, 193: 108134.67参考文献
[50] KAUSAR A. Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticlenanocomposite: a review[J]. Polymer-plastics Technology And Materials, 2020, 59(8): 895-909.
[51] LIANG J Z, ZHU B. Estimation of thermal conductivity of polymer multiphase composites[J].Polymer Engineering And Science, 2017, 57(9): 965-972.
[52] HUANG X, ZHI C, LIN Y, et al. Thermal conductivity of graphene-based polymer nanocomposites[J]. Materials Science & Engineering R-reports, 2020, 142: 100577.
[53] KIM S J, HONG C, JANG K S. Theoretical analysis and development of thermally conductivepolymer composites[J]. Polymer, 2019, 176: 110-117.
[54] WANG F, SHI W, MAI Y, et al. Effect of Thermal Conductive Fillers on the Flame Retardancy, Thermal Conductivity, and Thermal Behavior of Flame-Retardant and Thermal Conductive Polyamide 6[J]. Materials, 2019, 12(24): 4114.
[55] DIALLO M S, SRINIVASAN S, CHANG B, et al. Effect of metallic nanoparticle fillers on thethermal conductivity of diatomaceous earth[J]. Physics Letters A, 2016, 380(43): 3645-3649.
[56] HEMATH M, MAVINKERE RANGAPPA S, KUSHVAHA V, et al. A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites[J]. Polymer Composites, 2020, 41(10):3940-3965.
[57] YIN T, ZHANG W, HE Y, et al. Fabrication of Heterostructured BNNS-g-P4VP-AuNPs Hybrid Fillers with Uniform and Dense Au Nanoparticles for Enhancing Thermal Conductivity ofthe Nanofibrillated Cellulose[J]. Macromolecular Materials And Engineering, 2022, 307(10):2200311.
[58] RIVIèRE L, LONJON A, DANTRAS E, et al. Silver fillers aspect ratio influence on electricaland thermal conductivity in PEEK/Ag nanocomposites[J]. European Polymer Journal, 2016,85: 115-125.
[59] YAMAN K, TAGA. Thermal and Electrical Conductivity of Unsaturated Polyester Resin Filledwith Copper Filler Composites[J]. International Journal Of Polymer Science, 2018, 2018:8190190.
[60] HUANG Z, WU W, DRUMMER D, et al. Multi-contact hybrid thermal conductive fillerAl2O3@AgNPs optimized three-dimensional thermal network for flexible thermal interfacematerials[J]. Journal Of Applied Polymer Science, 2021, 138(35): 50889.
[61] GIACOMO R, ANGELO R, LORENZO P, et al. Magnetic-Oriented Nickel Particles andNickel-Coated Carbon Nanotubes: An Efficient Tool for Enhancing Thermal Conductivity ofPDMS Composites[J]. Macromolecular Chemistry And Physics, 2022, 223(22): 2200199.
[62] 田恐虎, 吴阳, 盛绍顶, 等. 聚合物基绝缘导热复合材料中碳系填料的研究进展[J]. 复合材料学报, 2021, 38(4): 1054-1065.
[63] TAKAFUJI M, KAWAMOTO N, HANO N, et al. Spherical filler-promoting thermally conductive pathway in graphite-containing polymer composites for high heat radiation[J]. Journal OfPolymer Science, 2020, 58(4): 607-615.68参考文献
[64] QU J, FAN L, MUKERABIGWI J F, et al. A silicon rubber composite with enhanced thermal conductivity and mechanical properties based on nanodiamond and boron nitride fillers[J].Polymer Composites, 2021, 42(9): 4390-4396.
[65] NAMASIVAYAM M, SHAPTER J. Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: A review[J]. Journal Of CompositeMaterials, 2017, 51(26): 3657-3668.
[66] HUANG X, ZHI C, LIN Y, et al. Thermal conductivity of graphene-based polymer nanocomposites[J]. Materials Science & Engineering R-reports, 2020, 142: 100577.
[67] YOON H, MATTEINI P, HWANG B. Review on three-dimensional ceramic filler networkingcomposites for thermal conductive applications[J]. Journal Of Non-crystalline Solids, 2022,576: 121272.
[68] CAI X, LIU Y, YANG T, et al. Matching micro- and nano-boron nitride hybrid fillers for highthermal conductive composites[J]. Journal Of Applied Polymer Science, 2021, 138(24): 50575.
[69] KUSUNOSE T, UNO Y, TANAKA Y, et al. Isotropic enhancement of the thermal conductivityof polymer composites by dispersion of equiaxed polyhedral boron nitride fillers[J]. CompositesScience and Technology, 2021, 208: 108770.
[70] YU C, ZHANG J, TIAN W, et al. Polymer composites based on hexagonal boron nitride andtheir application in thermally conductive composites[J]. Rsc Advances, 2018, 8: 21948-21967.
[71] FISCHER A J, ZHONG Y, ZHANG L, et al. Heat propagation in thermally conductive polymersof PA6 and hexagonal boron nitride[J]. Fire and Materials, 2019, 43(8): 928-935.
[72] YEO H, ISLAM A M, YOU N H, et al. Characteristic correlation between liquid crystallineepoxy and alumina filler on thermal conducting properties[J]. Composites Science and Technology, 2017, 141: 99-105.
[73] AKKOYUN S, AKKOYUN M. Improvement of thermal conductivity of rigid polyurethanefoams with aluminum nitride filler[J]. Cellular Polymers, 2021, 40(2): 87-98.
[74] SHENG C, LIANG K, WU G, et al. Multiscale analysis of the effect of interfacial thermalconductance between fillers and epoxy resin on the effective thermal conductivity of their composites[J]. Diamond and Related Materials, 2022, 130: 109521.
[75] ZHANG F, YE W, ZHOU W, et al. Endowing Thermally Conductive and Electrically InsulatingEpoxy Composites with a Well-Structured Nanofiller Network via Dynamic TransesterificationParticipated Interfacial Welding[J]. Industrial & Engineering Chemistry Research, 2022, 61(9):3320-3328.
[76] SUJKA M. Ultrasonic modification of starch –Impact on granules porosity[J]. UltrasonicsSonochemistry, 2017, 37: 424-429.
[77] THASIRISAP E, VITTAYAKORN N, SEEHARAJ P. Surface modification of TiO2 particleswith the sono-assisted exfoliation method[J]. Ultrasonics Sonochemistry, 2017, 39: 733-740.
[78] HAN X, WU X, DENG Y, et al. Electrocatalysis: Ultrafine Pt Nanoparticle-Decorated PyriteType CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for OverallWater Splitting[J]. Advanced Energy Materials, 2018, 8(24): 1870110.69参考文献
[79] ZHANG Y, MA M, WANG X, et al. Second-order optical nonlinearity of surface-cappedCdS nanoparticles and effect of surface modification[J]. Journal Of Physics And ChemistryOf Solids, 2003, 64(6): 927-931.
[80] PAN C, KOU K, JIA Q, et al. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent[J]. Composites Part B:Engineering, 2017, 111: 83-90.
[81] SAVIN A V, SAVINA O I. An Effect of Chemical Modification of Surface of Carbon Nanotubeson Their Thermal Conductivity[J]. Physics Of The Solid State, 2019, 61(2): 279-284.
[82] CHEN Y, EVANS J W. Thermal Analysis of Lithium‐Ion Batteries[J]. Journal Of The Electrochemical Society, 1996, 143(9): 2708.
[83] BANDHAUER T M, GARIMELLA S, FULLER T F. A Critical Review of Thermal Issues inLithium-Ion Batteries[J]. Journal Of The Electrochemical Society, 2011, 158(3): R1.
[84] LUO W, ZHOU L, FU K, et al. A Thermally Conductive Separator for Stable Li Metal Anodes[J]. Nano Letters, 2015, 15(9): 6149-6154.
[85] LIU Y, QIAO Y, ZHANG Y, et al. 3D printed separator for the thermal management of highperformance Li metal anodes[J]. Energy Storage Materials, 2018, 12: 197-203.
[86] TUTGUN M S, SINIRLIOGLU D, CELIK S U, et al. Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boronnitride[J]. Journal Of Polymer Research, 2015, 22(4): 47.
[87] AKEL M, ÜNüGüR ÇELIK S, BOZKURT A, et al. Nano hexagonal boron nitride–Nafioncomposite membranes for proton exchange membrane fuel cells[J]. Polymer Composites, 2016,37(2): 422-428.
[88] KOVTYUKHOVA N I, WANG Y, LV R, et al. Reversible Intercalation of Hexagonal BoronNitride with Brønsted Acids[J]. Journal Of The American Chemical Society, 2013, 135(22):8372-8381.
[89] MOGURAMPELLY S, BORODIN O, GANESAN V. Computer Simulations of Ion Transportin Polymer Electrolyte Membranes[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 349-371.
[90] DEIVANAYAGAM R, CHENG M, WANG M, et al. Composite Polymer Electrolyte for HighlyCyclable Room-Temperature Solid-State Magnesium Batteries[J]. Acs Applied Energy Materials, 2019, 2(11): 7980-7990.
[91] LIN D, LIU W, LIU Y, et al. High Ionic Conductivity of Composite Solid Polymer Electrolytevia In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)[J]. NanoLetters, 2016, 16(1): 459-465.
[92] DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithiumbatteries[J]. Materials Science & Engineering R-reports, 2019, 136: 27-46.
[93] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid statebatteries[J]. Journal Of Power Sources, 2015, 282: 299-322.
[94] VISHNUGOPI B S, HAO F, VERMA A, et al. Double-Edged Effect of Temperature on LithiumDendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23931-23938.70参考文献
[95] WANG H, ZHU Y, KIM S C, et al. Underpotential lithium plating on graphite anodes causedby temperature heterogeneity[J]. Proceedings of the National Academy of Sciences, 2020, 117(47): 29453-29461.
[96] HAN D, WANG X, ZHOU Y N, et al. A Graphene-Coated Thermal Conductive Separatorto Eliminate the Dendrite-Induced Local Hotspots for Stable Lithium Cycling[J]. AdvancedEnergy Materials, 2022, 12(25): 2201190.
[97] SHEN C, FANG X, GE M, et al. Hierarchical Carbon-Coated Ball-Milled Silicon: Synthesisand Applications in Free-Standing Electrodes and High-Voltage Full Lithium-Ion Batteries[J].ACS Nano, 2018, 12(6): 6280-6291.
[98] XIAO X, ZHOU W, KIM Y, et al. Regulated Breathing Effect of Silicon Negative Electrodefor Dramatically Enhanced Performance of Li-Ion Battery[J]. Advanced Functional Materials,2015, 25(9): 1426-1433.
[99] TAO J, LU L, WU B, et al. Dramatic improvement enabled by incorporating thermal conductiveTiN into Si-based anodes for lithium ion batteries[J]. Energy Storage Materials, 2020, 29: 367-376.
[100] ZHENG J, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layeredstructure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes forlithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(26): 13229-13238.
[101] MOGI R, INABA M, IRIYAMA Y, et al. In Situ Atomic Force Microscopy Study on LithiumDeposition on Nickel Substrates at Elevated Temperatures[J]. Journal Of The ElectrochemicalSociety, 2002, 149(4): A385.
[102] WANG C, ODSTRCIL R, LIU J, et al. Protein-modified SEI formation and evolution in Limetal batteries[J]. Journal of Energy Chemistry, 2022, 73: 248-258.
[103] YOON T, MILIEN M S, PARIMALAM B S, et al. Thermal Decomposition of the Solid Elec trolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries[J]. Chemistry Of Ma terials, 2017, 29(7): 3237-3245.
[104] HARUTA M, OKUBO T, MASUO Y, et al. Temperature effects on SEI formation and cyclabil ity of Si nanoflake powder anode in the presence of SEI-forming additives[J]. ElectrochimicaActa, 2017, 224: 186-193.
修改评论