中文版 | English
题名

微结构变形梯度理论及其在弹性板中的应用

其他题名
MICRO-STRUCTURAL DEFORMATION GRADIENT THEORY AND APPLICATIONS TO ELASTIC PLATES
姓名
姓名拼音
ZHOU Yucheng
学号
11930941
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
黄克服
导师单位
力学与航空航天工程系
论文答辩日期
2023-05-12
论文提交日期
2023-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本文将具有非局部效应的材料考虑为由一定体积的微元体构成的连续介质模型,构建了微结构系统并研究了其变形特性及相应的能量。从变形的角度定义微元体的微应变和微转动并与宏观变形联系起来,应用最小势能原理导出了具有两个长度参数的微结构变形梯度(Micro-Structural Deformation Gradient Theory,MSDG)理论,具有明确的变形物理意义。在 MSDG 理论中定义了广义应变能,从能量的角度给出了材料模量的新解释;引入了非局部效应参数定量地描述材料的非局部特性。在一定条件下,MSDG 理论可以退化为偶应力理论、应变梯度理论和经典连续介质理论。非局部变形可分为两种类型:非均匀材料的宏观变形和具有微结构材料的微观变形。对于颗粒增强复合材料的单轴拉伸,MSDG 理论成功预测和验证了微米尺度上弹性模量与颗粒尺寸的近似线性关系。此外,基于 MSDG 理论的微扭转解析解与实验结果吻合较好,并预测了更小直径圆柱体的抗扭刚度。

基于 MSDG 理论构建了具有两个长度参数的修正梯度弹性 Kirchhoff-Love 板模型。应用最小势能原理,结合 Cauchy 应力、偶应力和超应力,得到了适用于任意形状的六阶基本微分方程和对应的边界条件。给出了具有简支边界、固支边界和自由边界以及不同加载条件下梯度弹性 Kirchhoff-Love 板的弯曲和屈曲变形的解析解及数值分布。定义尺寸相关抗弯刚度(Size-Dependent Bending Stiffness,SDBS),直观地描述了弹性薄板弯曲变形的尺寸效应。另外,研究了梯度弹性 Kirchhoff-Love 圆形薄板的轴对称弯曲和屈曲问题,通过 Bessel 函数给出了轴对称弯曲的解析解,并构造高阶类 Bessel 函数给出了轴对称屈曲临界荷载的解析解。

结合 MSDG 理论中广义应变能和 Lyapunov 稳定性第二法研究了微结构弹性系统的动力稳定性。给出了基于微结构弹性系统的 Lyapunov 动力稳定性能量项(哈密顿量),除了经典弹性形变势能外,还包含了高阶梯度变形能以及与转动相关的变形能。非局部能量项中与材料特征长度相关的长度参数的引入使得本文给出的微结构弹性系统的动力稳定性研究可以用于描述稳定性问题的尺寸效应。文中分别对一维应变梯度弹性梁和二维变形梯度弹性薄板进行了动力稳定性的研究,得到了两种弹性体模型的尺寸相关临界荷载,并从动力学的角度给出了弹性系统在整个时域上的稳定性表述。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] FU M W, WANG J L. Size effects in multi-scale materials processing and manufacturing[J]. International Journal of Machine Tools and Manufacture, 2021, 167: 103755.
[2] LUN Y Z, HONG J W, FANG D N. Asymmetric mechanical properties in ferroelectrics driven by flexo-deformation effect[J]. Journal of the Mechanics & Physics of Solids, 2022, 164: 104891.
[3] TANG C Z, ALICI G. Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors[J]. Journal of Physics D: Applied Physics, 2011, 44(33): 335501.
[4] TANG C Z, ALICI G. Evaluation of length-scale effects for mechanical behaviour of micro and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy[J]. Journal of Physics D: Applied Physics, 2011, 44(33): 335502.
[5] LEI J, HE Y, GUO S, et al. Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity[J]. AIP Advances, 2016, 6(10): 51-59.
[6] LI Z K, HE Y M, LEI J, et al. A standard experimental method for determining the material length scale based on modified couple stress theory[J]. International Journal of Mechanical Sciences, 2018, 141: 198-205.
[7] STOLKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Materialia, 1998, 46(14): 5109-5115.
[8] ANDERSON W B, LAKES R S. Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam[J]. Journal of Material Science, 1994, 29(24): 6413-6419.
[9] ANDREWS E W, GIOUX G, ONCK P, et al. Size effects in ductile cellular solids. Part II: experimental results[J]. International Journal of Mechanical Sciences, 2001, 43(3): 701-713.
[10] CHONG A, LAM D. Strain gradient plasticity effect in indentation hardness of polymers[J]. Journal of Materials Research, 1999, 14(10): 4103-4110.
[11] BASTAWROS A F, BART S H, EVANS A G. Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam[J]. Journal of the Mechanics & Physics of Solids, 2000, 48(2): 301-322.
[12] YANG J, CADY C, HU M S, et al. Effects of damage on the flow strength and ductility of a ductile Al alloy reinforced with SiC particulates[J]. Acta Metallurgica Et Materialia, 1990, 38 (12): 2613-2619.
[13] LLOYD D. Particle-Reinforced Aluminum And Magnesium Matrix Composites[J]. International Materials Reviews, 1994, 39(1): 1-23.
[14] KOUZELI M, MORTENSEN A. Size dependent strengthening in particle reinforced aluminium[J]. Acta Materialia, 2002, 50(1): 39-51.
[15] YAN Y W, GENG L, LI A B. Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites[J]. Materials Science & Engineering A, 2007, 448(1–2): 315-325.
[16] ERINGEN A C, EDELEN D. On nonlocal elasticity[J]. International Journal of Engineering Science, 1972, 10(3): 233-248.
[17] KRNER E. Elasticity theory of materials with long range cohesive forces[J]. International Journal of Solids and Structures, 1967, 3(5): 731-742.
[18] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics & Physics of Solids, 2000, 48(1): 175-209.
[19] ERINGEN A C. Nonlocal polar elastic continua[J]. International Journal of Engineering Science, 1972, 10(1): 1-16.
[20] ERINGEN A C, SPEZIALE C G, KIM B S. Crack-tip problem in nonlocal elasticity[J]. Journal of the Mechanics & Physics of Solids, 1977, 25(5): 339-355.
[21] 王林娟, 徐吉峰, 王建祥. 非局部弹性理论概述及在当代材料背景下的一些进展[J]. 力学季刊, 2019, 40(1): 1-12.
[22] ROGULA D. Nonlocal Theory of Material Media[M]. Springer Verlag, 1982: 137-243.
[23] KUNIN I A. Theory of Elastic Media with Microstructure. I - One-dimensional models[M]. Springer, Berlin, 1982.
[24] KUNIN I A. Elastic media with microstructure[M]. Springer, Berlin, 1983.
[25] MINDLIN R D. Second gradient of strain and surface-tension in linear elasticity[J]. International Journal of Solids and Structures, 1965, 1(4): 417-438.
[26] MINDLIN R D, ESHEL N N. On first strain-gradient theories in linear elasticity[J]. International Journal of Solids and Structures, 1968, 4(1): 109-124.
[27] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Mechanics, 1983, 54(9): 4703-4710.
[28] AIFANTIS E C. On the role of gradients in the localization of deformation and fracture[J]. International Journal of Engineering Science, 1992, 30(10): 1279-1299.
[29] LAZAR M, MAUGIN G A. Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity[J]. International Journal of Engineering Science, 2005, 43 (13/14): 1157-1184.
[30] ERINGEN A C. Linear theory of nonlocal elasticity and dispersion of plane waves[J]. International Journal of Engineering Science, 1972, 10(5): 425-435.
[31] BAZANT Z P, JIRASEK M. Nonlocal integral formulations of plasticity and damage: survey of progress[J]. Journal of Engineering Mechanics, 2002, 128(11): 1119-1149.
[32] BAZANT Z P. Why Continuum Damage is Nonlocal: Micromechanics Arguments[J]. Journal of Engineering Mechanics, 1991, 117(5): 1070-1087.
[33] COSSERAT E. Theorie des corpes deformables[J]. Herman Et Fils Paris, 1909, 81: 67.
[34] VOIGT W. Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle[J]. Abhandlungen der Koniglichen Gesellschaft der Wissenschaften, 1887: 34.
[35] TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 385-414.
[36] KOITER W T. Couple-stresses in the theory of elasticity, I & II[J]. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series B, 1964, 67(1): 17-44.
[37] MINDLIN R D, ESHEL N N. Effects of couple-stresses in linear elasticity[J]. International Journal of Solids and Structures, 1968, 1: 417-438.
[38] FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity: Theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487.
[39] FLECK N A, HUTCHINSON J W. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics & Physics of Solids, 2001, 41(12): 1825-1857.
[40] YANG F, CHONG A, LAM D, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids & Structures, 2002, 39(10): 2731-2743.
[41] PARK S K, GAO X L. Bernoulli-Euler beam model based on a modified couple stress theory[J]. Journal of Micromechanics and Microengineering, 2006, 16(11): 2355-2359.
[42] SHAAT M. Physical and Mathematical Representations of Couple Stress Effects on Micro/-Nanosolids[J]. International Journal of Applied Mechanics, 2015, 7(1): 1550012.
[43] NEFF P, MUNCH I, GHIBA I D, et al. On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of A.R. Hadjesfandiari and G.F. Dargush[J]. International Journal of Solids and Structures, 2016, 81: 233-243.
[44] SKRZAT A, EREMEYEV V A. On the effective properties of foams in the framework of the couple stress theory[J]. Continuum Mechanics and Thermodynamics, 2020, 32(6): 1779-1801.
[45] PEDGAONKAR A, DARRALL B T, DARGUSH G F. Mixed displacement and couplestress finite element method for anisotropic centrosymmetric materials[J]. European Journal of Mechanics-A/Solids, 2021, 85: 104074.
[46] TSIATAS G C. A new Kirchhoff plate model based on a modified couple stress theory[J]. International Journal of Solids & Structures, 2009, 46(13): 2757-2764.
[47] CHEN W J, LI X P. A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model[J]. Archive of Applied Mechanics, 2014, 84(3): 323-341.
[48] DENG G Q, DARGUSH G. Mixed convolved Lagrange multiplier variational formulation for size-dependent elastodynamic couple stress response[J]. Acta Mechanica, 2022, 233(5): 1837-1863.
[49] WANG Y X, ZHANG X, SHEN H M, et al. Couple stress-based 3D contact of elastic films[J]. International Journal of Solids and Structures, 2020, 191–192: 449-463.
[50] LIU N, FU L Y, TANG G, et al. Modified LSM for size-dependent wave propagation: Comparison with modified couple stress theory[J]. Acta Mechanica, 2020, 231(4): 1285-1304.
[51] APOSTOLAKIS G, DARGUSH G F. Size-dependent couple stress natural frequency analysis via a displacement-based variational method for two-and three-dimensional problems[J]. Acta Mechanica, 2022, 234: 891-910.
[52] AIFANTIS E C. On the Microstructural Origin of Certain Inelastic Models[J]. Journal of Engineering Materials & Technology, 1984, 106(4): 326-330.
[53] FLECK N A, HUTCHINSON J W. Strain gradient plasticity[J]. Advances in Applied Mechanics, 1997, 33: 295-361.
[54] HAN C S, GAO H J, HUANG Y G, et al. Mechanism-based strain gradient plasticity-I. Theory[J]. Journal of the Mechanics & Physics of Solids, 1999, 47(5): 1239-1263.
[55] AIFANTIS E C. Update on a class of gradient theories[J]. Mechanics of Materials, 2003, 35 (3/6): 259-280.
[56] FLECK N A, HUTCHINSON J W. A reformulation of strain gradient plasticity[J]. Journal of the Mechanics & Physics of Solids, 2001, 49(10): 2245-2271.
[57] LAM D C C, YANG F, CHONG A, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics & Physics of Solids, 2003, 51(8): 1477-1508.
[58] ZHOU S J, LI A Q, WANG B L. A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials[J]. International Journal of Solids and Structures, 2016, 80: 28-37.
[59] FU G Y, ZHOU S J, QI L. On the strain gradient elasticity theory for isotropic materials[J]. Intermal Journal of Engineering Science, 2020, 154: 1-24.
[60] RAHIMI Z, REZAZADEH G, SUMELKA W. A non-local fractional stress-strain gradient theory[J]. International Journal of Mechanics and Materials in Design, 2020, 16(2): 265-278.
[61] FU G Y, ZHOU S J, QI L. A size-dependent Bernoulli-Euler beam model based on strain gradient elasticity theory incorporating surface effects[J]. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2019, 99(6): 1-22.
[62] LI A, WANG Q, SONG M, et al. On Strain Gradient Theory and Its Application in Bending of Beam[J]. Coatings, 2022, 12(9): 1-19.
[63] LONG J M, FAN H. SH surface wave propagating in a strain-gradient layered half-space[J]. Acta Mechanica, 2021, 232: 1061-1074.
[64] JIANG Y Y, LI L, HU Y J. Strain gradient elasticity theory of polymer networks[J]. Acta Mechanica, 2022, 233(8): 3213-3231.
[65] BARRETTA R, FAGHIDIAN S A, MAROTTI DE SCIARRA F. Aifantis versus Lam straingradient models of Bishop elastic rods[J]. Acta Mechanica, 2019, 230(8): 2799-2812.
[66] LAZAR M. Incompatible strain gradient elasticity of Mindlin type: screw and edge dislocations[J]. Acta Mechanica, 2021, 232(9): 3471-3494.
[67] LE T M, VO D, RUNGAMORNRAT J, et al. Strain-gradient theory for shear deformation free-form microshells: Governing equations of motion and general boundary conditions[J]. International Journal of Solids and Structures, 2022, 248: 111579.
[68] LI G E, KUO H Y. Effects of strain gradient and electromagnetic field gradient on potential and field distributions of multiferroic fibrous composites[J]. Acta Mechanica, 2021, 232(4): 1353-1378.
[69] MINDLIN R D. Micro-structure in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1964, 16(1): 51-78.
[70] TIMOSHENKO S. Theory of plates and shells[M]. McGraw-Hill, 1959.
[71] CHENG S. Elasticity Theory of Plates and a Refined Theory[J]. Journal of Applied Mechanics, 1979, 46(3): 644-650.
[72] REDDY J N, ROMANOFF J, LOYA J A. Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory[J]. European Journal of Mechanics-A/Solids, 2015, 56: 92-104.
[73] ZHOU Y C, HUANG K F. An effective general solution to the inhomogeneous spatial axisymmetric problem and its applications in functionally graded materials[J]. Acta Mechanica, 2021, 232: 4199-4215.
[74] STOLKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Materialia, 1998, 46(14): 5109-5115.
[75] CHONG A C M, YANG F, LAM D C C. Torsion and bending of micron-scaled structures[J]. Journal of Materials Research, 2001, 16(4): 1052-1058.
[76] MCFARLAND A W, COLTON J S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors[J]. Journal of Micromechanics and Microengineering, 2005, 15(5): 1060-1067.
[77] LAZOPOULOS K A. On the gradient strain elasticity theory of plate[J]. European Journal of Mechanics-A/Solids, 2004: 843-852.
[78] LAZOPOULOS K A. On bending of strain gradient elastic micro-plates[J]. Mechanics Research Communications, 2009, 36(7): 777-783.
[79] DARIJANI A H, H. an Shahdadi. A new shear deformation model with modified couple stress theory for microplates[J]. Acta Mechanica, 2015, 226: 2773-2788.
[80] MOUSAVI S M, PAAVOLA J H. Analysis of plate in second strain gradient elasticity[J]. Archive of Applied Mechanics, 2014, 84(8): 1135-1143.
[81] BABU B, PATEL B. Analytical solution for strain gradient elastic Kirchhoff rectangular plates under transverse static loading[J]. European Journal of Mechanics-A/Solids, 2019, 73: 101-111.
[82] ZHANG G Y, ZHENG C Y, MI C W, et al. A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory[J]. Mechanics of Advanced Materials and Structures, 2022, 29(17): 2521-2530.
[83] WANG B L, ZHOU S J, ZHAO J F, et al. A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory[J]. European Journal of Mechanics-A/Solids, 2011, 30(4): 517-524.
[84] PAPARGYRI S, GIANNAKOPOULOS A, BESKOS D. Variational analysis of gradient elastic flexural plates under static loading[J]. International Journal of Solids and Structures, 2010, 47 (20): 2755-2766.
[85] NIIRANEN J, NIEMI A H. Variational formulations and general boundary conditions for sixth order boundary value problems of gradient-elastic Kirchhoff plates[J]. European Journal of Mechanics-A/Solids, 2017, 61: 164-179.
[86] SHARIATI M, SHISHESAZ M, SAHBAFAR H, et al. A review on stress-driven nonlocal elasticity theory[J]. Journal of Computational and Applied Mathematics, 2021, 52(3): 535-552.
[87] SHARIATI M, SHISHESAZ M, MOSALMANI R, et al. Size Effect on the Axisymmetric Vibrational Response of Functionally Graded Circular Nano-Plate Based on the Nonlocal Stress-Driven Method[J]. Journal of Applied and Computational Mechanics, 2022, 8(3): 962-980.
[88] BARRETTA R, FAGHIDIAN S A, Marotti de Sciarra F. Stress-driven nonlocal integral elasticity for axisymmetric nano-plates[J]. International Journal of Engineering Science, 2019, 136: 38-52.
[89] ROMANO G, BARRETTA R. Nonlocal elasticity in nanobeams: the stress-driven integral model[J]. International Journal of Engineering Science, 2017, 115: 14-27.
[90] FARAJPOUR A, HOWARD C Q, ROBERTSON W S P. On size-dependent mechanics of nanoplates[J]. International Journal of Engineering Science, 2020, 156: 103368.
[91] SHISHESAZ M, SHARIATI M, HOSSEINI M. Size-effect analysis on vibrational response of functionally graded annular nano-plate based on nonlocal stress-driven method[J]. International Journal of Structural Stability and Dynamics, 2022, 22(09): 2250098.
[92] QING H. Well-posedness of two-phase local/nonlocal integral polar models for consistent axisymmetric bending of circular microplates[J]. Applied Mathematics and Mechanics, 2022, 43 (5): 637-652.
[93] VACCARO M S, SEDIGHI H M. Two-phase elastic axisymmetric nanoplates[J]. Engineering With Computers, 2023, 39(1): 827-834.
[94] SERPILLI M, KRASUCKI F, GEYMONAT G. An asymptotic strain gradient Reissner-Mindlin plate model[J]. Meccanica, 2013, 48(8): 2007-2018.
[95] MOUSAVI S M, PAAVOLA J H, REDDY J N. Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity[J]. Meccanica, 2015, 50(6): 1537-1550.
[96] ASHOORI A, MAHMOODI M J. A nonlinear thick plate formulation based on the modified strain gradient theory[J]. Mechanics of Advanced Materials and Structures, 2018, 25(10): 813-819.
[97] LI A Q, JI X, ZHOU S S, et al. Nonlinear axisymmetric bending analysis of strain gradient thin circular plate[J]. Applied Mathematical Modelling, 2021, 89: 363-380.
[98] DARVISHVAND A, ZAJKANI A. Nonlinear plastic buckling analysis of Micro–Scale thin plates established on higher order mechanism-based strain gradient plasticity framework[J]. European Journal of Mechanics-A/Solids, 2019, 77: 103777.
[99] ZHANG B, LI H, KONG L L, et al. Strain gradient differential quadrature Kirchhoff plate finite element with the C2 partial compatibility[J]. European Journal of Mechanics-A/Solids, 2020, 80: 103879.
[100] TORABI J, NIIRANEN J, ANSARI R. Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory[J]. European Journal of Mechanics-A/Solids, 2021, 87: 104221.
[101] STRIZ A G, JANG S K, BERT C W. Nonlinear bending analysis of thin circular plates by differential quadrature[J]. Thin-Walled Structures, 1988, 6(1): 51-62.
[102] HATERBOUCH M, BENAMAR R. Geometrically nonlinear free vibrations of simply supported isotropic thin circular plates[J]. Journal of Sound and Vibration, 2005, 280(3): 903-924.
[103] REDDY J N, HUANG C L, SINGH I R. Large deflections and large amplitude vibrations of axisymmetric circular plates[J]. International Journal for Numerical Methods in Engineering, 1981, 17(4): 527-541.
[104] LIU D B, HE Y M, TANG X T, et al. Size effects in the torsion of microscale copper wires: Experiment and analysis[J]. Scripta Materialia, 2012, 66(6): 406-409.
[105] WANG Y G, LIN W H, ZHOU C L. Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory[J]. Archive of Applied Mechanics, 2014, 84: 391-400.
[106] WANG Y G, LIN W H, LIU N. Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory[J]. International Journal of Mechanical Sciences, 2013, 71: 51-57.
[107] WANG Y G, SONG H F, LIN W H, et al. Large deflection analysis of functionally graded circular microplates with modified couple stress effect[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 981-991.
[108] REDDY J N, BERRY J. Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress[J]. Composite Structures, 2012, 94(12): 3664-3668.
[109] GOUSIAS N, LAZOPOULOS A K. Axisymmetric bending of strain gradient elastic circular thin plates[J]. Archive of Applied Mechanics, 2015, 85: 1719-1731.
[110] ANSARI R, GHOLAMI R, SHOJAEI M F, et al. Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory[J]. European Journal of Mechanics-A/Solids, 2015, 49: 251-267.
[111] ZHOU S S, GAO X L. A nonclassical model for circular Mindlin plates based on a modified couple stress theory[J]. Journal of Applied Mechanics, 2014, 81(5): 1-8.
[112] 武际可, 苏先樾. 弹性系统的稳定性[M]. 科学出版社, 1994.
[113] 铁摩辛柯, 盖莱. 弹性稳定理论(译)[M]. 科学出版社, 1965.
[114] SUNDARARAJAN C. Influence of End Supports on the Stability of Nonconservative Elastic Systems[J]. Journal of Applied Mechanics, 1974, 41(1): 313-315.
[115] SUNDARARAJAN C. A theorem on the stability of elastic systems[J]. Zeitschrift für angewandte Mathematik und Physik, 1973, 24(2): 287-290.
[116] SUNDARARAJAN C. Role of mass intensity on the stability of elastic systems[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1974, 25: 112-115.
[117] LEIPHOLZ H U E. On the stability of an elastic system based on the stability of its natural modes[J]. Mechanics Research Communications, 1976, 3(2): 97-101.
[118] LEIPHOLZ H U E. Lyapunov stability of continuous elastic systems and its topological foundations[J]. Acta Mechanica, 1982, 45(3–4): 135-162.
[119] WESOLOWSKI Z. Stability of non-perfect elastic systems[J]. Academie Polonaise des Sciences, Bulletin, Serie des Sciences Techniques, 1974, 22(4): 267-271.
[120] HUSEYIN K, PLAUT R H. The Elastic Stability of Two-Parameter Nonconservative Systems[J/OL]. Journal of Applied Mechanics, 1973, 40(1): 175-180. DOI: 10.1115/1.3422920.
[121] MASSALAS C, TZIVANIDIS G, TOLIKAS P. Elastic stability of conservative systems subjected to elastic constraints[J]. Mechanics Research Communications, 1977, 4(1): 23-28.
[122] ZAGORODNIA N V, KOVALCHUK P S. Stability of nonconservative elastic systems under periodic excitation[J]. Akademiia Nauk Ukrains’ koi RSR, Dopovidi, Seriia A-Fiziko-Matematichni ta Tekhnichni Nauki, 1978, 10: 899-903.
[123] DENISOV G G, KUGUSHEVA E K, NOVIKOV V V. On the problem of the stability of onedimensional unbounded elastic systems[J]. Journal of Applied Mathematics and Mechanics, 1985, 49(4): 533-537.
[124] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical review B, 2014, 90(22): 224104.
[125] HAUGER W. On the convexity of the stability boundary of continous elastic systems under two-parameter nonconservative loading[J/OL]. Mechanics Research Communications, 1974, 1 (2): 107-112. DOI: 10.1016/0093-6413(74)90023-8.
[126] APALARA T A. On the stability of porous-elastic system with microtemparatures[J]. Journal of thermal stresses, 2019, 42(1–3): 265-278.
[127] MU X W, CHENG G F, DING Z S. On stability of discontinuous systems via vector Lyapunov functions[J]. Applied Mathematics and Mechanics, 2007, 28: 1613-1619.
[128] ZHANG Y J, DING C Y, YAN S H, et al. The Converse Theorem of Lyapunov Exponential Stability Theorem[C]//Advanced Materials Research: Vol. 143. 2011: 1170-1174.
[129] JIANG M, ZHONG S. Stability analysis for a class of fractional singular systems with nonlinear disturbances[C]//2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology. IEEE, 2013: 188-191.
[130] LIU G R, ZHOU W B, LIU R F. Analysis of Elastic Motion Stability of Flexible Manipulator Arm Based on Lyapunov Stability Theory[C]//Applied Mechanics and Materials: Vol. 620. Trans Tech Publ, 2014: 321-329.
[131] TONG G J, LIU Y S, CHENG Q, et al. Stability analysis of a two-segment constructed nanotube embedded in an elastic matrix[J]. Journal of Vibration and Control, 2020, 26(3-4): 241-252.
[132] SPORYKHIN A N. Deformation and Loss of Stability Modeling for Elastic-Viscoplastic Mixtures[J]. Mechanics of Solids, 2020, 55: 878-884.
[133] ZHOU Y C, CAO J B, CUI Y Q. Application of a graphical method to the domain switching of ferroelectrics subjected to electromechanical loading[J]. Mechanics of Materials, 2019, 137: 1-7.
[134] ZHOU Y C, HUANG K F. A simplified deformation gradient theory and its experimental verification[J/OL]. Acta Mechanica, 2023: 1-22. DOI: 10.1007/s00707-023-03545-y.
[135] ASHTON J E, HALPIN J C, PETIT A. Primer on Composite Materials: Analysis[M]. Washington University, 1969.
[136] PAPARGYRI S, BESKOS D E. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates[J]. Archive of Applied Mechanics, 2008, 78(8): 625-635.
[137] ARIMAN T. On circular micropolar plates[J]. Ingenieur-Archiv, 1968, 37: 156-160.
[138] KOITER W T. A thin-plate analysis and experimental evaluation of couple-stress effects[J]. Experimental Mechanics, 1968, 8(6): 288-288.
[139] 严镇军. 数学物理方法[M]. 第二版. 中国科学技术大学出版社, 2010.
[140] REDDY J N. Theory and Analysis of Elastic Plates[M]. Taylor and Francis, 1999.
[141] LEIPHOLZ H U E. Stability of Elastic System[M]. Germantown, Maryland, USA, 1980.
[142] LEIPHOLZ H U E. Stability of Dynamic Systems[J]. Journal of Applied Mechanics, 1983, 50: 1086-1096.
[143] LAZOPOULOS K A, LAZOPOULOS A K. Bending and buckling of thin strain gradient elastic beams[J]. European Journal of Mechanics-A/Solids, 2010, 29(5): 837-843.
[144] PAPARGYRI-BESKOU S, TSEPOURA K G, POLYZOS D, et al. Bending and stability analysis of gradient elastic beams[J]. International Journal of solids and structures, 2003, 40(2): 385-400.
[145] MICHLIN S G. Variationsmethoden der mathematischen physik[M]. Akademie-Verlag, Berlin, 1962.

所在学位评定分委会
力学
国内图书分类号
O343
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545041
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
周宇澄. 微结构变形梯度理论及其在弹性板中的应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930941-周宇澄-力学与航空航天(12208KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周宇澄]的文章
百度学术
百度学术中相似的文章
[周宇澄]的文章
必应学术
必应学术中相似的文章
[周宇澄]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。